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Abstract

We describe models of Mandarin prosody that allow us to make quantitative measurements of prosodic strengths.

These models use Stem-ML, which is a phenomenological model of the muscle dynamics and planning process that

controls the tension of the vocal folds, and therefore the pitch of speech. Because Stem-ML describes the interactions

between nearby tones, we were able to capture surface tonal variations using a highly constrained model with only one

template for each lexical tone category, and a single prosodic strength per word. The model accurately reproduces the

intonation of the speaker, capturing 87% of the variance of f0 with these strength parameters. The result reveals al-

ternating metrical patterns in words, and shows that the speaker marks a hierarchy of boundaries by controlling the

prosodic strength of words. The strengths we obtain are also correlated with syllable duration, mutual information and

part-of-speech.
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1. Introduction

Intonation production is generally considered a

two-step process: an accent or tone class is pre-

dicted from available information, and then the

tone class is used to generate f0 as a function of

time. Historically, most attention has been paid to
the first, high level, step of the process. We here
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show that by focusing on f0 generation, one can

build a model that starts with acoustic data and

reaches far enough up to connect directly to lin-

guistic factors such as part-of-speech, word length

and position in the text.

Specifically, we present a model of Mandarin

Chinese intonation that makes quantitative f0
predictions in terms of the lexical tones and the

prosodic strength of each word. The model is able

to generate tonal variations from a few tone tem-

plates that correspond to lexical tones, and accu-

rately reproduce f0 in continuous Mandarin

speech with a 13 Hz RMS error. The result is

comparable to machine learning systems that may

use more than one hundred tone templates to ac-
count for Mandarin tonal variations.

We find that some parameters of the model can

be interpreted as the prosodic strength of a tone.
ed.
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We determine the prosodic strengths (and the

values of the other global parameters) by executing

a least-squares fit of the model to the time-series of

f0 from a corpus of speech data. The resulting
best-fit strengths, tone shapes, and metrical pat-

terns of words can be associated with linguistic

properties. We show that strengths computed from

the model exhibit strong and weak alternation as

in metrical phonology (Liberman and Prince,

1977), and the values are correlated with the part-

of-speech of words, with mutual information, and

with the hierarchy of the prosodic structure (Ladd,
1996; Pierrehumbert and Beckman, 1988; Selkirk,

1984) such as the beginning and ending of sen-

tences, clauses, phrases, and words.

We will also show that values of parameters

from a fit to one half of the corpus match equiv-

alent parameters fit to the other half of the corpus.

Further, we can change the details of the model,

and show that the values of many parameters are
essentially unaffected by the change. This consis-

tency is important because if we hope to interpret

these parameters (and thus the models that contain

them) as statements about the language as a

whole, they must at least be consistent across the

corpus and between similar models.

The model we use is described in Section 3. It is

written in Soft Template Mark-up Language
(Stem-ML) (Kochanski and Shih, 2003; Kochan-

ski and Shih, 2000), and depends upon its under-

lying mathematical model of prosody control. We

write a Stem-ML model in terms of a set of tags

(parameters) then find the parameter values that

best reproduce f0 in a training corpus. Fitting the

model to the data can be done automatically.

Stem-ML calculates an intonational contour
from a set of tags. Some of the tags set global

parameters that correspond to speaker character-

istics, such as pitch range, while others represent

intonational events such as lexical tone categories

and accent types. The tags can contain adjustable

parameters that can explain surface variations.

Stem-ML does not impose restriction on how

one define tags. In our view, a meaningful way is
to use the tags to represent linguistic hypotheses

such as Mandarin lexical tones, or English accent

types. We call tags that define tones or accents

templates because they define the ideal shapes of f0
in their vicinity. In this paper, our usage of tone

tags (tone templates) corresponds directly to

Mandarin lexical tone categories, and we interpret

the Stem-ML strength parameters as the prosodic
strengths of these tone templates. The actual re-

alization of f0 depends on the templates, their

neighbors, and the prosodic strengths. We show in

the paper that this treatment successfully generates

continuous tonal variations from lexical tones.

Described another way, a Stem-ML model is a

function that produces a curve of f0 vs. time. The

resulting curve depends on a set of adjustable
(free) parameters which describe things like the

shape of tones, how tones interact, and the pro-

sodic strength of each syllable. When Stem-ML is

generating a f0 curve, one can set these parameters

to any values, and each setting will get you a dif-

ferent curve. In reverse, one can find the best val-

ues for the parameters via data fitting procedures.

We use a least-squares fitting algorithm to find
the values for the parameters that best describe the

data. The algorithm operates iteratively by ad-

justing the parameter values, and accepting steps

that reduce the sum of the squared differences

between the model and the data. The values of the

parameters that make the summed squared dif-

ference as small as possible, for a given model, are

called the best-fit (or fitted) parameters.
2. Chinese tones

Tonal languages, such as Chinese, use varia-
tions in pitch to distinguish otherwise identical

syllables. Mandarin Chinese has four lexical tones

with distinctive shapes: high level (tone 1), rising

(tone 2), low (tone 3), and high falling (tone 4).

The syllable ma with a high level tone means mo-

ther, but it means horse with a low tone. Thus, in a

text-to-speech (TTS) system, good pitch prediction

is important not just for natural sounding speech
but also for good intelligibility. There is a fifth

tonal category, traditionally named neutral tone,

which refers to special syllables with no lexical

tone assignment. The pitch values of such syllables

depend primarily on the tone shape of the pre-

ceding syllable.
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Superficially, modeling Chinese tones seems

straightforward. One might concatenate lexical

tones to generate continuous speech. The challenge

is that tone shapes vary in natural speech to the
extent that the realized f0 contour sometimes bears

no obvious relationship to the concatenation of

the tones. Fig. 1 shows a Mandarin phrase fan3

ying4 su4 du4 (‘‘reaction time’’), along with the

tones from which it is constructed (Shih and Ko-

chanski, 2000; Shih and Sproat, 1992). The last

three syllables are all recognized as tone 4 by

native speakers, but have drastically different f0
contours. The second syllable ying4 has an in-

verted tone shape while the last syllable du4 is

lower than expected.

In previous Chinese intonation generation

models, variations of a lexical tone are either ig-

nored, or are treated as discrete classes. These

discrete classes may be linked to the lexical tone by

rules (Lee et al., 1993; Shih, 1988), or by a machine
learning method such as a neural network (Chen

et al., 1992; Chen et al., 2000). It is not uncommon

for these systems to use up to a hundred discrete

classes to represent tonal variations. Both rule-

based and machine learning methods link the lex-

ical tone and their surface forms in an ad hoc

manner, using factors such as lexical tones, tonal

contexts, and positions in the sentence, yet neither
method offers an explanation of the relations
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Fig. 1. Tones vs. realization. The upper panels show shapes of

tones 3 and 4 taken in a neutral environment and the lower

panel shows the realization of an actual sentence containing

those tones. The grey curves show the templates, and the black

curve shows the f0 vs. time data.
between lexical tone and their variations, or the

relationship among discrete classes.

