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Abstract

This paper describes a novel prosody generation model. We intend it to broadly support many linguistic theories and

multiple languages, for the model imposes no restriction on accent categories and shapes. This capability is crucial to

the next generation of text-to-speech systems that will need to synthesize intonation variations for different speech acts,

emotions, and styles of speech. The system supports mark-up tags that are mathematically defined and generate f0
deterministically. Underlying the tags is an articulatory model of accent interaction which balances physiological and

communication constraints. We specify the model by way of an algorithm for calculating the pitch, and by way of

examples. The model allows localized, linguistically reasonable tags, and is suitable for a data-driven fitting process.
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1. Introduction

The demands of interactive approaches to TTS require more freedom to express prosody than current
systems allow. Most current TTS systems, including the Bell Labs TTS system, were designed to operate on

text with little or no ‘‘mark-up’’ information beyond the text. The prosody subsystem was therefore de-

signed conservatively, because of the intrinsic limitations of how reliably prosodic information could be

deduced from the text. If some prosodic feature could not be reliably deduced, it was found better to

produce a neutral prosody than the wrong one.

The next generation of TTS applications will not have this limitation, because many applications will be

conducting a dialog, and will have state information corresponding to goals and intentions. The application

may be ‘‘intending’’ to convey that a set of words is a single proper noun, that a word is especially im-
portant, or that a word needs confirmation. This state information needs to be expressed prosodically, so

one should think of speech synthesis more in the context of a concept-to-speech system than a text-

to-speech system. Similarly, there are applications where the simulation of emotions, subtle meanings in

speech acts, and stylistic variations are desirable. This prosodic information can be supplied to the TTS
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system by adding mark-up tags to the text. With marked text, the TTS system does not need to deduce as

much, so it need not be designed conservatively.

The mark-up system is most useful if it is flexible enough to support any intonation event that a user or a

future dialogue system might want to express. A pertinent question is then how to design a pitch generation
system that will support linguistic models that are not yet defined.

In this paper, we introduce a prosody tagging and generation system Soft TEMplateMark-up Language

(Stem-ML). This system combines mark-up tags and pitch generation in one, therefore allowing future

users and dialogue systems to control intonation events without the concern of writing a pitch generation

component for the TTS system. We define a set of tags that serve the dual function of marking the text and

pitch generation. The user can use these tags to describe linguistic events, and the tags automatically

provide pitch generation support. It is thus most important to allow the model we define to represent any

possible prosody. 1 A second goal is to mark it in a way that is compatible with standard linguistic as-
sumptions: that accents are localized and associated with stress groups, words or syllables. A final goal is

for this model to make use of information that is predictable from text, such as word accents, tones, and

prosodic boundaries; this will allow us to minimize the number of tags that need to be added to text.

Ultimately, we see this model becoming an ‘‘assembly language’’ where tags and their parameter settings

would be produced by automated tools.

From a research point of view, it is important to have a model that bridges the gap from linguistic

theories to the objective reality of a glottal oscillator with a time-varying frequency. The model needs to be

general enough so that it can provide a quantitative representation of many different theories of intonation,
and can therefore be used to compare theories.

1.1. Literature review

Most TTS systems divide the task of intonation generation into two components, a linguistic modeling

component and a pitch generation component (Sproat, 1998). The linguistic modeling component is carried

out as part of the text analysis, where the input text stream is processed and intonation events are deduced

from the text and from high-level tags that contain non-deducible information about prosodic intent. The

intonation events are then coded in abstract representations. Examples of the linguistic modeling com-

ponent include ToBI (Silverman et al., 1992), Tilt (Taylor, 1998), INSINT (Hirst et al., 2000), among

others. Lexical tone languages such as Chinese and Vietnamese conveniently provide some of this infor-

mation from the lexicon.
The pitch generation component is the decoding process where f0 contours are generated from the

linguistic representations. Traditionally, the pitch generation component is designed to support a specific

abstract representation and is implemented after the representation is known. For example, given ToBI

labeling, one may write a rule set to describe the f0 shapes and their pitch values (Anderson et al., 1984), or
to use machine learning techniques to train the target values, including linear regression models (Black and

Hunt, 1996), CART tree models (Dusterhoff et al., 1999) and dynamical system models (Ross and Os-

tendorf, 1999). These pitch generation models are the decoders of ToBI, and will not support concepts that

are not represented in ToBI. It should be obvious that phenomena that are not coded in the linguistic
modeling component cannot receive support from the pitch generation component.

In the remainder of this section, we review the literature in the area of intonation modeling, finding the

common ground where multiple models might be interfaced to a common pitch generation component.

1 We use the term ‘‘prosody’’ broadly, meaning a time series of speech information that�s not predictable from a reasonable window

(e.g., word sized or sentence sized) applied to the phoneme sequence. This could include pitch, amplitude, and gestures. The tag set also

applies to tone shapes in tone languages, so we bring them under the umbrella term ‘‘prosody.’’
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The primary goal of intonation research is to model natural f0 contours of speech, preferably in relation
to a transcription and a description of the prosodic intent of the speaker. The starting point of intonation

research is the time series of f0. But the interpretation of the f0 information diverges widely among into-

nation schools. Table 1 represents a view of how one can classify the various intonation schools. The shape

of an accent may be fully specified (i.e., defined without gaps) or under-specified (defined by disconnected

regions or isolated points). Along another dimension, f0 values at any given time may be treated as a single

component or as the combination of multiple components.
INTSINT (Hirst et al., 2000) is an under-specified intonation system that defines an accent by a single

point. Fitting quadratic spline curves through these points generates surface f0.
The most widely used under-specified accent shape is represented by the ToBI school (Beckman and

Ayers, 1997; Silverman et al., 1992), which developed from earlier works such as Pierrehumbert (1980),

Liberman and Pierrehumbert (1984), and Pierrehumbert and Beckman (1988). Each accent is represented

by no more than two points, which specify abstractly the relative contrast of high (H) and low (L). One goal

of the ToBI system is to specify a minimal set of categorical labels for intonation. These labels are usually

interpreted as phonological distinctions between accent types.
Xu et al. (1999) represents Chinese tones with under-specified static or dynamic targets. The surface f0

contours are generated with a model that approaches these targets asymptotically within the domain of a

syllable.

Tilt (Taylor, 2000; Taylor, 1998) allows more samples than ToBI near the peak of an accent and leaves

the other regions unspecified, hence its status half way to a fully specified system. Tilt considers all accent

types to be continuous variations of a single class. Surface variations are accounted for by changes in the

continuous parameters. IPO (de Pijper, 1983) prepares a piecewise-linear approximation to the pitch

contour. They then associate the slope and height of these lines with various types of accents.
Olive (1975) described a very early fully specified system, following work by Levitt and Rabiner (1970).

His model stored the surface pitch vs. time contour as a function of the grammatical structure of the

sentence. The contour was then approximated by polynomial splines attached to words, to allow for du-

ration variations.

Several works using machine learning techniques generate densely sampled f0 values, including Chen

et al. (1992) and Malfr�eere et al. (1998). We classify these works as fully specified systems even though in

some cases the concept of accent may not be clear. Ross and Ostendorf (1999) described an interesting

machine learning system where a discrete learning system would predict vectors attached to phonemes and
syllables, and these vectors would in turn drive a (learned) dynamical system to predict f0.

The advantage of using an under-specified accent shape is that it allows sufficient distance between

specified accent targets to allow a smooth f0 transition, typically by way of interpolation. The drawback is

that it ignores changes of shape between specified targets. On the other hand, a system with fully specified

accents leaves little room to resolve conflicting targets. A simple concatenation of fully specified accents will

result in a pitch curve with unnatural jumps at the concatenation joints. Many systems, such as Fujisaki

(1983, 1988), use filters to smooth out abrupt changes in f0. Alternatively, van Santen and M€oobius (1997,
2000) require each accent to begin and end at zero to ensure smooth connections between accents.

Table 1

Intonation Schools classified by the way they describe prosody

Under-specified ! ! ! Fully specified

Single component INTSINT ToBI Xu Tilt, IPO Olive, Machine learning

Two components Grønnum Fujisaki

Multiple components Van Santen
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Turning to the f0 dimension of Table 1, many intonation schools treat surface intonation contours as the
superposition of a phrase component and an accent component. Grønnum (1992) and Fujisaki (1983, 1988)

are representatives of this view.

A well-defined model that fully specifies accent shape and uses multiple components is van Santen�s (van
Santen and M€oobius, 1997, 2000; van Santen et al., 1998), where accents are represented by densely pop-

ulated points, providing a mechanism to describe highly complex accent shapes in detail. We characterize

van Santen�s system as having multiple components, because in addition to the phrase component, each

accent in the phrase also adds a phrase-length component that contributes to the surface f0 contour.
The advantage of multiple components is that it provides a mechanism to separate individual accents

from long-term effects. However, if one allows multiple components, then one necessarily faces the problem

that there is no unique solution in the decomposition of a single f0 time series into multiple components.

Any such decomposition depends on a model of the speech process, and is only as good as the underlying
model. In contrast, Liberman and Pierrehumbert (1984) explicitly reject the notion of a phrase curve and

represent intonation contours as a single component. The advantage of representing f0 information as a

single component is that the representation of accent heights will then be transparent, which lends itself to

convenient automatic labeling.

Stem-ML provides a well-defined mapping from tags to f0 contours, replacing the pitch generation

algorithm of TTS. Accent shapes are templates, represented by the stress tag (Sections 3.4 and 4.4), which

can be over-specified (tags overlap in time), fully specified or under-specified. We allow a complex phrase

curve to be described by the step and slope tags (Sections 3.2, 3.3, 4.1 and 4.2), but f0 can also be repre-
sented without one. Each tag places constraints on the pitch calculation, and the resulting pitch contour is a

compromise between two groups of constraints: physiological constraints that require the pitch trajectory

to be smooth, and communication constraints that bring the surface pitch contour close to the tag speci-

fication (see mathematical description in Section 2). The templates bend to meet requirements from

neighboring accents or the phrase curve, therefore we call them ‘‘soft’’ templates. Conflicts between accent

target specification are resolved in a way that depends on strengths (Sections 3.4 and 4.5). Strong tags

dominate the resulting pitch contour, while weak tags accommodate to strong neighbors.

Typically, there are many ways to represent a given prosody with Stem-ML, and one can write a Stem-
ML description that is similar to many models in the existing literature. While one may need a non-trivial

algorithm to translate from other tagging systems into Stem-ML tags, Stem-ML can provide a represen-

tation close enough for translation to be possible. For example, it can approximate van Santen�s model with
overlapping long stress tags, one tag per accent, along with a simple phrase curve. ToBI can be approxi-

mated with stress tags, each with two points in their shape, and no phrase curve.

