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ABSTRACT

In this paper, we investigate how intonation is used to
confirm a word in English. This intonation type is chal-
lenging to model, as it mixes narrow focus and question
with variations based on accent location, phrasing and
speaking rate.

We build a model that predicts the intonation from the
text, using an extremely simple intonational phonol-
ogy. One can interpret some of the parameters of the
model as detailed description of accent shapes and oth-
ers as prosodic strengths which carry phrasing informa-
tion. The RMS deviation is 21 Hz or 1.7 semitones, a
result comparable to machine learning methods, but
with far fewer parameters that need to be learned.

Furthermore, the model handles both fast and slow
speech with the same set of parameters in a principled
way. The model incorporates some aspects of mus-
cle dynamics, and its ability to predict fy at different
speaking rates is confirmation that an articulatory ap-
proach to fo modeling is appropriate.

1 INTRODUCTION

What is your phone number?
301-493-1212.
I am sorry. Is it 301-493-1212?

Often, in a dialog, a speaker is confident of most of
the information in a long list except for one digit in a
telephone number, one letter in the confirmation code,
or one topping on the pizza. Using intonation is the
most natural and effective way to elicit confirmation in
this situation.

The speaker draws attention to the word in question by
putting a narrow focus on it. The rest of the informa-
tion becomes a background, guiding the listener to the
problematic area. Proper modeling of this intonation
is particularly useful in human-machine interaction.

In this paper, we investigate how intonation is used
to confirm a word in English. Our primary data are
digit strings, as above, where the subject is told to ask
for confirmation of a digit (above: the fifth digit, 9).
This intonation type is a challenge to model, because

the focus interacts with phrasing, the overall question
intonation, and speaking rate.

Our data raises many questions: How to model accents
that ride on a high pitch plateau? How to model the
interaction of two rising gestures at different distances
apart? Is it appropriate to use different phonological
representations for fast and slow speaking rates?

We solved many of the problems by building a Stem-
ML intonation model [1]. Our model predicts the in-
tonation from the text with very few parameters that
need to be learned. One can interpret some of the pa-
rameters of the model as detailed description of accent
shapes and some others as prosodic strengths which
carry phrasing information.

The model handles fast and slow speech in a principled
way with the same set of parameters. We believe that
the speech-rate dependent fy patterns is a consequence
of muscle dynamics, and that future modeling of fy
should incorporate this aspect.

2 Data

In order to test models of this type of intonation, we
collected a corpus of speech from a female, native-
born, professional speaker. The database consists of
200 digit sequences, organized in 16 blocks, with vari-
ations in phrasing, speaking rate, and which digit in
the sentence was to be confirmed. Sentence order was
randomized inside each block. Nine of the sentences
were dropped in this initial study: three for “oh” ws.
“zero”, and six because pauses were inserted after the
focus.

Phrasing: There are two types of phrasing: 12 digit
sequences simulating (shortened) credit card numbers
(e.g. 9478-1509-7091) and 10 digit sequences simulat-
ing telephone numbers (e.g. 301-123-5045).

Speed: The credit card numbers were read slowly;
one set of telephone sequences were read slowly and
the other sets fast.

Reading instructions: The speaker was presented
with dash-separated digit strings. She was asked to
group the digits into credit card style or phone number
style, but not to pause at the dash. Each block con-
sisted of one string read as declarative sentence, one as
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Figure 1: Phrasing is marked by initial high pitch in the
pre-focus region of a confirmation question.

a yes/no question, and 10 (or 12) asking for confirma-
tion on different digits: You know you’ve got most of
the numbers but are not sure about the one written in
red [boldface]. You are trying to confirm whether this
digit is correct. 901-109-90917

3 Observations

The intonation pattern of a confirmation question is
realized consistently in our data. Figure 1 is a typ-
ical example. The speaker put narrow focus (strong
emphasis) on the digit she tried to confirm. The nar-
row focus is used in the context of a question, and the
observed intonation pattern is a combination of these
two functions. There is a final rise at the end of the
sentence, as in a typical English yes/no question. In
addition, The speaker used a strong rising accent on
the focal digit. The pitch remains high after the focus.
When the focus is close to the end, the confirmation
rise and the final rise fuse together.