We explain the phenomenon displayed in Fig. 1

as a natural consequence of tone shapes interact-
ing via articulatory constraints. These severely

distorted tone shapes occur when the shape of a

weak tone is contradictory to the trajectory de-

fined by strong neighbors. In those cases the weak

tone accommodates the shapes of neighboring

strong tones to maintain smooth surface f0 con-

tours.

Our model of Chinese intonation starts with a
linguistically reasonable assumption: that all tonal

variations of a lexical tone are generated from the

lexically determined tonal templates. From these,

we calculate f0 at each time point as a function of

the nearby templates and their prosodic strengths.

We will show that this conceptually simple repre-

sentation is capable of capturing the drastic tonal

variations such as shown in Fig. 1.
Given surface f0 curves, and assuming that the

lexical tone is known, learning the Chinese pros-

ody description reduces to learning the lexical tone

templates and the prosodic strengths of the tem-

plates.
3. Modeling intonation

We build our model for Mandarin on top of
Stem-ML (Kochanski and Shih, 2003) because it

captures several desirable properties. A positive

feature of Stem-ML is that the representation is

understandable, adjustable, and can be trans-

ported from one situation to another.

Unlike most engineering approaches, this

model cleanly separates into local (word-depen-

dent) and global (speaker-dependent) parameters.
For instance, one can generate acceptable speech

by using the templates of one speaker with pro-

sodic strengths from another (Shih and Kochan-

ski, 2000), where a female speaker�s tone templates

were used as part of a model to predict a male

speaker�s f0 contours. Unlike some descriptive

models, we predict numerical f0 values, and so our

model is subject to quantitative test. Few other
approaches to intonation have all these properties.
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3.1. Concepts behind the model

Stem-ML brings together several ideas into in-

tonation modeling:

• we assume that people plan their utterances sev-

eral syllables in advance,

• we assume that people produce speech that is

optimized to meet their needs,

• we apply a physically reasonable model for the

dynamics of the muscles that control pitch and

skilled movements (Hollien, 1981; Nelson,
1983), and

• we introduce the concept of prosodic strength, a

continuous parameter associated with linguistic

units such as syllable, tone, and word, to con-

trol variations.

Pre-planning in speech was first shown in terms

of the control of inhaled air volume (McFarland
and Smith, 1992; Whalen and Kinsella-Shaw,

1997; Wilder, 1981; Winkworth et al., 1995): peo-

ple will inhale more deeply when confronted with

longer phrases, hence we see a positive correlation

of longer phrase and higher initial f0 (Shih, 2000).
This fact implies that at least a rough plan for the

utterance has been constructed about 500 ms be-

fore speech begins. As another example, Fig. 8 in
Bellegarda et al. (2001) shows that in an upwards

pitch motion, the rate of the motion is reduced as

the motion becomes longer, presumably to avoid

running above the speaker�s comfortable pitch

range. We take this as evidence for pre-planning of

f0 over a 1.5 s range, at least in practiced, labo-

ratory speech.

Next, we assume that speech is optimized for
the speaker�s purposes. The idea of representing

muscle motions as the solution to an optimiza-

tion problem has been developed in the biome-

chanics literature (Hogan and Winters, 1990;

Seif-Naraghi and Winters, 1990; Zajac and

Winters, 1990), and there have been comparisons

of these models to actual movements (Flash and

Hogan, 1985) and to electromyogram signals
(Crowninshield and Brand, 1981). Nelson (1983)

modeled jaw movement and arm movement

during violin bowing and showed that skilled

movements are influenced by minimum-cost so-
lutions which balance performance trade-offs

between competing objectives.

Speech is a skilled movement, and native

speakers of Mandarin are skilled practitioners of
tonal production. A speaker of Mandarin has the

opportunity to practice and optimize all the com-

mon 3-tone or perhaps 4-tone sequences, even if

one assumes that each tone needs to be practiced

at several distinct strength levels. For instance, if

we count tone N -gram in the ROCLING Chinese

Corpus (1993), we find that the most common 64

of the 179 tone 3-gram cover 90% of the corpus
(we count phrase boundaries in the N -gram).

Likewise, the most common 358 of the 881 4-gram

cover 90% of the corpus. A speaker could practice

the common tonal combinations in an hour of

speech.

A more realistic model, such as the one we

propose in this paper, would add a strength pa-

rameter to each tone, but one could then still ex-
pect to practice the common tonal combinations

with several levels of strength in a short time.

The question then arises, ‘‘optimal in what

sense?’’ It has been proposed that optimality be

defined by a balance between the ability to com-

municate accurately and the effort required to

communicate (Kochanski and Shih, 2003; Ko-

chanski and Shih, 2000; Ohala, 1992), and such
models have been applied by ourselves (Kochanski

et al., 2003; Kochanski and Shih, 2000; Shih and

Kochanski, 2001) and others (Perkell and Zandi-

pour, 2002; Perkell et al., 2002).

Our works extend the concept of optimizing

communication needs and the ease of articulatory

efforts to account for tonal variations in continu-

ous speech (Kochanski and Shih, 2003; Kochanski
and Shih, 2000). The optimal pitch curve is the one

that minimizes the sum of effort plus a scaled error

term. Certainly, when we speak, we wish to be

understood, so the speaker must consider the error

rate on the speech channel to the listener. Like-

wise, much of what we do physically is done

smoothly, with minimum muscular energy expen-

diture, so minimizing effort in speech is also a
plausible goal. Different from most previous

works, our view is that the trade-off relations be-

tween different objectives change dynamically

during continuous speech. We introduce a scale



G. Kochanski et al. / Speech Communication 41 (2003) 625–645 629
factor (the prosodic strength) to describe the

shifting dynamics of how the speaker optimizes

communication needs and articulatory efforts in

continuous speech.

3.2. Mathematical definition of model

The assumption that pitch is produced to opti-

mize the sum of effort plus error can be converted
into a quantitative mathematical model. We will

describe the equations below, and the variables

involved will be defined in Table 1.

The effort expended in speech, G (Eq. (1)), is

based upon the literature on muscle dynamics

and energetics (Flash and Hogan, 1985; Stevens,

1998; Winters, 1990; Zahalak, 1990; Zajac, 1989).