An alternative classification of intonation systems is Ladd�s (1996) distinction between overlay and linear
sequence models. Again, we can build models in both classes. Overlay models build f0 curves by super-

posing f0 features of different sizes, for instance sentence, phrase, word, and syllable scopes. Stem-ML
models of that class can be built using phrase curves and/or superposing stress tags of different scopes. On

the other hand, linear sequence models are naturally described as a sequence of stress tags, one per tone or

accent.

1.2. Concepts

The physical modeling in Stem-ML was inspired by tone languages such as Mandarin. Isolated syllables

in tone languages have pitch contours close to the ideal shapes of their tones, while in sentences, tones

interact due to their close proximity to each other. As a result, in natural speech, tone shapes can be far

from ideal. Syllables in weak positions can even display inverted tone shapes as speakers prepare for the

next strong syllable (Shih and Sproat, 1992; Xu, 1993). Stem-ML explains the changes in tone shapes in
terms of interactions with nearby syllables (Kochanski and Shih, 2000; Shih and Kochanski, 2000). This
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indicates that prosody is pre-planned, and we suggest that the planning is done to minimize physiological

effort given the communicative demands of speech.

Stem-ML assumes that humans are capable of pre-planning of pitch contours inside a phrase. 2 The final

pitch curve depends on tags in both the forward and reverse directions inside a phrase. This provides a
natural way of expressing interactions between neighboring accents and tones. Pre-planning of other as-

pects of speech has been shown, such as inspired lung volume (Winkworth et al., 1994, 1995; McFarland

and Smith, 1992; Whalen and Kinsella-Shaw, 1997) and pitch as a function of sentence length (Shih, 2000).

Experiment does not yet afford good evidence for the limitations or the maximum range of pre-planning.

Indeed, the range may well be strongly variable. Practiced, prepared speech may have no clear limits to

planning, while speech under heavy cognitive load may barely be planned to the end of a word. Stem-ML

phrase tags (Sections 3.5 and 4.8) are the mechanism for specifying the limit of pre-planning. The Stem-ML

model is causal between phrases, since the pitch at a given time depends only on the tags in the current and
past phrases. However, the model is acausal inside a phrase since we assume a phrase is planned as a unit,

so the pitch can be influenced by any linguistic event in the phrase.

Commonly, people seem to end a phrase without considering what the pitch should be at the beginning

of the next phrase, then make any necessary pitch shifts during the pause between phrases or at the be-

ginning of the following phrase. In fact, this behavior is the definition of our phrases: planning stops at

phrase boundaries. Thus, one places phrase boundaries at locations where the past pitch is independent of

future linguistic features. In our experience, sentence boundaries and long pauses seem to imply Stem-ML

phrase boundaries, but proper choice of phrase boundaries may well depend on the language being spoken.
Stem-ML makes one physically motivated assumption. It assumes that the prosodic trajectory is con-

tinuous and smooth over short time scales. We know that all aspects of prosody are controlled by muscle

actions, and that the mapping between muscle activation and perceived prosody is not strongly non-linear.

Thus there are smooth and predictable connections between neighboring accents, because muscles simply

cannot discontinuously change position. The muscles that control the larynx cannot respond faster than

100 ms (Stevens, 1998, pp. 40–48 and references therein; Xu and Sun, 2000), a time that is only slightly

shorter than a typical syllable, so we expect the intonation of neighboring syllables to interact. This in-

teraction should be important in all languages. Our goal is natural-sounding speech, and a careful intro-
duction of physiological constraints on the models can help text-to-speech systems sound more like a real

human.
€OOhman (1967) and Fujisaki (1983) were instrumental in incorporating physiological constraints in pitch

generation. Xu et al. (1999) is a more recent work providing a quantitative model for Chinese tones. Some

related work in articulatory modeling includes Browman and Goldstein (1990), Keating (1990), Moon and

Lindblom (1994), and is reviewed in Perrier et al. (1996) and commentaries in Abry et al. (1998). The C/D

model (Fujimura, 2000) is also noteworthy.

We assume that the speaker balances the physiological energy cost of adjusting muscle positions against
the need to produce unambiguous speech by matching the tone/accent templates. At prosodically strong

positions in a sentence, the speaker is generally willing to expend the effort needed to produce precise

prosody. Since energy costs increase with muscle velocities and accelerations, slow and smooth motions are

less costly. Thus, on weak positions, the speaker tends to minimize effort by smoothly preparing for the next

strong tone/accent, and largely ignoring the ideal shape of the weak syllable. Intermediate strengths yield

intermediate results. This aspect of the model also builds upon Ohala (1992) who described speech as a

compromise between effort and communication clarity, but used the concept only qualitatively.

2 In this paper, a ‘‘phrase’’ is defined to be the interval between two Stem-ML phrase tags. Normally, a Stem-ML phrase would be

associated with an utterance, intonational phrase, or breath group, but the precise association could vary from language to language or

from theory to theory.
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This same model can apply to other gestures related to language, so long as there is a direct relationship

between muscle positions and the perceived gesture, and the relationship is not excessively non-linear.

While pitch is generally believed to be the most important component of prosody, it has been known since

the 1950s (Fry, 1955, 1958; Bolinger, 1958; Lieberman, 1960; Hadding-Koch, 1961) that amplitude is also
an important component. Recent literature (Maekawa, 1998; Kehoe et al., 1995; Sluijter and van Heuven,

1996; Pollock et al., 1990; Sluijter et al., 1997; Turk and Sawusch, 1996; Erickson, 1998 and references

therein) also provide support for amplitude, spectral tilt and jaw movement as important components of

prosody. We believe that this model can apply to at least some of these motions.

A single Stem-ML tag can produce a correlated ensemble of changes in a variety of acoustic parameters.

For instance, an accent could include both a rise in pitch and a bump in amplitude. Furthermore, the tag set

can apply to facial features. The assumptions of direct relationship and no strong non-linearity are clearly

true for facial expressions, as the muscle motions are directly visible.
In the case of the fundamental frequency of speech, one can define a signal we refer to as f �

0 , which

should show smooth and continuous behavior. In voiced segments, f �
0 is the observed pitch with segmental

effects removed, where we consider segmental effects to include all correlations of f0 with the phoneme

sequence. An example of using f �
0 to model intonation can be found in Black and Hunt (1996), where they

use a smoothing technique to reduce the amplitude of segmental effects associated with consonants. For

their algorithm, they report a 9.9 Hz RMS difference between f0 and f �
0 , which can be taken as a rough

estimate of the size of segmental effects.

Without segmental effects, the factors that influence the pitch are the vocal fold tension (Ohala and
Ladefoged, 1970) and subglottal pressure (Monsen et al., 1978). The vocal fold tension and subglottal

pressure are both smoothly changing functions of time, controlled by nerve impulses, Newtonian me-

chanics, and the viscoelasticity of tissue. The overall relationship between muscle activation and pitch is

smooth, nearly linear, and the effects of the different muscles can probably be combined into a single

parameter. For instance, even though low tones may be generated by activation of the sternohyoid muscle

(G�aarding et al., 1970), and high tones by activation of the cricothyroid (Atkinson, 1978; Simada and

Hirose, 1978), as long as the dynamic response of the two sets of muscles are similar, the difference in the

two responses should map nicely to f0, because the difference corresponds to the extension of the vocal
folds.

Detailed physiological models for f0 are described in (Titze, 1993a) and references therein. Also see the

discussion of the ‘‘Cover model’’ in (Titze, 1993b) for an example of how activity of the thyroarytenoid and

cricothyroid muscles combine. Similar calculations involving the lung pressure also show a smooth de-

pendence that is not strongly non-linear.

We are thus able to use a phenomenological model of the vocal fold oscillation, rather than a detailed

model. Since the vocal fold tension seems to be the most important contribution, one can consider f �
0 to be

an approximate measure of the vocal fold tension. We make quite weak assumptions about the behavior of
the laryngeal oscillator: merely that f �

0 is a smooth function of a control parameter that has dynamics like a

muscle. We do not need to associate the control parameter with any particular muscle. Since all the control

parameters are smooth, we know that the frequency of the glottal oscillator must also be smooth except

possibly at a few discontinuous jumps 3 (Herzel, 1995; Berry et al., 1996), such as register transitions.

Segmental effects can be approximated as perturbations on the glottal oscillator caused by changes in the

environment in which it operates. While segmental effects are beyond the scope of this paper, they can be

included in the model, also see Sections 1.4 and 2.6.

3 These jumps are occasional discontinuous transitions from one mode of oscillation to another, such as modal speech to falsetto, or

period doubling during glottalization. For a review of the properties of non-linear oscillators, see Pipes (1970), Moon (1987), and

Ogorzałek and Maciej (1997).
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Because Stem-ML is defined in physiological terms that are common to all humanity, and because we do

not associate Stem-ML tags with particular language features, it has the possibility of being a language-

independent description of prosody.

Stem-ML allows the existence of both phrase curves and local accents. The two concepts are distin-
guished by their scope. Local accents (i.e., stress tags) control the shape or value of f �

0 over the scope of the

accent, which might be a syllable, word or stress group. Far from their center, they have little effect. The

phrase curve, on the other hand, has no assumption of locality, and may be appropriate for pitch changes

on scopes larger than a word.

While Stem-ML allows a description of pitch in terms of localized accents riding on a phrase curve, it

does not enforce it. The system places minimal restrictions on the number of tags, the scope of tags, the

location of tags, or parameter values. 4 We intend it to be theoretically neutral and language independent,

so it can be used as a quantitative tool for comparing theories of prosody. As a consequence of this, a
complete application that uses Stem-ML (such as a TTS system) will require a language-specific layer that

defines which Stem-ML tags are associated with which linguistic events (Sections 1.4 and 5.2).

One can show that Stem-ML can represent any prosody by placing a short stress tag at each measured

datum. As long as the tags� strengths are non-zero, there are then a set of equations relating the shape

attributes to f0 which are linear in the shape attributes, and can be shown to be non-singular. Then, the

Fundamental Theorem of Linear Algebra shows that there is a set of shape attributes that will exactly

reproduce the data. An equivalent proof can be constructed using one step tag per datum. Both proofs

become straightforward if the strengths are large and the smooth parameter is small, in which case f �
0 simply

follows the shape attribute (or the to attribute for step tags). Thus, Stem-ML is language independent, at

least in the sense that it can represent the prosody of any language.

1.3. Justification

We justify the introduction of a prosody generation model on several grounds:

• It is capable of accurately reproducing any pitch trajectory in a compact, robust manner.
• It is language independent. We have used it to model languages with syllable-scope tones (e.g., Mandarin

Chinese), word-scope accents (e.g., English), and we expect it can be used for languages where accents are

attached to phrase boundaries.

• It is capable of representing reasonable prosodies for intimate mixtures of multiple languages. English

names in the midst of a Mandarin speech stream can be tagged with English tags, and will come out with

English accents. Having such linguistic flexibility for European systems is also obviously desirable. As a

consequence, it can be used as a general, multi-language pitch generation component.