All figures in this section display fy tracks in Hertz
as a function of time (seconds). Vertical dashed lines
mark word boundaries. Dash “-” marks phrasing as
indicated in the text. The intended phrasing is also
marked in the figures with a thick (or red in color dis-
play) solid line. There may or may not be acoustic cor-
relates at the indicated phrasing boundaries. A leading
plus “+” sign marks the digit to be confirmed, which
is also shaded (in yellow).

3.1 Phrasing

Phrasing as indicated by the dash in text is clearly
marked in the prosody: Pitch rises on the phrase initial
digit and falls towards the end of the phrase. This is
found in all declarative sentences, such as Figure 2.
The pre-focus pitch contour and phrasing are similar to
that in the comparable region of a declarative sentence,
as can be seen in the first two phrases of Figure 1.

Further examination shows that phrasing effect inter-
acts with focus. In sharp contrast to Figures 2 and 1,
the phrase initial digit one in Figure 3 is not marked
with high pitch. The speaker seems to employ a rhyth-
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Figure 2: Phrasing is marked by initial high pitch in
declarative sentences.
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Figure 3: Phrasing interact with focus. A phrase ini-
tial digit immediately preceding a focus is not
marked with high pitch.

mic consideration here, de-accenting the phrase-initial
digit to avoid putting two strong accents too close to-
gether. This interaction of focus and phrasing cannot
be modeled using a linear additive model for pitch, but
our model can explain it as a consistent reduction in
strength before the focal digit.

3.2 Speaking Rate

Having parallel data at two speech rates raises ques-
tions about the proper phonological representation of
these contours. The surface contours are different
enough to suggest different representations, but is the
phonology really different? Are people actually shift-
ing grammars as they change speaking rate?

We will first evaluate whether all words after the nar-
row focus are de-accented [2]. Our fast speech data
in Figure 4 matches this description reasonably well:
other than the final rise, pitch movements after the
narrow focus are suppressed. Following the ToBI tran-
scription system [3, 4], the focus and the post-focus
area in Figure 4 may be represented phonologically
as L*+H H- H%, a rising accent (L*+H) on the fo-
cal digit, a high phrase tone (H-) accounting for the
high plateau after the focus, and a high boundary tone
(H%) accounting for the final rise.

In contrast, the slow speech data in Figure 5 shows
that accents are present on each word after the focus.
Phonologically, this requires an accent on every digit.

By incorporating a muscle dynamic model into into-
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Figure 4: Fast speech: Accent movements are less obvious
after the narrow focus. Fy measurements are
the dark circles; model predictions are shown
as the solid orange (gray) lines.
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Figure 5: Slow speech: Accents are present after narrow
focus. Orange (grey) curve is the model predic-
tion from the training set onto the test set.

nation modeling, we show that the surface difference
in fast and slow speech is the natural result of timing
variation. There is no need to assume different phono-
logical representations.

4 Model

The best way to establish properties of a language is to
capture those properties in a quantitative model, then
to test the model. Consequently, we built a model of in-
tonation that uses Stem-ML [1][5]. Stem-ML simulates
the dynamics of the relevant articulators (for intona-
tion, these are the vocalis and crycothyroid muscles,
primarily) by assuming that the speaker is striking a
balance between the effort used in speech and the prob-
ability that his/her speech will be misinterpreted. This
balance is embodied in the Stem-ML strength parame-
ters, which, for a given word, measure how important it
is that the articulator motions be executed accurately.

In normal English text, one might need to allow the
strength of each word to vary independently, because
the importance of a word may well be affected by se-
mantics and syntax. However, all digits have equiva-
lent semantic and syntactic features, so the strength
of a digit should be determined only by its position in
the phrase and its position in the utterance.

This equivalence allowed us to use the simple model for
the word strength, shown schematically in Figure 6.
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Figure 6: Components used in calculating the
log(Strength) of words in the model.

The log of the strength is given by a linear decline
through each 3- or 4-digit phrase, added to a linear
decline throughout the utterance. Both rates of decline
are adjustable parameters in the model which are fit
to the data. Then, the strengths of the focal word and
its immediate neighbors are changed (the magnitude
of each of the three changes is likewise a parameter).
Finally, the strengths after the focus are scaled and
shifted (two more adjustable parameters).