Qualitatively, our effort term behaves like the
physiological effort: it is zero if muscles are

stationary in a neutral position, and increases

as motions become faster and stronger. Mini-

mizing G tends to make the pitch curve smooth
Table 1

Definitions of parameters and variables used in this paper

Symbol Location Meaning

adda Eq. (6) Controls the mapping bet

adroopa Eq. (1) Rate at which e droops to

basea Eq. (6) The speaker�s relaxed f0
smootha Eq. (1) Response time of muscles

typea Eq. (3) Is tone defined by its shap

ML;i Eq. (8) Metrical pattern of the ith
ska Eqs. (2), (7) and (8) Strength of syllable k
Sw Eq. (8) Strength of word w
atype Eq. (7) Controls how the size of t

ctrshift Section 4.3 Position of center of temp

wscale Section 4.3 Width of a tone template,

P , D, d Eq. (9) Parameters defining the ph

f0 Many places Measured pitch

f̂f0 Eq. (6) Modeled pitch

pa Eq. (9) Phrase curve

ea, et Section 3.2 Emphasis, i.e., f̂f0 relative

�eea Eqs. (3) and (4) Mean emphasis over the s

ya, yt Section 3.2 Tone template

�yya Eqs. (3) and (5) Mean value of a tone tem

Ga Eq. (1) Effort expended in realizin

ri Eq. (3) The summed error for syl

Ra Eq. (2) The summed error for an

contour

gð Þa Eq. (6) Function to map between

a Parameters defined more fully in (Kochanski and Shih, 2003).
and continuous, because it minimizes the mag-

nitude of the first and second derivatives of the

pitch.

Note that we do not depend on the assumption
that the effort term is an actual measurement of the

energy expenditure in the muscle. The effort term

could very well be a measure of competition for

resources in the central nervous system, could be

due to neural feedback loops local to the muscle

(similar to the Equilibrium Point Hypothesis

(Feldman et al., 1990; Laboissi�ee et al., 1996)) or

could be entirely phenomenological. It does seem,
however, that the effort term is not just a way to

express the non-zero response time of a muscle

fiber: measurements of single-fiber twitches (i.e.,

the force vs. time curve of a single muscle fiber

triggered by a single nerve impulse) show a con-

traction time of �19 ms (MacNeilage et al., 1979),

which is too short to account for inverted tone

shapes and other phenomena that can last for 100
ms or more.
ween e and f0. See gð Þ
ward the phrase curve in the absence of a tag

e (0) or f0 value (1)

syllable in a L syllable word

he template depends on the strength of a syllable

late relative to center of syllable

relative to a syllable

rase curve

to the speaker�s range
cope of a tag

plate

g the pitch contour

lable i between the template and the realized pitch

utterance between the ideal templates and the realized pitch

subjective emphasis (e) and objective f0
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The error term, R (Eqs. (2) and (3)), behaves

like a communications error rate: it is zero if the

prosody exactly matches an ideal tone template,

and it increases as the prosody deviates from the
template. The choice of template encodes the lex-

ical information carried by the tones. The speaker

tries to minimize the deviation, because if it be-

comes too large, the speaker will expect the listener

to misclassify the tone and possibly misinterpret

the utterance.

Stem-ML makes one physically motivated as-

sumption. It assumes that f0 is closely related to
muscle tensions (Monsen et al., 1978). There must

then be smooth and predictable connections be-

tween neighboring values of f0 because muscles

cannot discontinuously change position. Most

muscles cannot respond faster than 150 ms, a time

which is comparable to the duration of a syllable,

so we expect the intonation of neighboring sylla-

bles to affect each other. Because our model de-
rives a smooth f0 contour from muscle dynamics,

our model is an extension of those of €OOhman

(1967), Fujisaki (1983), Lindblom (1963), and

Moon and Lindblom (1994), and is similar to that

of Xu and Sun (2000).

In Stem-ML, a ‘‘tag’’ is a tone template, along

with a few parameters that describe the scope of

the template and how the template interacts with
its environment. It corresponds to the mathe-

matical description of an intonation event (e.g., a

tone or an accent). Tags have a parameter, type,

which controls whether errors in the shape or

average value of the pitch curve are most im-

portant. In this work, the targets, y, consist of a
tone component riding on top of the phrase

curve, p.
In order to efficiently solve the optimization

problem, and calculate the surface realization of

prosody, we write simple approximations to G and

R so that the model can be solved efficiently as a

set of linear equations:
G ¼
X
t

_ee2t þ ðp � smooth=2Þ2€ee2t þ adroop2 � e2t ;

ð1Þ

R ¼
X
k2tags

s2krk; ð2Þ
rk ¼
X
t2tag k

cosðtype � p=2Þðet � yk;tÞ2

þ sinðtype � p=2Þð�eek � �yykÞ2; ð3Þ

where

�eek ¼
X
t2tag k

et

, X
t2tag k

1 ð4Þ

and

�yyk ¼
X
t2tag k

yt

, X
t2tag k

1: ð5Þ

Finally, f0 is e, scaled to the speaker�s pitch

range:

f̂f0 ¼ gðe; addÞ � rangeþ base; ð6Þ

the scaling allows p and e to be dimensionless

quantities, typically between 0 and 1. The function

gð Þ handles linear (add¼ 1) or log (add¼ 0) scal-

ing, and has the properties that gðe; 1Þ ¼ e for any
e, and that gð0; addÞ ¼ 0, and gð1; addÞ ¼ 1 for

any add.

Fig. 2 shows how the G (effort) term depends on

the shape of e. The curves we show all go through

the same set of pitch targets (dashed circles). The G
values increase with the RMS curvature and slope

of e. In this case, optimal pitch curve has the

smallest value of G, G1.
Note that there are two distinct optimizations in

this paper, and they should not be confused. First

(Section 3.2), we represent the Stem-ML model as

an optimization problem, minimizing effort+ error

to find f0 as a function of the model parameters.

This first minimization is actually done analyti-

cally, to convert the Stem-ML model into a set of

linear equations that are solved by matrix tech-
niques.

Second (Section 4.2), we adjust the parameters

to minimize the difference between the model and

the data. This gives us best-fit values for the pa-

rameters that best describe the data. This second

minimization treats the evaluation of the Stem-

ML model as a black box, calculating many

models to find the best-fit.
As an additional complication, we then take

some of the best-fit parameter values (specifically
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the values of the prosodic strength parameters)

and fit them with an additive linear model (Section

5.5). This final fit helps us to understand which

linguistic features have the most influence on the

strength of a syllable.
3.3. Prosodic strength

Effort is ultimately measured in physical units,

while the communication error probability is di-

mensionless. Since one can only sensibly add

numbers with the same units (e.g., 1 kg+ 1 m¼ ?),

a scale factor is needed to convert one into the

units of the other. This scale factor, sk (in Eq. (2)),

can vary from a tone, a syllable or a word to the
next, and we identify it with the prosodic strength.