• It is reasonably theory neutral. For instance, Stem-ML tags can be mapped onto existing systems such as
ToBI. Consequently, it should be possible to quantitatively compare different intonation systems and de-

cide which are more successful in describing speech data.

• Stem-ML automatically meets physiological smoothness constraints on f �
0 .

• It models pre-planning of speech and interactions between neighboring accents.

• Stem-ML can represent long-range correlation in the pitch trajectory by its accent interaction rules and

by optional use of phrase curves.

• It is suitable for machine fitting.

4 For instance, you should not assume that there must be one stress tag per accent. The best representation may differ from language

to language. Stem-ML allows you to use stress tags for each syllable, each word, or in arbitrary locations with arbitrary scopes. As

another example, step tags need not be associated with phrases or sentences; they could be used to mark syllable-by-syllable prosody.
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1.4. Where does it fit in a TTS system?

When used in a TTS system (e.g. Fig. 1), this model interprets a tag set (Stem-ML, level 1) in the middle

of the prosody subsystem. Input text contains a broader set of Stem-ML (level 2), not yet defined, that

controls prosody through linguistic definitions. For example, some of these higher-level tags might ap-

proximate the ToBI mark-up scheme (Pierrehumbert, 1980; Beckman and Ayers, 1997; Silverman et al.,

1992). The input text might alternatively comprise other languages that provide a high-level description of

the prosody of a text stream, such as SSML (Taylor and Isard, 1997) and SABLE (Sproat et al., 1998).
These languages are broad descriptions of prosodic intent while Stem-ML is a detailed description of pitch

movement. In general, Stem-ML and these languages are complementary, and could work in tandem in one

system.

The prosody subsystem contains two or three components:

• A linguistic modeling component to convert Stem-ML level 2 tags into level 1 tags. This component

contains models for discourse and phrasal intonation, including microprosody of domains such as lists,

movie titles, proper names, and numbers. It will model questions, mark new and important words in
the discourse, and model requests for confirmation. This component also uses a lexicon to mark accent

positions. Its output is a structure in memory that corresponds to text marked with Stem-ML level 1

tags.

• A pitch generation component that takes the Stem-ML level 1 tagged text and produces a time series of

pitch values.

• A segmental effects component that calculates how f0 depends on the phoneme sequence (Section 2.6). At
the current state of the art, this component is optional, as segmental effects do not seem to have a major

influence on the intelligibility of TTS systems, despite the fact that segmental effects can be perceptible
and can help humans to recognize phonemes (Hillenbrand and Houde, 1996; Haggard et al., 1970; Hom-

bert, 1978; Massaro and Cohen, 1976).

This document focuses on the pitch generation component, and defines all Stem-ML level 1 tags.

1.5. Outline of the algorithm

Stem-ML serves the dual function of being a prosody mark-up language and a pitch generation system.

From the user�s point of view, the system is a collection of tags. These tags can be used to describe prosodic
events such as phrase curve, accents, properties of accents, and how different components combine to create

Fig. 1. A generic text-to-speech system, showing where Stem-ML modeling might be used.
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the surface pitch contours. Internally each tag is defined mathematically with parameter settings describing
variations.

Fig. 2 is the block diagram of the Stem-ML algorithm. The steps are

• calculate the phrase curve,

• calculate the prosody, relative to the phrase curve,

• map from an abstract description of prosody to observable quantities.

The gray boxes show the tags that influence each step. For example, <step/> and <slope/> are two
types of tags that can be used to define phrase curves, and the <stress/> tags allow users to specify tone

or accent templates.

Each tag puts a set of constraints on the prosody. A set of built-in constraints enforce smoothness and

continuity of f �
0 . The algorithm accumulates constraints, then calculates the prosody that best meets the

constraints. Each tag can have a different strength, and the strengths control how the system compromises

between any conflicting constraints. One can look at the model as an implementation of elastic templates

that compromise with their neighbors. We will describe the mathematical basis in Section 2, which will be

followed by detailed description of the tags (Section 3). Examples showing tag usage and surface pitch
variations corresponding to the parameter settings are given in Section 4.

2. Mathematical basis

We calculate the prosody by building a set of linear equations involving the pitch at every instant, then

solving that set of equations. The equations can be divided up into several groups, depending on their

origin. The first group of equations expresses the overall smoothness and continuity of the pitch curve.
Each tag adds another group to describe its constraints on the pitch curve. When the set of equations

Fig. 2. A block diagram showing the Stem-ML algorithm. The white boxes show the steps of the algorithm. The gray boxes show input

data and results.
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cannot all be satisfied exactly (which is the common case), Stem-ML returns a pitch curve that compromises

among the constraint equations.

Technically, the algorithm implements a regularized fit to soft constraints, by way of a least-mean-square

solution of the constraint equations. It calculates one phrase at a time, and enforces continuity at phrase
boundaries. The algorithm proceeds in four stages:

• First, it accumulates constraints on the phrase curve, then the resulting set of linear equations is solved

to yield the phrase curve which best matches the constraints. The constraints come from step and slope

tags.

• Second, the system accumulates constraints on the pitch trajectory, and solves for the optimal pitch at

each time. These constraints come from stress tags and the phrase curve.

• Third, we map from a linguistic representation of prosody into the observables.
• Finally, we apply non-linear transformations to match human perception.

Note that points on both the phrase curve and the pitch trajectory can be vectors, controlling several

observable components of prosody, like f �
0 and amplitude.

2.1. Phrase curve calculation

The first group of equations in the phrase curve calculation constrains the curve to be continuous. There is

one equation for each time t, that relates each point to its neighbor: ptþ1 � pt ¼ slopet � Dt, where pt is the
phrase curve, slopet is the rate attribute of the nearest preceding slope tag (Sections 3.3 and 4.2), and Dt is the
interval between prosody calculations (typically 10 ms). Often, the slope is zero, and then these equations can
be interpreted as requiring each point to be close to its neighbor, which implies continuity. All these

equations have a fixed strength: s½continuity� ¼ 0:01=Dt (Dt is measured in s). This group of equations has the

side effect of enabling automatic interpolation between step tags (see Fig. 7).

Each step tag (Sections 3.2 and 4.1) adds a group of two equations to the set of constraints: pt ¼ to
and ptþw � pt�w ¼ by, where w ¼ 1þ bsmooth=2Dtc (rounding down) is half of the smoothing width

(Sections 3.1 and 4.8), t is the position of the tag, and by and to are the tag�s attributes. These equations
allow you to specify the value of the phrase curve (via the to attribute) and/or to place steps in the phrase

curve (with the by attribute). Step tags can be used to draw an arbitrary phrase curve. Each of these
equations has a strength (defined below). The strength controls how closely the solution matches the tag.

In the common case, where tags are widely spaced, any strength � 1 will cause the tag to be followed

accurately.

Finally, when pdroop (Sections 3.1 and 4.3) is non-zero, we add one equation at each point that pulls the

phrase curve down toward zero: pt ¼ 0. The droop equations typically have a very small strength indi-

vidually: s½droop� ¼ pdroopDt, but they act together to eventually bring the phrase curve down. Pdroop might
be used to implement declination.

Overall, there are n unknowns (one pt at each time point), and there is one droop equation for each,
along with n� 1 continuity equations, and with two equations per step tag. There are more equations than

unknowns, so the system is over-determined and we must find the solution that comes closest to matching

all the constraints. We use a least-squares solution to implement the compromise.

The equations can be written in matrix form as s � a � p ¼ s � b, where s is the m by m diagonal matrix of

strengths, a (a is m by n) contains the coefficients of the pt in the equations, and b (which is m by 1) contains

the right-hand sides of the equations (the constants). P is a (m by 1) column vector. M is the number of

equations.

We transform the equations into normal form for solution, at � s2 � a � p ¼ at � s2 � b, because the left-hand
side then contains a band-diagonal matrix (at � s2 � a), with narrow bandwidth (superscript t denotes a matrix
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transpose). That bandwidth is no larger than w, which is typically much smaller than n or m. The narrow

bandwidth is important because the cost of solving the equations scales as w2n for the band-

diagonal case, rather than n3 for the general case. In our application, that scaling reduces the computa-

tional costs by a factor of 1000, and assures us that the number of CPU cycles per second of speech will be

constant.
Fig. 3 shows the magnitude of the elements of at � s2 � a in an example calculation of a phrase curve (Fig.

11). The band-diagonal form is clearly seen. The bright spot on the diagonal in the upper left corner comes

from an initial step to tag, and the four bright points near the middle of the image come from a step by tag at

t ¼ 1 s. The diagonal stripe comes from the continuity equations, which relate each point to its neighbors.

Example: Assume a sampling interval of Dt ¼ 0:01 s, smooth ¼ 0:04 s, pdroop ¼ 1, and tags

<slope rate¼1 pos¼0s/>,

<step to¼0.3 strength¼2 pos¼0s/>,

<step by¼0.5 pos¼0.04 strength¼0.7/>.
One then gets the following set of equations:

1: p0 ¼ 0:3; s1 ¼ 2 # step to

2: p6� p2 ¼ 0:5; s2 ¼ 0:7 # step by

3: p1� p0 ¼ 0:01; s3 ¼ 1 # slope

4: p2� p1 ¼ 0:01; s4 ¼ 1 # slope

5: p3� p2 ¼ 0:01; s5 ¼ 1 # slope

6: p4� p3 ¼ 0:01; s6 ¼ 1 # slope
. . .
11: p0 ¼ 0; s11 ¼ 0:01 # pdroop

12: p1 ¼ 0; s12 ¼ 0:01 # pdroop

13: p2 ¼ 0; s13 ¼ 0:01 # pdroop

. . .

Fig. 3. Magnitude of the elements of ats2a for the example shown in Fig. 11 (curve #2). Brightness increases with the magnitude of

each matrix element; black is zero. Elements near the main diagonal (upper L to lower R) correspond to equations that relates nearby

points on the phrase curve, and in general, the (i, j)th element corresponds to an equation that relates the ith and jth points on the

phrase curve.
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The matrix a is then

a ¼

1 0 0 0 0 0 0 0 0
0 0 �1 0 0 0 1 0 0
�1 1 0 0 0 0 0 0 0
0 �1 1 0 0 0 0 0 0
0 0 �1 1 0 0 0 0 0
0 0 0 �1 1 0 0 0 0

� � �
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

� � �

2
66666666666666664

3
77777777777777775

;

where each row corresponds to the left-hand side of one of the equations above. Each column corresponds

to a time value. The right-hand side of the equations above goes into the b matrix,

b ¼

0:3
0:5
0:01
0:01
0:01
0:01
..
.

0
0
0
..
.

2
666666666666666664

3
777777777777777775

:

Each row, again, corresponds to one of the equations above. The diagonal elements of the strength matrix
are

si;i ¼ 2 0:7 1 1 1 1 . . . 0:01 0:01 0:01 . . .½ �;

where each entry corresponds to one equation.

