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ABSTRACT

“Hackers” have written malicious programs to exploit on-
line services intended for human users. As a result, service
providers need a method to tell whether a web site is being
accessed by a human or a machine. We expect a parallel
scenario as spoken language interfaces become common.

In this paper, we describe aReverse Turing Test(i.e., an
algorithm that can distinguish between humans and com-
puters) using speech. We present a test that depends on the
fact that human recognition of distorted speech is far more
robust than automatic speech recognition techniques.

Our analysis of 18 different sets of distortions demon-
strates that there are a variety of ways to make the problem
hard for machines. In addition, humans and speech recog-
nition systems make different kinds of mistakes, and this
difference can be employed to improve discrimination.

1. INTRODUCTION

The use of the Internet as a means for distributing valuable
information and content have also made it an attractive tar-
get for “hackers.” Attacks involving malicious programs
(“bots”) that attempt to exploit online services intended for
human users are already common. These programs con-
sume resources, harass users, make attempts to guess pass-
words, steal and re-purpose copyrighted content, and invade
privacy by reconstructing sensitive data from public views.

As a result, there is a need for automatic methods to tell
whether the entity attempting toaccess a service is a human
or a machine. This has come to be known as aReverse Tur-
ing Test, orRTT(or sometimes aHuman Interactive Proof).
Unlike the test originally proposed by Alan Turing [1], a Re-
verse Turing Test is administered by a computer, not a hu-
man. For the test to be considered effective, humans should
be able to pass it with ease, but machines should have a low
probability of passing.

While it may seem that passwords and/or biometrics
could provide a solution, one must keep in mind that these
approaches require pre-registration. An RTT will work even
if the user is anonymous and has never used the service be-
fore. The RTT problem is fundamentally different from val-
idating a known user. Indeed, a Reverse Turing Test should

be applied before authentication to prevent automated at-
tacks on passwords.

Coates, Baird, and Fateman [2], and von Ahnet al. [3]
have developed such a test based on a visual perception task.
Their ideas are based on the observation that optical char-
acter recognition (OCR) systems are not as adept at reading
degraded word images as humans are. That RTT is now
used commercially to protect a free email service [4].

Speech-based services are proliferating because of their
ease-of-use, portability, and potential for hands-free oper-
ation. Building a “bot” to navigate a spoken language in-
terface is a tractable problem, especially if there is a fixed
sequence of predefined prompts. Hence, we anticipate at-
tacks on such systems and a similar need to prevent ma-
chines from abusing speech-based resources intended for
human users. Previous work on speech RTTs can be found
in [5, 6].

As in the vision RTTs, we exploit the fact that certain
pattern recognition tasks are significantly harder for ma-
chines than they are for humans. We will use text-to-speech
synthesis (TTS) to generate tests, and make use of the limi-
tations of state-of-the art automatic speech recognition (ASR)
technology. (We require only that RTTs cannot be broken
cheaply or rapidly. Clearly, any RTT can be broken by hir-
ing a human.)

In this paper, we present the core of a spoken language
RTT. We assume a user with a cell phone; the test may con-
sist of having the system speak: “Please enter the following
digits on your keypad: ...” followed by a short, random
digit string. The speech would be synthesized in a way that
ASR is likely to fail the test,e.g., by distorting the signal or
adding “difficult” background noise to it after synthesis.

2. PROCEDURES

We designed a set of 18 RTTs based on different distortions
of a speech signal (Table 2) to explore a broad range of pos-
sibilities. To test our RTTs, we synthesized 200 random 5-
digit sequences using the Bell Labs English text-to-speech
system [7], with the default male voice. We next distorted
the signals and ran the Bell Labs speech recognition sys-
tem [8] on them, with a grammar that allowed any digit se-



Name Description Error
Ratio

white � White Gaussian noise, 4000 Hz bandwidth.15
buzz � Sine waves at 700 Hz, 2100 Hz, 3500 Hz. � 20

song � Bell Labs Song (pop/rock). > 15

chopin � Chopin Polonaise for Piano No. 6, Op. 53. > 20

chant � Gregorian chant. > 20

female � Three overlapping instances of a female
voice reading numbers.

> 20

pow � 10 ms bursts of white Gaussian noise, re-
peated every 100 ms.

> 20

rnoise � Every 100 ms, a section of the signal is re-
placed by white noise of the same RMS am-
plitude.

> 20

cell � For each 30 ms window, decide if the data
was lost. If so, and previous not lost, duplicate
previous. If so, and previous is lost, set to zero.
Simulates a bad cell phone channel.