If a syllable�s strength is large, the Stem-ML

pitch contour will closely approximate the tone�s
template and the communication error probability

will be small. In other words, a large strength in-

dicates that the speaker is willing to expend en-

ough effort to produce precise intonation on a

syllable. On the other hand, if the syllable is de-
accented and its strength is small, the produced
pitch will be controlled by other factors: neigh-

boring syllables and ease of production. For pro-

sodically weak syllables, minimizing the effort term

will have the most effect: when sk is small,
smoothness becomes more important than accu-

racy. The listener then may not be able to reliably

identify the correct tone on that syllable. Presum-

ably, the listener can infer the tone from the sur-

rounding context.

The concept that strength is related to how

carefully speech is articulated was discussed by

Browman and Goldstein (1990), in the context of
phoneme changes in casual speech. Flemming

(1997, 2001) discusses optimization models with

continuous parameters (into which class this

model falls), and their relationship with Optimality

Theory (Prince and Smolensky, in press).

Traditionally, prosodic strength is expressed as

abstract categories S (strong) and W (weak) in

metrical phonology (Liberman and Prince, 1977),
where one of the goals is to capture the rhythmic

alternation in natural sentences even though words

typically do not come in iambic or trochaic pairs.

One can build a prosodic structure with strong and

weak nodes to describe sentence prosody in rela-

tive terms.

Our model is related to conventional views of

accents and intonation, except that we consider
strength to be a continuous parameter associated

with a word or a syllable. We suggest that listeners

might treat strong tones as categorically different

from weak tones, so these strength measurements

might be equivalent to the presence or absence of

accents (strong implies present). The strength

numbers are associated with a particular rendition

of the sentence. They vary somewhat even among
utterances that were spoken with the same intent,

but they seem to vary more between utterances

where the sentence focus, the intonation type, or

other prosodic features differ.
4. Experiment

4.1. Data collection

The corpus was obtained from a male native
Mandarin speaker reading paragraphs from
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newspaper articles, selected for broad coverage of

factors in the text that are associated with prosodic

effects, including tonal patterns in the beginning,

medial, and final positions of utterances, phrases,
and words. To select sentences from a corpus, we

used the greedy algorithm described in (van Santen

and Buchsbaum, 1997). Pause and emphasis were

transcribed manually after text selection and re-

cording. A complete description of the factors,

procedures, and evaluation of the algorithm were

described in (Shih and Ao, 1997).

We fit two subsets (10 sentences each, 347 and
390 syllables), that were randomly chosen from the

corpus. The speaking rate was 4± 1.4 syllables per

s, with a phrase duration of 1.2 ± 0.7 s. We define a

phrase as speech materials separated by a percep-

tual pause. We measured these pauses acoustically,

and found that the speech power dropped by at

least 10 dB relative to a 50 ms window on either

side in 94% of the pauses, and the median duration
of pauses was 240 ms.

Tones were identified by automatic text analy-

sis, including the tone sandhi rule in (Shih (1986)),

then checked by two native speakers. Neutral

tones were manually identified prior to fitting,

because they cannot be reliably identified from a

dictionary. Phone, syllable, and phrase boundaries

were hand-segmented, based on acoustic data.
We computed f0 with an automatic pitch

tracker (Talkin and Lin, 1996), then cleaned the

data by hand, primarily to repair regions where the

track was an octave off. If uncorrected, the octave

errors would have doubled the ultimate error of

the fit, and systematically distorted tone shapes.

Because word boundaries are not marked in

Chinese text, different native speakers can assign
word boundaries differently. Even so, the concept

of a word is present, and is reflected in the pros-

ody. We obtained word boundaries independently

from three native Mandarin speakers: A, J, and S

(J and S are authors). All three had a generally

consistent segmentation of the text into words.

Pairwise comparison indicates that J and S have

the highest level of agreement: J identified 395
word boundaries, S identified 370 boundaries, 99%

of which were also identified by J. A identified 359

word boundaries, of which 98% were also marked

by J and 92% were also marked by S.
Most disagreements were related to the granu-

larity of segmentation: whether longer units were

treated as single words or multiple words, and

whether neutral tone syllables were attached to the
preceding words. The labelers exhibited strong and

consistent personal preferences on words that

could be segmented more than one way. Labeler A

had the longest words, 2.04 syllables on average. J

and S divided words at a finer granularity: S�s
words averaged 1.98 syllables, and J�s words av-

eraged 1.86 syllables per word. Labeler A consis-

tently cliticized neutral tone syllables to the
preceding word, while the other two labelers rarely

did so.

We also created a random word segmentation

(called ‘‘R’’). The random segmentation provides a

check that the metrical patterns (Section 5.4) we

found are indeed significant.

4.2. Fitting

The Stem-ML model is built by placing tags on

tone templates, with adjustable parameters defin-
ing the tag shapes and positions (details below).

We built several different models, focusing on

models with one parameter (prosodic strength) for

each word, plus a set of 36, 39, or 42 shared pa-

rameters. The models discussed here have between

210 and 246 free parameters, or an average of 0.6

parameters per syllable. The parameters that de-

fine the strength of words are correlated only with
a few neighbors, but the shared parameters are

correlated with everything.

The algorithm obtains the parameters�s values

by minimizing the RMS frequency difference be-

tween the data and the model. Unvoiced regions

were excluded. We fit the two subsets separately,

to allow comparisons.

We used a Levenberg–Marquardt algorithm
(Levenberg, 1944; Marquardt, 1963) with numer-

ical differentiation to find the parameter values

that give the best-fit. The algorithm requires about

30 iterations before the RMS error and parameter

values stabilize.

Levenberg–Marquardt, like many data fitting

algorithms, can become trapped in a local mini-

mum of v2, and may miss the global best-fit. If we
start the fit with parameter values randomly cho-
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sen from ‘‘reasonable’’ ranges, it will converge to

what we believe to be the global minimum in about

one in four tries. Consequently, we believe there

are only a small number of minima. The global
minimum seems to be characterized by values of

adroop<1 (see Table 1), and its v2 is often 10%

smaller than the next best minimum. Convergence

to the global minimum seems fairly reliable if a fit

is started with values of the shared parameters

taken from a previous successful fit, even if the

model or data subset differs, and even if the

strengths are initialized randomly.
4.3. Mandarin-specific model

Our model for Mandarin is a more predictive,

stronger model than bare Stem-ML, and is stron-

ger than our previous works on Mandarin tone

modeling (Kochanski and Shih, 2001) where an

independent strength parameter is fitted for every
syllable.