In between phrases, the pitch must also be continuous. We enforce the physiological requirement of

continuity between phrases by beginning the calculation of phrase 2 a little early, so that it overlaps the end

of phrase 1, then taking values of the phrase curve and prosody which are known from the end of phrase 1

and substituting them into the beginning of phrase 2. This technique enforces a strictly causal relationship

between phrases so that later phrases smoothly follow from earlier phrases, yet tags in the later phrases
cannot affect the results of earlier phrases.

2.2. Pitch trajectory calculation

The next step is to calculate the prosody, et, based on the phrase curve and stress tags (Sections 3.4 and

4.4). In a simple text-to-speech system that only predicts pitch, the prosody is essentially the pitch tra-

jectory. It contains all the peaks and valleys, and may differ from the pitch only by a simple scaling. We

follow the same procedure as we did for the phrase curve (Section 2.1), though we end up solving a different

set of equations. As before, a group of continuity equations apply at each point: etþ1 � et ¼ 0, with a fixed

strength s½continuity� ¼ 0:01=Dt. An additional group then expresses smoothness: �etþ1 þ 2et � et�1 ¼ 0, each
with a strength
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s½smooth� ¼
p
2
� smooth

Dt
� 0:01

Dt

(see Sections 3.1 and 4.6). The smoothness equations imply that there are no sharp corners in the pitch

trajectory. Mathematically, they ensure that the second derivative stays small, which comes from the

physical constraint that the muscles used to implement prosody all have a non-zero mass, therefore they

must be smoothly accelerated and cannot respond jerkily.

As before, there is also a group of N droop equations, et ¼ pt, with strength s½droop� ¼ adroop � Dt (see
Sections 3.1 and 4.7). These equations pull the pitch trajectory toward the phrase curve, much like pdroop

pulls the phrase curve toward zero. This group can be interpreted as stating that stress tags have local effects,

and that to some degree, the pitch will tend to follow the phrase curve, at least on time scales longer than

1=adroop.
Next, each stress tag adds a group of equations: one equation that constrains its mean pitch relative to

the phrase curve, and a set of equations that locally constrain the shape of the pitch trajectory. To derive

these equations, the shape attribute of the stress tag is first linearly interpolated to form a dense array of

target values. An accent defined by shape ¼ t0x0; t1x1; t2x2; . . . ; tjxj is interpolated to Xk, Xkþ1;Xkþ2; . . . ;XJ ,
where k ¼ t0=Dt is the index of the first point of the accent�s shape, and J ¼ tj=Dt the index of the end of the
accent. 5 We then define the accent template to be Yt ¼ Xt þ pt: the sum of the shape and the phrase curve.

The equation that constrains the accent�s mean pitch is then
PJ

i¼k ei ¼
PJ

i¼k Yi, with a strength

s½pos� ¼ strength � sinðtype � p
2
Þ. As type increases from zero, one can see that the strength of this equation also

increases from zero (which means that the accent doesn�t care about its mean pitch), to strength when

type ¼ 1. See Sections 4.4.1, 4.4.2 and 4.5 for descriptions of strength and type.

There is also one equation for each point in the accent (i.e., from k to J). These equations define the

shape of the accent: ei � �ee ¼ Yi � Y , where �ee ¼
PJ

i¼k ei=ðJ � k þ 1Þ is the average value of the pitch tra-
jectory over the accent, and Y ¼

PJ
i¼k Yi=ðJ � k þ 1Þ is the average pitch target of the accent. Subtracting

the average values prevents these equations from constraining whether the accent sits above or below the

phrase curve; the intent is to constrain just the shape. Each of these equations has strength

s½shape� ¼ strength � cos type � p
2

� 	
ðjþ 1Þ=ðJ � k þ 1Þ:

One then builds the a and b matrices and solves them, exactly analogously to the phrase curve. The

bandwidth of these matrices is generally somewhat larger, as accents can be wider than the smoothing
width, but one still sees a 100� speedup for the band-diagonal calculation relative to the general solution.

Fig. 4 shows the magnitude of the elements of the ats2a matrix in an example calculation of et. Points
near the diagonal show the coupling of prosody at nearby times; points further off the diagonal show

longer-range interactions. The boxes correspond to the scope of each stress tag. The upper left box cor-

responds to the first, strongest stress tag: it is brightest, indicating that it has the largest strength and

provides the tightest constraint the prosodic trajectory. The central band is wider than in Fig. 2, because the

smoothness equations have been added to the set.

2.3. Optimization representation vs. constraint equations

The constraint equations can be cast into an equivalent optimization problem with an interesting inter-

pretation. One can prove, by a rearrangement of the normal equations, that the equation

E ¼ ða � e� bÞt � s2 � ða � e� bÞ gives aminimum value ofE for the same e that solves the constraint equations.

So, finding e by minimizing E is equivalent to solving the constraint equations, but it is easier to interpret.

5 Accents that extend outside a phrase are truncated at the phrase boundary.
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We can break up equation for E, above, by selecting groups of rows of a and b. These rows correspond
to sets of constraint equations, and E will be a sum over its fragments. The most interesting and suggestive

way to break E is to separate out the continuity, smoothness, and droop equations into one group (we shall

call it effort), and leave the constraint equations that come from tags in another (which we shall call error).

Then, one can identify E ¼ effort þ error.
Qualitatively, the effort term behaves like the physiological effort: it is zero if the muscles are stationary in

a neutral position, and increases as muscular motions become faster and stronger. Likewise, the error term

behaves like a communication error rate: it is minimal if the prosody exactly matches the ideal target, and

increases as the prosody deviates from the ideal. As the prosody deviates from the ideal, one expects the
listener to have an increasingly large chance of misidentifying the accent or tone shape.

For tags with large strength, the error term increases steeply as the pitch deviates more from the target.

The optimal solution will then have relatively small deviations. For weak tags, on the other hand, the error

term is unimportant: it�s OK for the pitch to deviate from the target, so long as the generated pitch is

smooth and requires little effort to produce.

It seems reasonable that, while speaking, humans should attempt to minimize something like E. Cer-

tainly, when we speak, we wish to be understood, so we have to consider the error rate in the overall speech

communication channel (speaker ) environment ) listener). Likewise, much of what we do is done
smoothly, with minimum muscular energy expenditure (as displayed by the popularity of chairs and au-

tomobiles), so minimizing effort in speech is also a plausible goal. We suggest that this form of the model

may provide some insight into the mental processes involved in speech generation.

2.4. Mapping linguistic concepts into observables

At this point, we have a time-varying prosody, which can correspond to the tension or extension in a

group of muscles. The rest of the algorithm approximates the mapping of this hard-to-observe prosody into

Fig. 4. The magnitude of elements of the ats2a matrix for calculation of one of the pitch curve in Fig. 23, with the medial falling tone

having a strength ¼ 3. Black is zero. The central white band corresponds to the continuity, smoothness, and droop equations, while the

three gray boxes correspond to the equations that define the shape and positions of the three accents.
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acoustic observables like f0 and amplitude. In a simple implementation, the rest of the algorithm might

approximate the oscillation frequency of the vocal folds as a function of muscle tensions.

From here, we assume that there are statistical correlations between the time-varying prosody we pre-

dict, et, and observable features in the speech signal. Since et is, in general, a vector, we simply multiply it by
the matrix of cross-correlations, M. M is derived from set range (Section 3.1).

This matrix-mapping step can also be used to include correlations between acoustic variables that are

known from physiological experiments. For instance, f0 has been shown to increase with subglottal pres-

sure at a rate of roughly 5 Hz/cm H20 (Ladefoged, 1962; Ohala and Hirano, 1967; Lieberman et al., 1969).
If Stem-ML is being used to model the amplitude of speech or other characteristic that is roughly equivalent

to subglottal pressure, its correlation with f0 can be included simply by setting the appropriate off-diagonal

matrix element, as shown in Fig. 5.

2.5. Non-linear transformation and add setting

The relationship between pitch (measured as frequency) and the perceptual strength of an accent is not

necessarily linear. Nor is there a linear relationship between neural signals or muscle tensions and pitch (see

Fujisaki, 1988; Titze, 1993a). Consequently, any model of the pitch generation process needs to include the

possibility of a non-linear mapping between the intended effort or attempted prominence and the final

acoustic output.

To implement a controllable, generic non-linearity, the results from the previous stage, et �M , are op-
erated on by the function f ðxÞ ¼ base � ð1þ cxÞ1=add , where c ¼ ð1þ range=baseÞadd � 1. This is an ad-hoc

function that can smoothly describe linear behavior (add ¼ 1), exponential (add ! 0), or behaviors in

between. Always, f ð0Þ ¼ base and f ð1Þ ¼ baseþ range. Each observable can have a different non-linearity,
controlled by the appropriate component of the set add tag (Section 3.1).

Fig. 6 shows the effect of varying add values. It plots f ðxÞ vs. x, with the add parameter covering the

range of normal use with values of 0.0, 0.5, 1.0 and 2.0.

2.6. Calculating segmental effects

We do not attempt to model segmental effects with Stem-ML tags. Segmental effects are caused by

phoneme-dependent muscle control, changes of acoustic impedance, and changes in air pressure across the
glottis as the articulators move to make different speech sounds. The cause of these effects is largely separate

from the intentional control of f �
0 , and the two should be accounted for by separate mechanisms.

Fig. 5. Schematic example of mapping from linguistic coordinates to observables. The figure shows the time course of ‘‘surprise’’ and

‘‘prodosy’’ of a hypothetical utterance, and the corresponding outputs (‘‘pitch’’ and ‘‘amplitude’’). The matrix multiplication used in

Stem-ML allows for cross-correlations between variables.
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However, they could be included as reasonable extensions to the overall system. On one extreme, if one

wanted to calculate segmental effects from a physical model of the larynx, (e.g., Titze, 1988 or 1989), one

would need to supply the laryngeal model with values of subglottal pressure, effective vocal fold stiffness and

possibly pre-phonatory glottal width. To the extent that the cricothyroid muscle is used for both voicing and

f0 control (L€oofqvist et al., 1989), it could be included too. Stem-ML models could be built for each to ap-

proximate these quantities, since each quantity should have similar smooth dynamics. Approximations to

the flow resistance and aerodynamic quantities of the upper vocal tract could then be based on the current
phoneme, and the detailed physical model of the larynx could be evaluated to yield f0. Essentially, such a

detailed model would replace the ad-hoc mapping and non-linearity described in Sections 2.4 and 2.5.

On the other extreme, segmental effects derived from a machine learning system could be simply added

onto f �
0 after the non-linear mapping. The machine learning system could be trained to predict the dif-

ference between Stem-ML�s smooth f �
0 result and actual data for f0 as a function of phoneme and

neighboring phonemes.

Finally, in large-database TTS systems, the segmental effects may come automatically from the acoustic

data. If acoustic units are selected on the basis of predicted f0, and then are played without f0 modification,
units will carry their original segmental effects. It is plausible that the original segmental effects will be

approximately correct and perceptually reasonable in their final context.