Stem-ML also has templates, which we associate with
words, and which influence the shape of fy vs. time in
the vicinity of the word. If a word has a relatively high
strength, fo will locally match the word’s template. If
the word has a low strength, the tone shape will be
controlled by the surroundings.

We assume that all the words outside the sentence fo-
cus share the same template. Then, we add a special
template for the focal word, one template for an ini-
tial boundary tone, and one for a final boundary tone.
The boundary tone templates overlap the templates
for the initial and final words. Our model does not, in
any way, specify the shapes of the templates; they are
derived by matching the model to the corpus of data.
The sharing of templates specifies which parts of the
utterance are linguistically equivalent. If they truly are
equivalent, then the model may be able to reproduce
the observed intonation. If they aren’t equivalent, for
instance if some boundary tones were different from
others, then the model will not be able to capture the
difference.

The model has 48 adjustable parameters. All of the
parameters are global parameters which are shared
among all sentences; that is, we left no room in the
model for sentence-specific variation. We fit the model
to the 43 sentences that are (a) composed of voiced
digits one, nine and zero, (b) have no pauses, and (c)
were not declarative. The model’s parameter density
is 1.1 parameters per sentence; it is more compact and
makes stronger predictions than our earlier work on



Mandarin read speech [5], because the speech in this
work is more stylized and is from a limited domain.

We fit the data using techniques similar to [5], except
that we used a generalized Jackknife [6] procedure to
estimate the uncertainties in our fitted parameters. To
do this, in each run, we assigned utterances to a test
set with a 10% probability, then fit a model to the re-
maining training set. We followed this procedure 22
times, using the best-fit parameters from one model to
initialize the fitting procedure for the next. Statisti-
cal confidence intervals can then be deduced from the
standard deviation of the 22 best-fit values for that
parameter.

Examples of the model’s predictive ability are shown in
Figures 4 and 5. The dark circles are the measured fj,
and instances of the model are shown as orange(gray)
solid lines. The data shown in those figures was not
used to compute the solid lines: they are predictions,
based on other utterances in the corpus. The two
curves in Figure 4 are generated from different training
sets, and show that the results of the model are quite
consistent as the training data is changed.

5 Results

The RMS deviation is 0.21 Barks, which corresponds
to approximately 21 Hz or 1.7 semitones. The result
is surprisingly good especially considering how few pa-
rameters are being used.

The model captures the slow and fast speech varia-
tions naturally without any need to adjust the model
for fast or slow speech, or any parameter addressing
this aspect of the variation. Slow speech has more
pitch movement while fast speech has relatively smooth
pitch. While many intonation schemes would require a
categorically different set of accents to express the dif-
ference between fast and slow speech, our model pro-
vides a unified view, generating both variants from the
same phonological symbols. This property may lead to
a significant simplification of intonation phonology.

Some of the parameters of the model have unambigu-
ous interpretations. We will now discuss these.

Boundary Tones: We find that the strength and
length of the initial/final boundary tone is almost inde-
pendent of the strength or duration of the correspond-
ing word. This is consistent with the boundary tone
being a property of the sentence as a whole. Similarly,
boundary tone lengths are nearly constant, indepen-
dent of the durations of the corresponding words. Fi-
nal boundary tones are significantly longer than initial
boundary tones (9949 ms! vs. 28413 ms). Together,
these results provide strong support that a boundary
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tone should be part of a description of English intona-
tion.

Strength: The phrase-scope and utterance-scope
strength variations are reduced after the focal digit.
The strength of the digit just before the focal digit is
drastically reduced, to 33% or less? of what it would
have been in the absence of focus.

Accent Shapes: The shape of the accent on the focal
digit (a step) is dramatically different from the shape
on all other digits. Accent lengths are roughly propor-
tional to the length of the word.

6 CONCLUSION

We describe a Stem-ML model of a small domain of
English intonation that is derived from an extremely
simple intonational phonology, yet still accurately cap-
tures the speaker’s pitch contour. The success of this
model raises the possibility that much of the complex-
ity of current phonological theories arise because they
are attempting to describe phenomena that are really
phonetics. For instance, we suggest that the fast and
slow speech phenomena are best explained in phonetic
variations, rather than phonological representations.
The apparent change in phrasal structure when the
focal digit is second in a phrase can be explained more
simply by a uniform reduction in the strength of the
digit before the focal one.
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