The current model, which is an extension of

(Kochanski et al., 2003), starts with a Stem-ML

stress tag specifying the lexical tone templates as-

sociated with the syllable. The syllabic strength is

tied to the strength of the word via metrical pat-

terns. This model fits less parameters but still

achieve comparable results.
We assume that each of the five lexical tone

classes is described by one template. A template is

defined by five (two for neutral tones) pitch values,

spaced across its scope. It is merely stretched (in

time) and scaled (changing its pitch range) to de-

scribe all syllables which have that tone. Each tone

class has a Stem-ML type parameter. Tone classes

also have an atype parameter, which controls how
the template scaling depends on each syllable�s
strength. The pitch excursions of the template on

syllable k are scaled by a factor
Fk ¼ atype � sjatypejk ; ð7Þ
3 One alternative to the assumption that each word has its

own strength parameter would be to assume that (for example)

all sentence-initial words have the same strength. Instead, we

chose to let each word have its own strength so that we could

search for relationships among the strengths we obtain by

fitting the model to a corpus of data.
before the Stem-ML tag is generated. Thus, if

jatypej > 1, the pitch range of the generated Stem-

ML tag will change a lot for a small change in

strength, while if jatypej < 1, the pitch range of the
tag will be relatively independent of strength.
In the general Stem-ML model, each tone

template has a strength value, which controls how

it interacts with its environment. In a pitch gen-

eration process this gives us enough parameters to
describe a pitch contour (Kochanski and Shih,

2003; Shih and Kochanski, 2000). In the reverse

process of fitting the strength values from data

(Kochanski and Shih, 2001), we found that the

data cannot support the estimation of one pa-

rameter per syllable and that the fitting process

was often trapped in a local minima. Increasing

the size of the database would not help to disam-
biguate syllable strengths, since the number of

strength parameters to be estimated increases with

the number of syllables in the database.

However, we noticed that syllable strength

within a word is not independent of each other,

and that they tend to exhibit alternating metrical

patterns. If there are consistent strength patterns

within a word, then we should be able to describe
the observed prosody with word-level strength and

a few metrical patterns. In the current model, we

allow words of different length to have different

metrical patterns. This turns out to be a viable

method. Compared to the syllable model, the word

model reduces the number of parameters by 40%

while maintaining a very good fit.

In the model, each word has its own adjustable
strength parameter, Sw, and we derive strengths for

each syllable via

sw;i ¼ Sw �MLðwÞ;i; ð8Þ

where sw;i is the strength of the ith syllable of word
w,ML;i is the metrical strength of the ith position in

a word of L syllables, and LðwÞ is the length of

word w. That means we allow the strengths of

words to vary independently 3 while restricting the

strength relationship of syllables within the word.

Each word is associated with a word strength and

the strengths of the component syllables are
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derived from the word strength and the metrical

pattern. This metrical pattern is assumed to be the

same for all words that have the same number of

syllables. The word strengths, Sw, are the only
place in our model where linguistic information

can influence the f0 contour beyond selection of

the lexical tone. In Section 4.2, the word strengths

will be adjusted to fit the model to the data.

There are several parameters that are shared by

all syllables. Two parameters describe the scope of

templates: ctrshift is the offset of the template�s
center from the syllable�s center, and wscale sets the
length of the template relative to the syllable.

Phrases are described by a straight-line phrase

curve:

pðtÞ ¼ P � L� ðD � LdÞ � t; ð9Þ

where t is time, pðtÞ is the phrase curve, and L is the

length of the phrase (in seconds). All phrase curves
share three parameters: D, the declination rate; d,
the dependence of the declination on the sentence

length; and P , which tells how the initial height of

the phrase curve depends on sentence length. To

complete the model, we used Stem-ML step_to

tags to implement the phrase curve, and phrase

tags were placed on phrase boundaries. Four other

Stem-ML parameters control overall properties:
adroop, add, smooth, and base.

We created and fit a set of different models to

the data, using a factorial design. We used two

subsets of the corpus times the four different

word segmentations (A, J, S, R) times three

different parameterizations. We refer to the three

parameterizations as �w�, �wA�, and �wAT�. These
form a nested set of models with a decreasing
number of parameters. In the �w� parameteriza-

tion, each tone class has its own atype and type

parameters: we allow tone templates to scale

differently as the strength increases, and we allow

some tones to be defined by their shape while

others are defined by their position relative to the

phrase curve. In the �wA� parameterization, we

force all tone classes to share one atype param-
eter, so that all tone templates scale with the

same function of strength. Finally, in the �wAT�
parameterization, we force all tones to share the

type parameter, so all tone classes exercise the
same trade-off between control of shape and

control of average pitch.

Of these 24 models, 15 converged to compara-

bly small v2 values, and we believe those sets of
parameters to be globally optimal for their model.

Of the remainder, several were not attempted, due

to limits on the available CPU time, and the rest

seemed to land on local minima, with v2 values

more than 30% larger than the global minimum.
5. Analysis of best-fit parameters

5.1. Results of fit

Overall, our word-based models fit the data

with a 13 Hz RMS error, approximately 1.5
semitones. In Fig. 3, we show the beginning of an

utterance from the best-fit model (subset1-J-wA).

In Fig. 4, we show the phrase with median error

from that model, and in Fig. 5, the phrase con-

taining the worst-fit pair of syllables in the worst

of the converged models (subset2-S-wAT). Gen-

erally, the worst-fitting syllables tend to be the

ones with the largest and fastest pitch excursions.
These are conditions where Stem-ML�s approxi-

mation to muscle dynamics may break down, or

where the simple approximation that we use to

estimate the error between templates and the re-

alized pitch curve may be furthest from the actual

perceptual metric.

These models explain 87% of the variance of the

data, and much of the rest may be explainable by
phoneme-dependent segmental effects (Lea, 1973;

Silverman, 1987). Thus, essentially all the prosodic

information in the f0 contour is captured by the

parameter values we obtain from the fits. Of the

parameters, only the word strengths have localized

effects so that only they can capture localized

prosodic features like emphasis, focus, and mark-

ing of sentence structure. We expect, then, that the
word strengths resulting from the Stem-ML anal-

ysis are nearly a complete description of Mandarin

prosody. 4 The rest of the paper will attempt to
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show that they are simple, useful descriptions of

prosody in addition to being nearly complete de-

scriptions.

We can show that the strength values that we
obtain are robust against small changes in the as-

sumptions that define the model. For example,

Fig. 6 shows a plot of syllable strengths obtained

for the first subset with the S-wA model, plotted

against strengths obtained from the J-wAT model.