3. Stem-ML tags

We now turn to the definition of Stem-ML tags. These are low-level tags (level 1) that can be used to

describe intonation contours. These tags may be used to define a higher-level language (level 2) that cor-
responds to language specific or situation specific events.

Stem-ML level 1 tags fall into four categories:

1. setting parameters,

2. defining the pitch curve,

Fig. 6. Example traces of f ðxÞ with base ¼ 100, for various values of add.
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3. marking accents,

4. marking boundaries.

3.1. Tags: set

Set accepts the following attributes (see Section 2 above for mathematical definitions):

• max ¼ value: sets the maximum frequency (in Hz) that the voice (or the TTS system) should be allowed

to produce. One value per phrase. Default ¼ 550.

• min ¼ value: sets the minimum frequency (in Hz) that the voice or TTS system should be allowed to

produce. One value per phrase. Default ¼ 40.

• smooth ¼ value: sets the smoothing time of the pitch curve, in seconds (see Sections 2.2 and 4.6). This is

also used to set the width of a pitch step (see Section 2.1). The same value of smooth is used for an entire

phrase. Default ¼ 0:06.
• base ¼ value: sets the speaker�s baseline, in Hz. The baseline sets the frequency in the absence of any
tags. Pdroop causes f �

0 to droop toward the baseline. Typically 100 Hz for males, 200 Hz for females. This

has a single value during a phrase. Default ¼ 150.

• range ¼ mvalue: 6 sets the speaker�s pitch range, in Hz. All changes and most settings are measured as

fractions of the speaker�s range. Typically 150 Hz for males, 250 Hz for females. This has a single value
during a phrase. Default ¼ 200.

• pdroop ¼ value: sets the phrase curve�s droop rate toward the base frequency (see Sections 2.1 and 4.3).
In units of fractional droop per second. Useful values range from 0 to 2. Default ¼ 0:25. This has a single
value during a phrase.

• adroop ¼ value: sets the pitch trajectory�s droop rate toward the phrase curve (see Sections 2.2 and 4.7).
In units of fractional droop per second. Useful values range from 0 to 10. Default ¼ 3. This has a single

value per phrase.

• add ¼ value: sets the non-linearity in the mapping between the pitch trajectory and f �
0 . Add ¼ 1 is a

linear mapping, where an accent will give the same f �
0 shift if it is riding on a high-pitch region or a

low-pitch region. Add ¼ 0 implies addition of logðf0Þ, so small accents will make a larger change to f �
0

(measured in Hz) when riding on a high phrase curve. Add > 1 gives a slower-than-linear mapping.

Default ¼ 0:5. See Sections 2.5 and 4.10.
• jitter ¼ value: sets the RMS magnitude of the pitch jitter, in units of fractions of the speaker�s range.
One value per phrase. Default ¼ 0. See Section 4.9.

• jittercut ¼ value: sets the time scale of the pitch jitter, in units of seconds. The pitch jitter is correlated

ð1=f Þ noise on intervals smaller than jittercut, and is uncorrelated (white) on intervals longer than jitter-

cut. Large values of jittercut imply longer, smoother variations in pitch; small values imply short, choppy

pitch changes. Set once per phrase. Default ¼ 1. See Section 4.9.

Arguments given to the set tag are remembered until the TTS channel is closed, even across phrase
boundaries.

6 Generally, an mvalue can contain a matrix (see Appendix A.1). By default, however, it is interpreted as a single floating point

number that controls the pitch range (i.e., by default, you specify the �eF� component). We define range as a matrix to cleanly express

correlations among various aspects of prosody. For example, pitch and amplitude are often correlated, and likewise the mouth tends to

be open wider for high amplitude speech. These correlations are expressed as off-diagonal elements in the matrix. Use of a matrix here

also gives the user the ability to write tags in terms of more linguistic concepts like �emphasis� or �suspicion�, and letting the system map

to observables like �f �
0 �, �amplitude� and �mouth opening�. See Maekawa (1998).
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3.2. Tags: step

The step tag takes several arguments, and operates on the phrase curve (see Sections 2.1 and 4.1):

• by ¼ value. Steps are specified as a fraction of the speaker�s range. The step in the phrase curve will

appear as a smoothed step in the pitch output. The default value is zero.

• to ¼ value. Force the phrase curve to have a certain frequency at the tag�s position, specified as a frac-

tion of the speaker�s range. The default value is zero.
• strength ¼ value. Controls how the step interacts with its neighbors. The default value is 1.

• type ¼ value. Controls whether the target value or the size of a step is the strongest constraint. If it is

important that the phrase curve should reach a particular value, then set type ¼ 1. Alternatively, if the

size of the step is critical, then set type ¼ 0. Intermediate values let one control both the mean pitch
and shape. If by and to are both specified, type defaults to 0.5; if just by is specified, type defaults to

0; if just to is specified, type defaults to 1. These defaults allows the step tag to behave sensibly for the

inputs <step to¼ 000.300/> and <step by¼ 000.400/>, along with a more fully specified tag like <step
to¼ 000.300 by¼ 000.400 strength¼ 001.300 type¼ 000.400/>.

For convenience, we call <step to¼X/> (i.e., type ¼ 1) a step to tag, and <step by¼Y/> (i.e., type ¼ 0)

a step by tag, though the Stem-ML interpreter treats them as endpoints of a contiuum.

3.3. Tags: slope

The slope tag takes one argument, and operates on the phrase curve (see Sections 2.1 and 4.2):

• rate ¼ value 00%00?: sets a rate of increase (or decrease) for the phrase curve. It is measured as a fraction of
the speaker�s range per second. If the 00%00mark is present, it is measured as the fraction of range per length
of the phrase. Common values are between �1 and 1. Default ¼ 0.

3.4. Tags: stress

The stress tag defines the prosody relative to the phrase curve (see Sections 2.2 and 4.4). Think of

stress tags as elastic objects, welded together. Each stress tag has a preferred shape and a pre-

ferred height relative to the phrase curve, but they will bend to compromise with each other. Stress tags

will also compromise with the hard-wired requirement that the pitch curve must be smooth. Their

behavior will become clearer when we give examples in Section 4.4. Stress tags accept the following

attributes:

• shape. This specifies the ideal shape of the accent curve. This is the shape in the absence of compromises

with other stress tags and constraints. (See Appendix A.1 for syntax.)

• strength ¼ value. Corresponds to the linguistic strength of the accent. Accents with zero strength have

no effect on pitch. Accents with strengths much bigger than 1 will be followed accurately, unless they

have strong neighbors. Useful values are between 0 and 10. Default is 1.

• type ¼ value. Controls whether that accent is defined by its mean value relative to the pitch curve, or by

its shape. If it is important only that the accent should be above or below the pitch curve, but the detailed

shape is not important, you should set type ¼ 1. Alternatively, if the shape is critical (e.g., the accent is a
falling tone), but it doesn�t matter whether it ends up above or below the pitch curve, then you should set

type ¼ 0. Intermediate values let you control both the mean pitch and shape to varying degrees. Default is

0.5.
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3.5. Tags: phrase

The phrase tag inserts a phrase boundary. Normally, this is used to mark a phrase or breath group. No

pre-planning occurs across a phrase tag; the prosody before it is entirely independent of whatever tags
appear after it (see Section 4.8).

4. Effect of the tags

In this section we will go through the Stem-ML tags one at a time, showing their effects and how they

interact. Where appropriate, we will give examples of how they can be used to model real speech data.

In all the following examples, natural f0 contours are plotted on the y-axis as a function of time with the
symbol ‘‘*’’. Pitch curves generated by Stem-ML tags are plotted with solid lines, and phrase curves are

plotted with dashed lines. The Stem-ML tags used to generate the pitch contour are given after the ex-

amples.

In the following examples that match real data, we use symbolic representations of Stem-ML tags,

following a convention resembling INSINT (Hirst et al., 2000) for convenience and clarity. However, the

similarity to INSINT is superficial, especially for stress tags.

Accent templates (stress tags) are represented by Greek letters while Chinese tones in later examples

are represented by numerals in outline font. Subscripts indicate their strength values. All accent templates
in these examples are aligned with the center of the accented syllable or tone. Their shapes are given in

the small graphs. Phrase tags and stress tags are listed on separate lines. Slope tags are represented as

‘‘ ’’, step to tags as ‘‘l’’, step by as ‘‘d’’, and phrase tags by ‘‘a’’. In addition, global parameters (i.e.,

attributes of the set tag) are given in the first line. Unless noted, slope tags and phrase tags are placed

between words.

4.1. Step tags

The simplest tag, and one that is a good example for how tags interact in Stem-ML is the step tag with

the to attribute (known here as step to). This tag places a constraint on the phrase curve, requesting that the

phrase curve must have a certain value at the tag�s position. If a phrase contains just a single step to tag, the
phrase curve is set to the specified value, both before and after the tag. If you now add a second step tag,

you will see the pitch compromise in between. Each tag fixes the pitch at its location (and on the side away

from its neighbor), but in between, the algorithm produces a smooth interpolation.

Fig. 7 shows three examples of using step to tags. The example includes a small amount of pdroop to

allow the cases to be distinguished. Absent pdroop, cases 1 and 2 give the same result.

The other form of the step tag, with the by attribute (step by), produces a bonafide step in the phrase

curve. It makes a change in the pitch, but doesn�t force either side to be any particular value.

<step by¼X strength¼ 001000/> simply means that the pitch after the tag should be higher by X than
the pitch before. Normally, you�d fix the pitch on one end of the phrase with a step to tag.

Fig. 8 is an illustration of step by tags. No compromising is necessary in this example, as none of the

constraints imposed on the pitch curve conflict.

More complex variants of the step tag are possible, when both the to and by attributes are specified.

These allow you to express intermediate cases, where both the absolute position and the step size are

important. The type attribute controls whether the target position (to, when type � 1) or the step size (by,

when type � 0) is more important. These complex cases are analogous to the stress tag, Section 3.4.

Fig. 9 is an example showing a complex phrase curve that is approximated with step to and step by tags.
This is a French sentence Elle t’a rien donn�ee, ta m�eere? ‘‘She didn�t give you anything, your mother?’’, with a
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dramatic incredulous rising intonation on the word donn�ee starting at 99 cs, followed by a right dislocated, ta
m�eere ‘‘your mother’’, which is another rising intonation catching the momentum of the previous rising

slope, riding high near the top of the speaker�s pitch range. The step by tag at 110 cs raises the phrase curve
and supports the second rising accent in the high end of the speaker�s pitch range. Alternatively, the step up
at donn�ee might also be represented by a pair of step to tags. We used an early rising accent template for the

first word, elle, a peak accent for the word rien, and identical late rising accents on t’a, donn�ee, and m�eere. The
accent templates of this example are shown in Fig. 10. These templates, as well as other natural speech

examples, are manually fit to the data.