> 10

echo � Three echoes. > 20

filter � A random zero-phase filter. > 5

distort � Apply AGC on a 60 ms window, raise to a
power, multiply by original amplitude.

� 20

mxa � rnoise+ chopin > 20

mxb � song+ echo > 20

mxc � white+ pow � 20

mxd � female+ buzz � 5

mxe � rnoise+ distort � 20

mxf � filter + distort 3

Table 1. Tested RTTs. The error ratio is an estimate of
the largest ratio of the ASR to human utterance error rates.
The components of all mixtures were chosen to cause equal
error rates for ASR utterance error rates near 85%.

quence.
The recognition results were compared to the original

digit sequences using approximate string matching ([9] and
references therein) to identify added, missing, and substi-
tuted digits. From this we obtained, for each distortion, per-
digit and per-utterance error rates, as well as a confusion
matrix showing the frequency of each type of error.

A similar procedure was followed to test how well hu-
mans could recognize the signals. The authorseach lis-
tened to 10 randomly-chosen digit sequences foreach type
of distortion. In these tests, the audio signals were presented
twice with a one second pause in between. The subject then
typed his/her interpretation and pressed return to listen to
the next signal. The tests began at the most severe distor-
tion of each type, and terminated when the subject correctly
identified all 10 sequences. One set (white) received 67 rep-
etitions per person for a moreaccurate confusion matrix.

The confusion matrices are scaled to make all diagonal
confusion matrices identical. This step is necessary because
the distance between raw confusion matrices is generally
nonzero, even if there are no errors (i.e. the matrices are di-
agonal). This happens because we do not explicitly balance

the frequencies of each digit, so that one test may see more
instances of, say, “3” than another. Hence, we use a scaled
confusion matrix,S = P �C �Q, whereP andQ are diago-
nal matrices chosen so that the row- and column-sums ofS
are unity. While deletions and insertions are conventionally
placed in the same matrix as substitutions they are actually a
fundamentally different kind of error. Specifically,Cdel;ins

is on the diagonal and is missing (zero). Thus, insertions
and deletions must be treated differently in the scaling. We
make an ad-hoc modification toC before scaling: we set
Cdel;ins  

P
i;j Ci;j=N (whereN = 11 is the number of

rows and columns inC), and then setSdel;ins  0.

3. ANALYSIS: IS IT POSSIBLE TO DISTINGUISH
HUMANS FROM MACHINES?

Human perception of speech in noisy environments is fairly
robust. Normal-hearing listeners need a signal-to-noise ra-
tio (SNR) of approximately 1.5 dB to recognize speech [10],
while ASR systems require a much more favorable SNR of
5 to 15 dB [11]. Our test results show an even wider gap
between human and ASR performance.

Figures 1-4 plot the error rates we measured in four ex-
periments; these correspond to four distinct types of distor-
tion: additive noise, deleting segments of the speech, adding
echoes and filtering the signal. The four curves in each chart
represent the error rates for ASR on a per-utterance (square)
and per-symbol (diamond) basis along with per-utterance
(X) and per-symbol (triangle) rates for humans.
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Fig. 1. Results for white noise experiment (white).

In figure 1,white is simply additive white noise. The
x-axis shows SNR, and the y-axis represents the rate of
recognition errors. In the ASR curves,each datum repre-
sents scores from 200 utterances or 1,000 digits, while in
the human curves, each datum represents 201 utterances or
1,005 digits as pooled from the three listeners. ASR per-
formance starts deteriorating when the SNR reaches 15 dB,
and breaks down completely by 3 dB. Human performance
is only starting to deteriorate at 0 dB SNR.
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Fig. 2. Results for replacement noise experiment (rnoise).

Figure 2 shows the results forrnoise, which replaces a
segment of speech with white noise every 100 ms, as we
vary the length of the replaced segment. Human scores in
this figure and in Figures 3-4 are based on 30 utterances
(150 digits) per datum. As can be seen, ASR starts having
problems when 2 ms (2%) of the speech is replaced. Amaz-
ingly, human recognition remains perfect at 60 ms (60% re-
placement), and 80% of the symbols are still correct even
when 80% of the speech is missing.
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Fig. 3. Results for echo experiment (echo).