Despite the different word segmentations and the

different sets of shared parameters the strength

values are quite consistent. Comparisons between
different models using the same segmentation are

even closer. Nearly all of the values fall on a nar-

row band about a smooth curve that maps the

strength from one fit to the other. This mapping is

the result of differences of shared parameters (most
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Fig. 6. Comparisons of strength values of syllables between the

S-wA and J-wAT models. The strength of most syllables is

measured nearly independently of the details of the model.
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importantly atype) between the two fits. The

strength values that are least reproducible are

single syllable words, especially single syllable

neutral tones.
For Stem-ML to be a model of a language,

instead of just a scheme for efficiently coding f0
contours, we should be able to correlate the results

of the fit with linguistic features. In the following

sections, we will discuss the results of the fit and

see how they correlate with linguistic expectations.
5.2. Analysis of phrase curve

Our phrase curve is Eq. (9): simple linear dec-

lination. We included a phrase curve in the model

and fit it, because phrase curves are a common
feature in many qualitative descriptions of into-

nation. However, the data shows no evidence that

the phrase curve is necessary, and we see no sys-

tematic declination. Neither P ¼ �4� 3 Hz s�1

nor D ¼ 0� 4 Hz s�1 is very large, and neither is

substantially different from zero (the error bars are

derived from the standard deviation of the values

of equivalent parameters among the models).
In our model of Mandarin, a positive D would

correspond to a systematic decrease in f0 during a
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Fig. 7. Modeled shapes of isolated tones. The shapes match standard

two dashed vertical bars mark the syllable boundaries, and dots mar

(random segmentations were excluded). Each tone was calculated with
phrase. This is distinguishable from a systematic

decrease in strength, which causes the magnitude

of f0 swings to become smaller as the phrase pro-

gresses. Our phrase curve roughly corresponds to
the reference line of Liberman and Pierrehumbert

(1984), and our strength is similar to the difference

between their base line and their top line.
5.3. Analysis of tone shapes

First, the fitted scope of the templates is well

matched to a syllable. The best-fit templates are

68 ± 4% of the length of their syllable, and the

centers of the tone templates are just 18 ± 8% of

the length of the syllable after the center. This

matches well with the intuition that tones are as-
sociated with syllables (but see Xu (2001)).

Fig. 7 shows the shapes of the four main

Mandarin tone templates, calculated for each of

our models. The tone shapes are consistent among

different models, and across subsets. Overall, the

shapes match standard descriptions of Mandarin

tones. The symmetry between tones 1 and 3 and

tones 2 and 4 is striking, and was in no way im-
posed by the analysis procedure. The four tones

appear to have evolved to be nearly as different as
0.0 0.1 0.2 0.3Time (s)

descriptions, and interact to reproduce continuous speech. The

k the boundaries of the tone�s template in each of the models

its strength set to the median of all the strengths in the corpus.
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possible, under the constraint that the pitch

changes can be accomplished by human muscles

within one syllable (Xu and Sun, 2000).
5 It will actually increase faster, because as the strength

increases from zero, the f0 curve will tend to follow the

templates more and more closely. Note that this argument

applies to typical pitch excursions, and is not necessarily true

for each syllable: the excursion in a particular syllable depends

on its tone class and the strengths and tone classes of its

neighbors.
5.4. Analysis of metrical patterns

The RMS error from these word-based models,

13 Hz, is nearly the same as the 12 Hz RMS

error we obtain from similar models (Kochanski
and Shih, 2001) that do not impose a metrical

pattern, but instead allow the strength of each

syllable to vary independently. Clearly, the met-

rical patterns in the words are successful at cap-

turing much of the strength variation from

syllable to syllable within a word. The models in

this paper have approximately half as many free

parameters (and thus are more predictive) than
our earlier models (Kochanski and Shih, 2001),

and yet still provide an accurate representation of

the actual speech.

Fig. 8 shows a tree diagram of the metrical

patterns we observe. A direct comparison of the

metrical patterns from different models is not

useful, because atype differs from model to model.

The metrical patterns are really measures of rela-
tive syllable strength, and atype controls how the

strength is related to the amplitude of the tem-

plate. Looking back at Eq. (7), we see that tags

with a small value of atype will need a broad range

of strengths to get a relatively small change in the

pitch excursion, and vice versa. This happens be-
cause the pitch excursion is proportional to Fk (Eq.
(7)), thus it increases at least as fast 5 as the

strength raised to the power atype. Since the pitch

excursions are fit to the data, we expect that

models with a small atype will have the largest

range of strengths. This correlation between atype

and variance (logðskÞ) is indeed strong. In order to

make comparisons clearer, we scale the metrical

patterns, logðML;iÞ, by atype1=2 to make the

strengths of different models comparable. Recall

that atype is a global parameter, so that this scal-

ing does not change the shapes or the metrical

patterns, nor the relationship between metrical

patterns for different words.
All the real segmentations (A, J, S) show a clear

strong–weak pattern for two syllable words. This

means that the initial syllable�s tone is realized

more precisely, and the f0 swings will tend to be

larger. Although the details vary by model, and

depend on the neighboring words, our results in-

dicate that RMS swings on the first syllable should

be about 30% larger than the second syllable.
While it has been generally expected that Mandarin
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words would show a consistent metrical pattern,

previous expectations (Lin and Yan, 1983) tended

more to a weak–strong pattern, based primarily on

evidence from duration and perceptual judgments.
In the A, J, and S segmentations, three-syllable

words are predominantly left-branching. Because

of this, we applied the same metrical pattern to all

three-syllable words, and did not attempt to see if

words with different internal structure had differ-

ent metrical patterns. Again, we see strong–weak

patterns at both levels of the metrical hierarchy,

though the patterns are weaker than the two-syl-
lable case.

All of the four-syllable words in the data could

be broken up into pairs of two-syllable words. We

know this both from comparison of the J and S

segmentations, where the primary difference was

just such a splitting, but also from plausibility

judgments of the labelers. Consequently, we

adopted the metrical tree shown in Fig. 8. Ex-
pressed on that tree, we again get strong–weak

patterns at both levels.

In Fig. 9, we show the metrical trees from the

A-segmentation. While the patterns differ in detail

because of A�s tendency to attach particles to
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Fig. 10. Metrical patterns for random word segmentation, plotted a

consistent.
words, the overall picture is similar to the J and S

segmentations.

Fig. 10 shows the corresponding pattern for a

random word segmentation (R). As expected, the
R-segmentation does not yield a strong metrical

pattern, because there is no consistent relationship

between the spoken words and the random model.

Further, the R-segmentation does not give as good

of a fit to the data: the v2 values are 11–21% above

the corresponding models with real (A, J, or S)

segmentations. This change in v2 is substantial: it

is an order of magnitude larger than necessary for
statistical significance at the 1% level, even if one

makes allowance for correlations among the f0
measurements.

Our results are consistent with the prediction of

metrical phonology (Liberman and Prince, 1977).