Segmental effects cause discrepancies between natural and Stem-ML generated f0 in some regions of Fig.
9. For instance, we see the raising effect of the phone t starting at 57 cs, and the lowering effect of phones r,

d, and the final r starting at 70, 85 and 148 cs, respectively. The final drop in f0 (at 150 cs) is perceptually
unimportant, because it co-occurs with low amplitude. The accent is perceived as a rising one, so we use a

rising template to model the f0 curve.

Fig. 8. Illustration of step by tags. Curves are generated by these tags: Gray:<step to¼ 000.100/>� � �<step by¼ 000.300/>� � �<step
by¼ 000.300/> -or- l0.5 d0.3 d0.3. Black:<step to¼ 000.100/>� � �<step by¼ 000.300/> -or- l0.1 d0.3.

Fig. 7. Effects of the step to tag. The three lines are generated by 1:one tag:<step strength¼10 to¼0.5/> -or- l0.5,
2:two tags setting the same frequency: l0.5 l0.5 -or- <step strength¼10 to¼0.5/>� � �<step strength¼10

to¼0.5/>, and 3:two tags setting different frequencies: l0.5 l0 <step strength¼10 to¼0.5/>� � �<step
strength¼10 to¼0/>.
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4.2. Slope tag

The next tag that is relevant for phrase curves is the slope tag. Slope makes the phrase curve tilt up or

down to the left (forward in time) of the tag (see Section 2.1). Slope tags replace the current value of the

slope attribute, so that after the sequence <slope rate¼1/>� � �<slope rate¼0/> the slope is zero. 7

Fig. 9. The step by tag: raised pitch range in French incredulous question with right dislocation. See the text for the tags that generated

the model in solid line.

Fig. 10. Accent templates used to generate the model in Fig. 9.

7 Note that the strength is not specified. The slope tag changes the continuity equations, which always have a strength of 1.
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Fig. 11 shows some applications of the slope tag. We show four curves: a slope starting at the phrase

boundary, one delayed 0.25 s, a slope up followed by a slope down, and a slope with a small step super-

posed. Again, no compromise is necessary.

Fig. 12 is an example of English coordinate structure: ‘‘(Several experts) said increased costs, and lowered
chartering rates, . . .’’. The parallelism in syntactic structure is echoed in the nearly parallel rising slopes in

intonation. We implemented the rising intonation of the two coordinate phrases with slope rate of 0.13 and

0.15, placed at the first and the third vertical line, respectively. The accent templates are shown in Fig. 13.

A low accent template is used on the unaccented words said and and, both showing up with low pitch. The

accents of the rest of the sentence are uniformly rising, matching the use of the rising phrase curve.

A rising slope can also be expressed by a pair of step to tags defining the beginning and the end of the

slope. For example, the following alternative expressions are roughly equivalent to the step and slope

combination used above:

We note that the slope tag�s rate and the pdroop attributes interact and it is possible to generate an un-

intuitive phrase curve, especially when pdroop is big (e.g., P 1).

4.3. Pdroop: phrase curve droopiness

Pdroop is a parameter that conveniently represents the systematic decrease in pitch that often occurs

during a phrase. Common examples are the final phrase in a sentence, after emphasis, or the initial phrase

in a paragraph. Pdroop operates on the phrase curve, pulling it down towards the base frequency. Points
near step to tags will be relatively unaffected, especially if their strength is large, while points farther away

will be pulled towards the base. The value of pdroop sets the exponential decay rate of the phrase curve, so

that a step will decay away in 1=pdroop s. Thus, one can get a declining phrase curve by using a non-zero

pdroop along with a positive step to at the beginning of a phrase (shown in Fig. 14). Pdroop also sets a limit

to pre-planning in the phrase curve: a step or slope tag becomes largely irrelevant if it is farther than

1=pdroop s away. Note that pdroop pulls the phrase curve down just as much before a step tag as it does

after, because we assume that the pitch trajectories are pre-planned.

Fig. 14 illustrates the effect of pdroop. The phrase curve is set high in the beginning, and is pulled down
toward the base frequency.

Fig. 11. Applications of the slope tag. The tags for each curve (from top to bottom at t ¼ 1:5 s) are 1:<slope rate¼0.8/> -or-

0.8@t¼0 2:� � �<slope rate¼0.8/>� � �<step by¼0.1/> -or- 0.8 d0.1 3:� � �<slope rate¼0.8/> -or-

0.8@t¼0.3 4:� � �<slope rate¼0.8/>� � �<set slope¼)0.1/> -or- 0.8 )0.1.

332 G. Kochanski, C. Shih / Speech Communication 39 (2003) 311–352



Figs. 15 and 16 show Stem-ML fitting of two natural f0 contours with varying declination slopes (Shih,

2000), which can be approximated with different settings of pdroop.

Fig. 15 is a Chinese sentence with a low tone (tone 3) at 69 cs, a rising tone (tone 2) at 84 cs, followed by

10 high-level tones (tone 1). The pitch level of the high-level tones gradually declines. We capture the

Fig. 12. The slope tag: rising slopes of English coordinate structure. See the text for the tags that generate the pitch curve in solid line.

Fig. 13. Accent templates used to generate Fig. 12.
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declination curve with a step to tag to 0.8 of the pitch range and a pdroop setting of 0.6. The vertical line in

the plot marks the location of the step to tag.

Fig. 15. The pdroop tag: gradual declination with pdroop ¼ 0:6 for a series of Mandarin high-level tones. See the text for the tags that

generate the pitch curve (––).

Fig. 14. The effect of pdroop. The phrase curve is set high at t ¼ 0, and is pulled down toward the base frequency (100 Hz). The square

marks the tag position. <step to¼ 000.500 strength¼ 00300/> <set pdroop¼various/>.
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Fig. 16 has similar tonal composition as Fig. 15, but with 11 high-level tones. The high-level tones show

a steep declination slope. This is captured with a step to to 1.4 of the pitch range and a pdroop setting of 6.

Most of the Stem-ML tags are kept constant between these two examples: The tonal templates and

the strength specifications of all syllables are the same. The variations are accounted for by the difference

in pitch range, the magnitude of the step to tags, and most importantly, the variation in the pdroop settings.

4.4. The stress tag

The stress tag allows you to accent words or syllables in a very general manner. You specify three things:

the ideal �Platonic� (Plato, 366 BCE) shape of the accent, which is the shape it would have without

neighbors, and if spoken slowly. Second, you give the accent type. Finally, you specify the strength of the

accent. Strong accents tend to keep their shape; weak accents tend to be dominated by their neighbors.

Table 2 shows qualitatively how accents interact with their neighbors.

At the extremes, the accent type parameter separates accents into those where the shape (or changes in

pitch) are critical, or those where the average pitch is critical. If type ¼ 0, the shape is critical. One example

might be ‘‘the pitch drops by 50 Hz’’. At the other extreme, type ¼ 1, the shape doesn�t matter, but the
average pitch is important. An example might be ‘‘the pitch is 50 Hz above the phrase curve’’. Intermediate

types are possible, and give you accents that define both a shape and a mean pitch.

Fig. 16. The pdroop tag: steep declination with pdroop ¼ 6 for a series of Mandarin high-level tones which follow an emphasized word.

See the text for the tags that generate the pitch curve in solid line.
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4.4.1. Compromises between stress tags––1

While it is normal to write a phrase curve without conflicting requirements that would cause the system

to compromise, compromises abound when the pitch trajectory (prosody) is being calculated from stress

tags. It is easy to find situations where the speaker wants to end one accent low, yet start the next one at a

high pitch. Somehow, the accents need to be reshaped, or the pitch has to be adjusted. Stem-ML can do

either.

In the following five figures (Figs. 17–21), we explore the interaction between two nearby accents/tones.

The first is a level tone with a well-defined pitch. The second is a falling tone. We�ll see in each figure how
the pitch curves behave as we adjust the target pitch of the first tone. The first figure shows the response of a

pure falling tone: it has no preferred pitch, but has a strongly preferred shape (type ¼ 0). Each following

figure will have successively stronger pitch preferences and weaker shape preferences for the falling tone,

until in the last figure, where its shape becomes unimportant (type ¼ 1).

Fig. 17. A falling tone following a level tone. Note that the resulting pitch curves are parallel, because only the shape of the second

tone is constrained. The lowest curve runs into the system�s minimum frequency. The shapes of the stress tags are shown by the squares.

<stress strength¼ 00400 type¼ 000.800 shape¼ 00)0.1sY, 0.1sY00/>� � �<stress strength¼ 00400 type¼ 00000
shape¼ 00).2s.3,).1s.3,0s0,.1s).1,.2s).100/>. We generate level tones at different heights by varying Y from �0.1 to 0.5.

Table 2

Summary of accent interactions

Accent interactions vs.

strength and type

Type � 0 Type � 0:5 Type � 1

Strength � neighbor’s
& Strength � 1

The accent keeps its shape pre-

cisely. Neighbors will bend to

accommodate it.

The accent�s shape and mean

pitch are precisely as specified.

Neighbors must adjust.

The accent�s average pitch is

precisely controlled. Neighbors

bend or shift to accommodate

Strength � neighbor’s The shape will be a compromise

with the neighboring accents.

The neighbors will control aver-

age pitch.

The shape and mean pitch will

be similar to the tag�s specifica-
tion, but both will compromise

with the neighbors.

The average pitch will be a

compromise with the neighbor-

ing accents. The neighbors will

control the shape

Strength � neighbor’s The accent is relatively weak. The prosody will be dominated by the neighboring accents.

Strength � 1 The speaker is willing to expend substantial effort to make the sound match the template. Little

smoothing is applied to the accent.

Strength � 1 The pitch curve will be a smoothed version of the accent.

Strength � 1 This accent is unimportant. The speaker is expending minimal effort, and the pitch curve is controlled by

smoothness and continuity requirements.
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4.4.2. Compromises between stress tags––2

If we bring nearby accents together, we can get another example of compromises between tags. Note that

Stem-ML is not an additive model: the result of putting two accents on top of each other is not the sum of

the two accents. It corresponds to a single accent of the same shape and type, but twice the strength. From a

Fig. 20. With type ¼ 0:8, the second tone is primarily defined by its pitch. The shape is now relatively unimportant, but the tag still

manages to force the pitch to decline near its midpoint. When the first tone has a low pitch, the pitch curve now needs to rise strongly in

between the two tones, so that the pitch will be right at the center of the second tone.

Fig. 19. The falling tone now has a strong pitch preference. It defines both its shape and pitch quite rigidly. Note that when the

preceding level tone is low, the pitch now must increase in preparation for the second tone. <stress.../>� � �<stress type-

¼ 000.500.../>.