Our results forecho, which adds three echoes to the
speech with delays of 60,132, and 192 ms, are presented
in Figure 3. The horizontal axis shows the relative ampli-
tude of the first echo to the speech, while later echoes are
5 dB and 10 dB quieter. ASR performance starts declining
when the SNR is 12 dB, while human performance is per-
fect until�3 dB. This behavior is typical of many of the
other tests we performed.

Among our tests,filter (Figure 4) showed the smallest
difference between ASR and humans. This is a zero-phase
frequency domain filter, with a frequency response chosen
randomly every 30 Hz. The control parameter sets the stan-
dard deviation of the gain, expressed in dB.

Our findings are that the gap between ASR and human
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Fig. 4. Results for random filter experiment (filter).

performance appears to be wide enough to administer a ro-
bust Reverse Turing Test. In general, our tests show that hu-
mans can handle noise levels about 15 dB higher than ASR
can. Likewise, humans can understand digit strings when
more than half of the signal is missing, a point at which the
machine already has a 100% error rate for utterances.

4. ANALYSIS: DO HUMANS MAKE THE SAME
KINDS OF ERRORS AS MACHINES?

Not only is the error rate larger for an ASR system than for
humans, but the pattern of errors is significantly different as
well. Figure 5 shows a gray-scale plot of errors made by
the machine and humans on thewhitedata set. The figures
represent noise levels chosen to give matching error rates.
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Fig. 5. Scaled confusion matrices at 35% error rate for hu-
mans (-3dB SNR, left) and machine (+10dB SNR, right).

Based on this observation, we could improve an RTT by
looking at the kinds of errors that are made. For instance,
humans readily confuse the digits “2” and “3” in the pres-
ence of white noise, so such an error should not be con-
sidered evidence that a machine is attempting to access the
system. On the other hand, an “8” is never misunderstood
as a “2” by humans but is sometimes by ASR, so such an
error would suggest a machine's presence.



5. ANALYSIS: HOW MANY DISTINCT KINDS OF
DISTORTION ARE THERE?

One obvious attack on this kind of RTT is to build a classi-
fier that, working from the input signal, attempts to identify
the distortion that was applied, and then sends the input to
an ASR system trained specifically for that distortion. ASR
can be tuned to work well in the presence of noise [12], but
it first needs to be trained with a large representative corpus
collected from the environment in question.

Assuming that it is possible to build the necessary clas-
sifier, the question then arises “How many different ASR
systems would one need to train in order to break the RTT?”
To make this question tractable, we approach it by examin-
ing the confusion matrices derived from the experiments we
have performed; these will serve as a proxy for training and
testing a large number of ASR systems.

To do this, we follow logic presented elsewhere in the
context of OCR systems [13]. We assume that if the ASR
confusion matrices corresponding to two distorted signals
are different enough, then separate recognizers will be needed
because the two signals are fundamentally different. To
make a quantitative comparison, we need to define a dis-
tance measure: we use the 2-norm of the difference of the
scaled confusion matrices,D(�; �)2 =

P
i;j(Si;j(�) �

Si;j(�))
2, where� and� refer to two different distortions,

andS is a function of how the speech is distorted.

We can calibrate our notion of “different enough” by
picking an error rate at which the ASR system fails and
measuringD(�; perfect) for various types of distortion at
that rate. We choose noise levels that yield an utterance er-
ror rate of85%�6%, with a symbol error rate of34%�5%.
The confusion matrices at these levels were found to be dis-
tanceD85 = 2:1� 0:1 from the perfect, error-free case. We
assume that if the confusion matrices for any two distor-
tions differ by this amount or more, an ASR system trained
for one distortion will not be able to function on the other.

In our experiments, the average distance between a pair
of distortions (excluding the mixtures) is2:0 � 0:9, quite
close toD85, so we would expect that, in general, an ASR
system could not be trained to handle two different types of
distortions simultaneously. The mixtures tend to be closer
to their components, a distance of1:8�0:6 away, but this is
still far enough to conclude that an ASR system trained on
either component of the mixture would probably not per-
form well on the mixture itself. Consequently, it appears
there are enough ways of generating fundamentally distinct
distortions that the RTTs we have described would resist an
attack using any single, well-trained ASR system.

6. CONCLUSIONS

In this paper, we have described our work towards building
a speech-based Reverse Turing Test. We show that the gap
between ASR and human performance is wide for a variety
of noise effects, and that there are opportunities to exploit
differences between the patterns of errors that humans and
machines make. The RTT is a fundamentally new way of
using speech synthesis and recognition technologies.

The authors thank Olivier Siohan for assistance.
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