We find an alternating strong/weak relation within

bisyllabic words. This pattern repeats in a four

syllable word with a higher order hierarchical re-
lation that also shows strong/weak alternation.

5.5. Analysis of word strengths

The strengths that result from the above fitting

process can be correlated with linguistic factors.
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s above. As expected, the residual patterns are weak and in-
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We considered three features: the number of syl-

lables in the word, the position of the word in the

utterance, and the part-of-speech of the word. We

did not include any semantic features, and syntax
was only included through part-of-speech and (to

some extent) through our definition of pauses.

Also, there was no feature in the model equivalent

to the concept of ‘‘the focus of a sentence’’. We

limited ourselves to features that could be derived

from the text alone (with the exception of phrasal

pauses). Phrasal pauses seem to be clear enough to

a listener, and their perception seems relatively
independent of the pitch, so we tolerated the slight

circularity introduced by their use as features.

We then fit the strengths with a trimmed linear

regression (MathSoft, 1995) to separate out the

effects of the different factors. The model for the

observed word strength, Sw, isbSSw ¼ c0 þ
X
i

ci � fi;w; ð10Þ

where bSSw is the modeled strength. In the sum, i
ranges over the features described below, fi;w is 0
or 1, depending on whether the ith feature is pre-

sent on word w, and ci is the regression coefficient

for the ith feature. Coefficient c0 shows the

strength of words without any features. In this

trimmed linear regression, we find the regression

coefficients that minimize
P0

wðSw � bSSwÞ2, where

the primed sum excludes the five largest errors.

Excluding a handful of wild points prevents the
regression from being dominated by words whose

strength cannot be accurately measured (i.e.,

monosyllabic words that have a neutral tone), and

leads to a much more reliable result. Such outliers

comprise about 2% of the strength measurements,

and can be clearly seen in Fig. 6. We calculated

this regression separately for each of our models.

In Fig. 11, we plot the distribution of the regres-
sion coefficients across models for each factor.

Overall, predicting strength via this linear

model reduces the median absolute deviation by

17%: these factors do not provide more than a

partial prediction of the strengths or f0. Again, we

use a robust estimator like median absolute devi-

ation instead of variance to reduce the effect of the

outliers. If the strength distribution were Gauss-
ian, this regression would have Pearson�s r ¼ 0:31.
We found that:
5.5.1. Words at the beginning of a sentence, clause,

or phrase have greater strengths than words at the

final positions

Fig. 11 shows the regression coefficients at dif-

ferent positions. We define a sentence as a gram-

matical utterance that is marked with a period at
the end, a clause as a subset of a sentence that is

marked by a comma, and a phrase as a group of

words that are separated by pause.

The hierarchy of linguistic units is displayed

with strengths that increase with the size of the

unit. Note that the regression coefficient of words

not at a boundary is defined to be zero, and that

zero (horizontal line) neatly divides the initial
words of units (sent-i, clau-i, phr-i) from the final

words of the units (phr-f, clau-f, sent-f). These

results are consistent with previous findings that

speakers use high pitch to mark discourse initial

segments (Hirschberg and Pierrehumbert, 1986).
5.5.2. Nouns and adverbs typically have more

strength than words of other part of speech, and

particles have the lowest strengths

Fig. 12 shows the regression coefficients for

different parts-of-speech (Eq. (10)). As we can see,

adverbs on average have a greater strength than

words of other parts-of-speech. The strengths for

nouns, verbs, and conjunctions are slightly weaker

than that for adverbs and their strengths are close
to each other. In contrast, the strength for particles
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(e.g., neutral tones) are much weaker than that for

other parts-of-speech. This may be related to the

low information content of function words. These

results are consistent with previous results which
were obtained using human-annotated accents

(e.g., Hirschberg, 1993).

5.5.3. Words with more syllables have greater

strength than words with smaller number of syllables

Fig. 13 shows the regression coefficients (Eq.

(10)) for strengths for words of different lengths.

The regression coefficient for three-syllable words

is defined as zero, which is shown as the horizontal

line in the figure. The plot shows three populations

of monosyllabic words, bisyllabic words, and

longer words, where word strength increases as a

function of word length. The weak status of a
monosyllabic word is consistent with previous

linguistic observations, where such phenomenon

prompted the postulation of the monosyllabic de-

stressing rule (Selkirk, 1984).

The correlations between strength in our Stem-

ML models and the above linguistic features sug-
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Fig. 13. Relation between strength and the number of syllables

in a word. The boxes are plotted relative to three-syllable

words, which are shown as the zero line.
gest that the strengths indeed represent the pro-

sodic relations of syllables and words. This has

two consequences: First, this knowledge allows us

to use features such as position, part-of-speech,
and number of syllables in word to predict the

strength of a word, and thus improve prediction of

f0 in a Mandarin speech synthesizer. Second, it

may be possible to apply it to speech recognition

systems, so that the recognizer can detect word

boundaries and to deduce whether a word is being

emphasized (see Shih et al., 2001 for discussion).
5.6. The correlation of strength and duration

We can also calculate the correlation between

the fitted strength values with acoustic measure-

ments such as duration. Many duration studies

reported a lengthening effect of stressed vowels

(Crystal and House, 1988; Klatt, 1973). It is gen-

erally expected that, everything else being equal,

strong words would have longer duration than

weak words.
We calculated the correlation scores between

strength and duration in our models, excluding the

models using random word segmentation. Outliers

are trimmed by excluding the 5% of the population

that is farthest from the regression line that defines

the correlation, again using a trimmed linear re-

gression. The mean correlation scores of these

models are 0.40 in the sentence final position, and
0.27 in the non-final positions.

Fig. 14 show the strength/duration correlation

from one of the models. The left panel shows the
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Fig. 14. Correlation of strength values and duration. The left

panel shows the sentence final syllables, and the right panel

shows the non-final syllables.
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population in the sentence final position, and the

right panel shows the population in the non-final

position. All sample points are used in these plots,

where the correlation scores are 0.45 in the sen-
tence final syllables and 0.34 in the non-final syl-

lables.

Phrase final syllables are subject to final

lengthening effect (Edwards et al., 1991) and this

trend is reflected in the discrepancies between the

strength values of final and non-final populations.

The phrase final population is characterized by

lower strength values and longer duration.
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Fig. 15. Mutual information scores of syllables, based on the

preceding syllable. The mutual information is lower for initial

syllables (i.e., a prediction across a word boundary), thus they

are less predictable from the preceding syllable than word in-

ternal syllables are.
5.7. Mutual information and observed metrical

structure

Why might we observe word initial syllables
with higher strength than other syllables in the

word? We investigate the hypothesis that the

speaker is willing to spend more effort to articulate

a speech sound clearly when the material is less

predictable, but will accept sloppy pronunciation

when the material is more predictable. In this

section, we use the point-wise mutual information

between adjacent syllables to estimate how well a
syllable can be predicted from the preceding one,

and show that there is a correlation between mu-

tual information scores and prosodic strength.