Fig. 18. A falling tone with a weak pitch preference following a level tone. The pitch curves start to bunch up on the falling tone, as its

pitch preference begins to be felt. <stress .../>� � �<stress type¼ 000.100.../>.
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practical TTS point of view, the system avoids putting undesirable emphasis in between two nearby accents.
Stem-ML can simulate the combination of two laryngeal gestures in (Munhall and L€oofqvist, 1992) without
the problem of a summation model. For the laryngeal opening gestures studied in that paper, simple

summation of the two gestures predicts that the larynx will be open further as the two gestures overlap. On

the contrary, they observe that the maximum opening is nearly constant, a natural result for a Stem-ML

model. Fig. 22 shows the result of two identical accents as they are brought progressively closer together

(one accent comes in from the right, the other is stationary at 0.83 s). The final, highest peak shows the two

accents sitting on top of one another.

4.5. The strength of accents

In Stem-ML, all accents have a strength parameter, which is intended to correlate with the linguistic
strength of the word. In general, strong accents will keep their shapes, while weak accents will be dominated

by their neighbors. Fig. 23 shows this effect by simulating three accents: a strong high tone, then a low

falling tone of varying strength, then a weak high tone. When the falling tone is very weak, it is completely

dominated by its neighbors, and is almost invisible. On the other hand, when it is strong, it retains its shape,

pushing down the weaker high tone.

In the next two examples, we show examples of tone interactions in actual speech data. Figs. 24 and 26

illustrate the variations in accent strength in Mandarin. The two examples are two renditions of the same

Fig. 21. In this last figure in the sequence, the second tone is defined completely by its pitch. The shape of the falling tone becomes

irrelevant for type ¼ 1.

Fig. 22. Interaction of two accents. <stress strength¼ 00400 shape¼ 00).15s0,).1s0,).05s.1,0s. 3,.05s.1,.

1s0,.15s000 type¼ 000.500/>� � �<stress strength¼ 00400 shape¼(see above) type¼ 000.500/>.
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Chinese word zang1 mao2-yi1 ‘‘dirty sweater’’, where the tonal combination is high level, rising, and high

level. The rising tone of the middle syllable may be realized weakly, as in Fig. 24, or strongly, as in Fig. 26.

The same templates are used for both examples, and are shown in Fig. 25.

The pitch discrepancies in the zang regions between natural and generated f0 in both figures are con-

sistent with the segmental effect of the phone z, an alveolar affricate, which raises f0 during the beginning
section of the vowel.

Fig. 24. Strength of accents: Mandarin example with a weak middle syllable. See the text for the tags that generate the pitch curve in

solid line.

Fig. 23. The interactions between three accents as the strength of the middle one (a low-falling tone) is varied. In the black, top-most

curve, the low-falling tone is unimportant with zero strength, and gradually assumes its ideal shape as its strength is increased from 0 to

4. Its neighbors are increasingly perturbed. <stress strength¼ 00400 type¼ 000.300 shape¼ 00-0.1s0.3,0.1s0.300/>� � �
<stress strength¼various type¼ 000.500 shape¼ 00).15s.2,).1s.2,0s0,.1s).2,.15s).200/>� � �<stress
strength¼ 002.500 type¼ 000.300 shape¼ 00)0.1s0.3,0.1s0.300/>.
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The Stem-ML tags used to generate Fig. 26 are identical to the example above, except for the strength

parameters of the syllables.

Fig. 26. Strength of accents: Mandarin example with a strong middle syllable. See the text for the tags that generate the pitch curve in

solid line.

Fig. 25. Chinese tone templates used to generate Fig. 24 as well as the models in the following Chinese examples.
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4.6. The smooth attribute: muscle response time

The final parameter critical for defining accents and their interactions is the smooth attribute, expressed

in seconds. Normally, it should be set to the time it takes the speaker to change pitch (i.e., a voluntary pitch
step in the middle of an extended vowel). Fig. 27 shows the effects of smoothing time on the same accent.

The smooth attribute varies from 0.04 to 0.2.

4.7. Adroop: pitch trajectory droops toward the phrase curve

The adroop parameter is closely analogous to pdroop, except that adroop pulls the pitch trajectory toward

the phrase curve. It allows you to limit the amount of pre-planning that Stem-ML assumes. Accents farther

than 1=adroop seconds away from a given point will have little effect on the local pitch trajectory. 8 Fig. 28

illustrates the effect of the adroop attribute.

4.8. The phrase tag: limiting pre-planning

Phrase tags mark boundaries where pre-planning stops; they are normally placed at phrase boundaries.

Stem-ML assumes that people are capable of planning their prosody a few syllables in advance of its actual

production. This pre-planning lets the speaker smoothly compromise between difficult tone combinations

and also helps him or her avoid running above or below their comfortable pitch range. Phrase tags allow

you to control the scope of advance planning.

In Fig. 29, we see how the phrase boundary tag prevents changes in the falling tone from affecting the

region before the phrase tag. The phrase boundary allows the section from 0 to 0.42 s to be controlled
exclusively by the first tag. Without the phrase tag, the entire curve would depend on the shape and size of

the falling tone. Fig. 19 shows a contrasting example where there is no phrase tag, thus the effects of the

second tone are allowed to reach well backwards.

Fig. 27. An accent with different smoothing times (increasing downward at t ¼ 0:5 s or upwards at t ¼ 0:3 s). The open squares mark

the specified shape of the accent. The curve with smooth ¼ 0:2 is substantially over-smoothed, relative to the shape of the accent. <set

smooth¼various/> <stress strength¼ 00400 shape¼ 00).15s0,).1s0,).05s.1,0s.3,.05s.1,.1s0,.15s000 type-
¼ 00.500/>.

8 Recall that Stem-ML also explicitly limits look ahead pre-planning to a single phrase, so setting adroop ¼ 0 is usually little different

from e.g., adroop ¼ 0:3.
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4.9. Jitter and jittercut: random variation

People will not say the same sentence identically in separate trials. From a TTS point of view, the jitter

and jittercut tags can be used to introduce some random variation into the pitch trajectory, so that repeated

phrases will not sound mechanically identical. The random pitch curves are 1=f noise, with a high fre-

quency cutoff set by the glottal musculature (i.e., the value of the smooth parameter is used), and a low

frequency cutoff set by the jittercut parameter. Setting jittercut to the mean word length will give you
random accents inside of words, but little variation on the scale of a phrase. On the other hand, setting

jittercut to the phrase length will give you a random phrase curve, with relatively little variation inside

words (see Fig. 30).

4.10. The add attribute

The most noticeable effect of the add setting is that it controls how the f0 excursion of an accent changes,
depending on the phrase curve. For small add < 1, a given stress tag will make a larger f0 change if it rides
on top of a high area of the phrase curve than in a low region. For add ¼ 1, the size of an accent (measured
as f0, not perceptually), is independent of the value of the phrase curve.

Fig. 28. Effect of the adroop tag. Here, the pitch curve is a constant 100 Hz. The squares show the accent�s defined shape. <set

adroop¼various/> <set smooth¼ 00.0800/> <step to¼ 00000 strength¼ 00300/>� � �<stress shape¼ 00).1s0,).05s0,
.05s.3,.1s.300 strength¼ 00300 type¼ 00.500/>.

Fig. 29. Effect of a phrase tag. The phrase tag acts as a one-way wall, allowing tags before it to affect the future, but preventing future

tags from affecting the past. This figure shows a level tone, a phrase boundary, followed by a tone of varying amplitude. The region

before 0.42 s is completely unaffected by changes in the falling tone. <stress strength¼ 00400 type¼ 000.800
shape¼ 00)0.1s0.3,0.1s0.300/> � � �<phrase>� � �<stress strength¼ 00400 type¼ 000.100 shape¼various/>.
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This effect can be seen in Fig. 31, which shows three pairs of pitch trajectories, with different values of the
add parameter. Each pair displays the effect of identical accents: one member of the pair has the accents on

top of a phrase curve, the other member just shows the phrase curve. The top pair assumes add ¼ 0, to give

a logarithmic relationship between frequency and perceived pitch: when we command the system to provide

a uniform slope in pitch, the frequency increases faster than linearly. As a consequence, small accents that

ride on top of a high phrase curve give larger frequency excursions. The bottom pair assumes add ¼ 1, so

that f ðxÞ ¼ x, and the frequency increases linearly. In this case, the size of the accents is independent of

their position on the phrase curve.

We can see how the add attribute can describe what is important in speech communication by showing
three examples:

First, if perceptual effects are most important, and one�s model of pitch generation assumes that the

speaker adjusts accent sizes so that they sound ‘‘equivalent’’, it may be appropriate to compare a pitch

change to the smallest detectable frequency change (DL). 9 These DL values increase with frequency, and

Fig. 30. Random pitch trajectories from jittercut ¼ 0:1 s, 0.3 s, 1 s (from bottom to top). The curves are vertically shifted for display

clarity. <set jitter¼ 000.100 jittercut¼various/>.

Fig. 31. Pitch trajectories with different values of add ¼ 0 (top), 0.5 (middle), 1 (bottom). We show each value both with and without a

pair of identical stress tags. <set add¼various/>� � �<slope rate¼ 00100/>, with or without a pair of <stress

strength¼ 00300 type¼ 000.500 shape¼ 00)0.1s0,0.05s0,0s0.1,0.05s0,0.1s000/> tags.

9 This is the frequency difference limen (DL), loosely called the ‘‘just noticeable difference’’ (JND). It is measured by comparing the

pitch of pairs of tone bursts. See Moore (1989, pp. 158ff).
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Wier et al. (1977) have fit their frequency dependence as DL / eðf
1=2Þ, where f is the pitch. In our model

here, such a dependence corresponds to some relationship between accent strength and frequency that is

intermediate between linear and exponential, roughly, add ¼ 0:5.
As a second example, if the speaker does not adapt him/herself for the listener�s convenience, one could

get values of add > 1. For instance, if muscle tensions are assumed to add, f0 � tension1=2 and add � 2.

As a final example, Fujisaki has used a logarithmic scale for f0 contours, based on a model where muscle
extensions are specified by neural control signals, combined with a vocal fold stiffness that increases ex-

ponentially with extension. Such behavior corresponds to add ¼ 0 in our model.

5. Using Stem-ML to build a model of intonation

Stem-ML is designed to be flexible and theory neutral. A consequence of this design is that there are very

few inherent constraints that restrict the usage and the combination of Stem-ML tags. The same pitch

contour can often be approximated many different ways, using different sets of tags, some of which may

well be linguistically unreasonable.

Stem-ML can be theory neutral because it is an over-complete representation of f0. Because there are
many ways to use Stem-ML to represent a given pitch curve, many different theories of prosody can be

mapped onto Stem-ML. This means that one must define a language-specific layer on top of Stem-ML. For

instance, one must decide whether or not to use a phrase curve, and decide whether accents are best as-

sociated with words or syllables, among other choices. If one does not restrict Stem-ML�s flexibility, there

Fig. 32. Alternative tag set for Fig. 15. The large value of pdroop suggests a steep decline. The usage is problematic since the data

clearly suggests a gradual declination slope.
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will be many equivalently good representations of any given utterance, and further analysis may become

impractical.