Point-wise mutual information (Church and

Gale, 1991; Fano, 1961) is a measure of how

strongly two events are associated, and is defined

as

Iða; bÞ ¼ log2ðP ða; bÞ=PðaÞP ðbÞÞ; ð11Þ

where P ðaÞ is the probability of the event a, P ðbÞ is
the probability of the event b, and P ða; bÞ is the

probability of a and b occurring together.

If a and b are independent events, then the
probability of them occurring together is the

product of the probabilities of a and b:
P ða; bÞ ¼ P ðaÞP ðbÞ and the mutual information is

zero. Applying this measure to text, we can esti-

mate mutual information of two words by using

frequency information obtained from a database.

If two words tend to occur together, their mu-

tual information score is positive. Negative mutual
information scores suggest some level of avoidance
so that the two syllables occur together less often

than chance.

In the speech channel, orthographic informa-

tion is not represented. Therefore, instead of using
units like words or Chinese characters (Sproat and

Shih, 1990) that apply to written text, we use the

syllable, a sound-based unit, to compute mutual

information. Syllables with different tones are

considered different events.

We used a database with 15 000 sentences (half

a million characters). We converted written text

into syllable transcriptions using the text analysis
component of a text-to-speech system (Shih and

Sproat, 1996). The system uses a dictionary to-

gether with a homograph disambiguation compo-

nent to allow context sensitive character-to-sound

mapping. We then compute the frequency count of

each syllable and each syllable pair from the data-

base, and estimate their probability by dividing the

frequency with the total syllable count of the
database.

Fig. 15 compares the mutual information scores

of the 737 pairs of adjacent syllables in the speech

corpus. The figure compares syllable pairs where

the second member is word initial (the syllable pair

straddles a word boundary) vs. pairs where both

syllables are within the same word. The mutual

information is high within a word: if you hear the
beginning of a word, you have more information

about the next syllable. On the other hand,

knowing the syllable at the end of one word is not

as helpful for predicting the beginning of the next
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word. We suggest that where the speech sound is

less predictable, speakers spend more effort in

pronunciation to make the speech clearer. This

may be part of the explanation of the higher pro-
sodic strength we obtained in the word initial po-

sitions. Fig. 15 uses word boundaries from the J
segmentation, but plots from the other two label-

ers are nearly identical to the one shown. These

results are consistent with those obtained by Pan

and Hirschberg (2000), using human identification

of accent locations.

5.8. Correlation of strength and mutual information

We compute the correlation between mutual
information and the prosodic strength of the word

initial syllables from three �wAT� models, one from

each word boundary labeler. We do not include

word internal syllables in this computation, be-

cause the prosodic strength of the word internal

syllables is distributed by the metrical structure.

The correlation scores of the three models for la-

belers A, J, and S are )0.20, )0.17, and )0.16, all
significant at the 95% confidence level. As ex-

pected, there is a negative correlation between

mutual information scores and fitted prosodic

strengths. Again we see that the less predictable

syllable is spoken with higher prosodic strength.

We note that the available database is barely

sufficient for calculating mutual information

scores across word boundaries: the median syllable
occurs only 135 times, thus most possible pairs of

syllables simply are not sampled. Consequently,

we view these correlations as suggestive, rather

than conclusive. However, the observed correla-

tions in Section 5.5.1 are consistent with this

hypothesis that strength is at least partially con-

trolled by mutual information. We expect words at

the beginning of sentences, clauses, and phrases to
be less predictable than words in the middle, be-

cause these boundaries can introduce new topics.

As a comparison, we calculated the correlation

between mutual information and the high f0 region
in each word. It has been generally expected that a

speaker will raise pitch to signal less predictable

information. We calculated the f0 mean of three

consecutive voiced samples and took the highest
value in each word. The correlation scores of the
three segmentations are )0.14, )0.12, and )0.11,
smaller than the correlation obtained from fitted

prosodic strength, and only the first is significant

at the 95% level.
There are several reasons why the fitted strength

performs better than surface f0 values. The raw f0
values are not corrected for tone class or the effects

of the neighboring tones, while the Stem-ML

strengths include those basic normalizations. For

example, high f0 may be the result of a preceding

rising tone, especially if that tone is emphasized.

Not all high f0 correspond to local intentional
emphasis (Shih, 1988; Shih et al., 2001). Further-

more, speakers may use tone-dependent strategies

to convey the same prosodic meaning. For exam-

ple, to express emphasis, people may raise pitch

for a high tone but lower pitch for a low tone.
5.9. The scope of prosodic strength

Is the scope of prosodic strength in Mandarin a

word or a syllable? We cannot directly answer this
question because we assume that Eq. (8) relates the

word strengths to the syllable strengths. All of our

models in this work assume that one is exactly

proportional to the other, therefore the models do

not distinguish between the two.

However, we can compare our results here to

previous work by (Kochanski and Shih, 2001)

where we built models with a separate strength
value for each syllable (thus syllable-scope

strengths) to fit the same corpus. Since the RMS

errors are only marginally worse when we tie the

syllable strengths together to make a word

strength (13 Hz in this work, vs. 12 Hz in Ko-

chanski and Shih, 2001), we can see that associ-

ating strength with words works just as well as

associating it with syllables, but leads to a much
simpler, more compact model with fewer param-

eters. Occam�s razor thus leads us to associate

strengths with words.

However, a comparison of RMS errors has its

limitations. It averages over the entire data set,

and so cannot exclude the possibility that while

most words are spoken in the default word-scope

manner, the speaker exercises more detailed syl-
lable-scope control over a few words.
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6. Conclusion

We have used Stem-ML to build a model of

continuous Mandarin speech that connects the
acoustic level up to the results of text analysis

(part-of-speech information, and word, phrase,

clause, and sentence boundaries). When fit to a

corpus, the model shows that prosody is used in a

consistent way to mark divisions in the text: sen-

tences, clauses, phrases, and words start strong

and end weak. Our prosodic measurements also

show a useful correlation with word length, and
the part-of-speech of words. We also show that the

strength values correlate in expected ways with

other acoustic observables such as duration. There

is also a correlation between the strength values

and mutual information, which suggests that

speakers apply a higher prosodic strength to less

predictable materials.

The results point to the conclusion that the
mathematical models behind Stem-ML provide a

quantitative method for measuring prosodic

strength. The simplicity and compactness with

which one can describe Mandarin using this rep-

resentation suggests that it captures some impor-

tant aspects of human behavior during speech. For

more information, see http://prosodies.

org.
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