5.1. Multiple interpretations of data

One must be careful if one uses automated methods to learn Stem-ML tags. To illustrate the potential

pitfalls, we show in Fig. 32 how one of the earlier examples (Fig. 15) can be accounted for by a totally

different combination of Stem-ML tags with a pdroop value of 8 s�1, which could suggest a very steep

declination rate. To avoid venturing too far into the wrong track, any model building has to be constrained

to be consistent across a reasonable variety of data. Lessons learned from controlled experiments may help
us to find the right model, especially if one can link parameter variations to experimental conditions.

Evaluating results on a separate set of data helps to avoid over-fitting problems.

5.2. Language-specific constraints on Stem-ML

An example of a set of language-specific set of constraints on Stem-ML which was successfully used in
automatic fitting of Mandarin (Kochanski et al., 2001; Kochanski and Shih, 2001), we use the following

rules:

• Just five templates (tones 1–4 and a neutral tone) generate all surface tone shapes. The templates are

stretched (in time) and scaled (in pitch) for each syllable.

• Pitch scaling of templates and Stem-ML strength are controlled by the same parameter. Thus, we assume
that as syllables become stronger they are both articulated more carefully and expressed with a wider

pitch range.
• Syllable strengths are derived from a word-strength and a metrical pattern for the word. Words with the

same number of syllables share the same metrical pattern.

• Stem-ML phrase tags were placed at each pause of 150 ms or more.

• Phrase curves are straight line and shared.

• All utterances share the same Stem-ML smooth, range, and base parameters.

If Stem-ML is to be used for human labeling of speech, one must create labeling standards equivalent to

the ToBI annotation rules (Beckman and Ayers, 1997). The standards must specify what tags (or combi-
nation of tags) can be used in what circumstances. If these standards are designed properly, they can

eliminate ambiguity without seriously compromising Stem-ML�s ability to represent the pitch contour.

These rules or standards then become part of the complete language model that connects linguistic an-

notations to acoustic data.

5.3. Example of building a language model

As a concrete example of how one might model a language, we will describe a simple model of a small

corpus of Mandarin Chinese words, similar to that described in (Kochanski and Shih, 2000).

The first step in building the language model is deciding how to represent the relevant linguistic features.

In this case, there are relatively few options: Mandarin is known to be a tonal language, with tones as-

sociated with syllables. We choose to model tones with stress tags, associating one per syllable. There are

four classes of stress tags, one for each tone.

In order to keep the model as simple as possible, we will assume that each stress tag is generated by
stretching a corresponding template so the length of the template is proportional to the length of the
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syllable. 10 The assumption of four tone templates is crucial, as it allows a very compact representation of

the language, since the tone shapes only have to be specified once, not once for each syllable. Tag stretching

is defined by two parameters per tone class, one for the length of the tag relative to the syllable and one for

an offset between the syllable center and the template center. The shape of the template is defined by five
parameters per tone class. A more detailed description of shape seems unnecessary, based on an inspection

of the data. We also allocate two parameters per tone class to scale and shift (in pitch) tone templates as a

function of strength.

We put free parameters on the add, smooth, base, adroop and pdroop settings, for a total of five para-

meters. These are constant across all utterances, and characterize things like the speaker�s mean f0, typical
declination rate and muscle response time.

In this example, we allow each utterance to have its own straight-line phrase curve, accounting for two

parameters per utterance. The phrase curves are implemented with step to and slope tags. These phrase
curves were intended to capture any systematic declination in the pitch.

Finally, each syllable has a parameter that sets the strength of the associated stress tag. In a larger

database, these strength parameters would be the most numerous parameters, and also the most important,

because they would be the only ones which could capture local prosodic effects. In this small database, the

situation is less clear cut because there are about as many parameters that define the tone shapes (44) as

parameters that set the strength of individual tones (38).

The data was obtained from a female native Mandarin speaker. 11 Utterances were isolated one and two

syllable words, spoken in a laboratory setting. We estimated f0 with the get_f0 program of ESPS/Waves
(Talkin and Lin, 1996), and manually checked for voicing errors and locations where f0 might be estimated
incorrectly. Next, we fit the model to the data by varying the model�s parameters to minimize the RMS

error between the data and the model, evaluated over voiced regions. We used the optimizer that was used

in (Tyson et al., 1998).

In unvoiced regions, the data do not constrain f �
0 . This lack of glottal oscillation does not imply that

f �
0 ¼ 0, it merely means that the amplitude of oscillation is zero. Specifically, the vocal folds can be tensed

and ready to vibrate, even in unvoiced regions. Unvoiced regions can be generated without changing vocal

fold tension, by reducing the subglottal pressure, by pressing the folds together, by holding them wide
apart, or by closing the upper vocal tract. When we fit models to data, we constrain the models only with

the voiced regions, leaving f �
0 in the unvoiced regions free.

The resulting fit is shown in Fig. 33. The entire corpus is shown. The 3–3 combination is absent due to

tone sandhi (Shih, 1986).

A discussion of the resulting parameter values is not really valuable, since the database is so small.

Instead, we refer readers to Kochanski et al. (2001) and Kochanski and Shih (2001) for a detailed analysis

of a larger corpus. However, we will note two effects that are characteristic of Stem-ML models:

• The average pitch of tones depends on their context. This occurs because the tones need to maintain

their shape (at least approximately), and because they need to make smooth connections to their neigh-

bors (because of muscle physiology). This effect can be seen in the average height of tone 4, especially

comparing the isolated tone to the (4,1) pair. Likewise, tone 1 gets pushed down when preceded by a

tone 4.

• Coarticulation effects can substantially distort tone shapes. Note, for instance, the compression of the

pitch range of tone 2 in the (4,2) pair relative to isolated examples. Similarly, the ‘‘high-level’’ tone 1

can become significantly tilted in the (4,1) or (2,1) pairs.

10 The template is stretched to cover the entire syllable, including unvoiced consonants.
11 C. Shih, one of the authors. Data was recorded in 1997, well in advance of any work on this model.
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Appendix A. Tag definitions

We will specify tags in XML format here. In this description, literal strings are quoted, then (following

regular expression notation), �?� marks optional tokens, �*� marks zero or more occurrences of a token, and

�þ� marks one or more occurrences. Options are shown with �j�, and parentheses and newlines are used for

grouping. Tags are defined in the XML namespace http://prosody.multimedia.bell-labs.com. See http://
www.w3.org/XML for information describing XML, including namespaces. Other information on Stem-

ML may be found at http://prosody.multimedia.bell-labs.com.

A.1. Tag grammar

Tag¼ 00<00 tagname AttValue* 00/>00
Example:

<set base¼ 0020000/>
# Set base frequency to 200 Hz.

Each tag is composed of two parts: a tag name, and a set of attribute-value pairs that control the details
of what happens. All of the tags are �point� tags, which are self-closing. We implement Stem-ML with point

Fig. 33. Data vs. Stem-ML model for a small Mandarin corpus. Syllable centers are marked with vertical dashed lines, and the

numbers in outline font identify the tones. The top row and leftmost column show isolated single syllables, while the remainder of

the figure shows two syllable utterances. The modeled f0 curves are all derived from the same four Stem-ML templates. Note that the

model captures much of the coarticulation between tones: see for instance the change in tone 4�s mean f0 from an isolated tone to the

4,1 tone pair.
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tags to allow it to mix better with other mark-up information. Non-self-closing tags must be properly

nested in XML, and it is not obvious that prosodic markup would nest well with syntactic or semantic
markup.

Tagname¼ 00set00 | 00step00 | 00slope00 | 00stress00 | 00phrase00
Lists of legal attributes can be found in Sections 3.1–3.5.

The shape attribute of the stress tag has a fairly complex syntax. You specify the shape of a template as a

set of (time, pitch) points.

Shape¼shape_from_points,

Shape_from_points¼(point 00,00)* point

A point in the shape argument of the stress tag follows the syntax:
point¼float ( 00s00 | 00m00 | 00p00 | 00y00 | 00w00 ) value.

It specifies a point on the accent curve as a (time, frequency) pair (frequency is expressed as a fraction of the

speaker�s range). Time is measured in seconds (s), milliseconds (m), phonemes (p), syllables (y), or words

(w). One does not need to specify the accent curves too finely, as the resulting pitch curve will be smooth.

Fig. 34 shows an example.

Stem-ML doesn�t restrict itself to predicting f �
0 . Many values can be vector quantities, with components

corresponding to amplitude, glottalization, face motions, or whatnot.

value¼float | ( float letter )+

mvalue¼float | ( float letter letter )+

The letter in a value tells you what component of prosody it is associated with, if you are controlling more

than one component of prosody (e.g., f �
0 and eyebrow position). The two letters in an mvalue correspond

to two indices in a matrix mapping from perceptual parameters (e.g., �emphasis�) to observable output

values (e.g., �f �
0 � or �subglottal pressure�) (see Section 2.4). A value or mvalue can be a single float, for a

simple system that predicts one-component prosody, like pitch.

A.2. Tag grammar: motions

In most TTS implementations, the binary equivalent of Stem-ML tags are inserted, in the appropriate

places, into a memory structure that describes the utterance. The tags are built and inserted by the linguistic

modeling component of the TTS system, based on lexical properties and syntactic information. However, if

Stem-ML is used on a serial data stream, it is convenient to place tags between words, and shift the accents

into the correct position. Stem-ML allows that with the move attribute, which is legal as part of all tags.

AttValue¼position | other_attributes

position¼ 00move00 00|00 motion+

Fig. 34. Sample stress tag and resulting pitch trajectory.
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motion¼(float | 00b00 | 00c00 | 00e00) (00r00 | 00w00 | 00y00 | 00p00 | 00m00 | 00s00) | 00*00
The system evaluates motions in a left-to-right order. The position is modeled as a cursor that starts at the

beginning of the first phoneme following the tag. 12 You can specify motions in units of phrases (r), words

(w), syllables (y), phonemes (p), milliseconds (m), or seconds (s). Phrases and words can be useful units if
the tags are congregated at the beginnings of phrases.

• Motions specified in phrases skip over any pauses between phrases.

• Motions specified in words skip over any pauses between words.

• Moves specified in syllables treat a pause as 1 syllable.

• Motions specified in phonemes treat a pause as 1 phoneme.

• Using a �b�, �c� or �e� as a motion will move the cursor to the nearest beginning, center or end of a phrase,
word, syllable or phoneme. The notation move¼ 00er00 is a convenient way to place a tag at the end of a
phrase (e.g., for a boundary tone).

• Moves specified in seconds just move the cursor that number of seconds.

• The motion ‘‘*’’ (stressed) moves to the center of the next stressed syllable.

• If two tags are moved to the same position, the tags are evaluated in order of their appearance in the

input text.

Negative moves are allowed, but the cursor cannot be moved out of the phrase. 13

Example:
<step move¼ 00*0.5y00 by¼ 00100/>
# Put a step in the pitch curve, with the steepest part of the step 0.5 syllable

after the center of the first stressed syllable after the tag.
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