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Abstract. This paper presents a mathematical description of style in speech and singing. These styles are repre-
sented as a set of portable prosodic features along with a set of rules to choose where the features are to be applied.
Speakers and singers make creative choices to express their personal style, which may involve specific phrase
curve, accent shape, or, similarly, musical embellishment. Therefore a quantitative model of style needs to support
unconstrained accent and phrase curve description, and to solve potential conflicts that arise from this freedom. Our
current implementation modifies two acoustic parameters: f0 and amplitude. We use an articulator-based model,
Stem-ML, to resolve conflicts between intended accents or embellishments and their environment. We present
several examples to illustrate the modeling of accents and phrase curves, as well as the usefulness of style/content
separation, and the similarity between speech and music.
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1. Introduction

The sense of a style can be expressed in terms of recur-
rent, salient features. These salient features are often
rare relative to a random sampling of speech or song, or
are distributed in atypical patterns. The features are not
normally placed arbitrarily, but instead have a close re-
lationship to the underlying content and structure. This
relationship can be expressed by saying there are a set
of rules which specify where to place the salient fea-
tures, given the underlying content and structure.

Matching a style does not require everything to be
similar, only the salient features and their patterns of
use. For instance, an impersonator or comedian can
deliver a stunning performance by dramatizing the most
salient features of a politician’s speaking style without
actually duplicating the speech of the person he/she is
impersonating.

The feature/location description of style we adopt
here is similar to that presented in Bloch (1953), and
is applicable to a broad range of speech, art and music.
For example, story-telling styles can be described at a
high level in terms of features and location rules:

One stylistic device in this tale, employed as a con-
nective between the episodes . . . is the direct ques-
tion addressed to the audience . . . (Dorson, 1960)

Here we have a style defined by a feature (“direct
question”) and the location (“connective between the
episodes”). Or, describing a style at a more detailed,
phonetic level:

The humor of dialect is present throughout. In-
stances are the use of aspirated h’s before conso-
nants, . . . (Dorson, 1960).

Prosodically, much of the style of a speaker can be
expressed in terms of features in f0, amplitude, spectral
tilt, and duration (Murray and Arnott, 1993; Higuchi
et al., 1997; Schroder, 2001). In this paper, we are con-
cerned with low-level prosodic styles that can be imple-
mented fairly directly in terms of acoustic parameters
such as f0 and amplitude. For example, for speech, this
paper discusses the detailed rendition of the intonation
of a phrase after the words have been chosen. For mu-
sic, we model performance factors that are not part of
the musical score.
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We treat prosody and music together because it is
desirable to have a unified model. The existence of
intermediate vocal forms between speech and singing
implies that speech, singing, and intermediate forms
should all be treated by variants of the same model.
Pragmatically, a unified model also allows us to model
both speech and singing using the same algorithms and
similar parameters. It also allows us to model mixtures
of song and speech.

Our goal is to present some techniques that pro-
vide a mathematical description of style in speech and
singing. The techniques allow us to separate recurrent,
salient features that define a style from the textual con-
tent, and then later to place them where needed when
speech or song is synthesized.

Expression of style is a creative process where speak-
ers and singers introduce a wide range of individualized
prosodic modifications. We find it useful to have mod-
eling support for both local and global style features.
We review and discuss the prosody representation is-
sues in Section 2.

The prosodic model needs to have the flexibility to
handle unconstrained style variations, and must resolve
any potential conflicts. We discuss the mathematical
basis of the model in Section 3, where we allow un-
constrained representation of accent and phrase curve,
and resolve potential conflicts with an articulatory-
based model. Some of the salient features are local,
which we will capture with the Stem-ML stress tag
(Section 3.2). Some other features involve changes over
a broad scope, such as an entire phrase of speech, which
we capture with the Stem-ML step to tag. We then fol-
low with case studies presented in Section 4.

The generated f0 and amplitude contours are used in
a text-to-speech system to synthesize speech and songs.
In the current implementation, amplitude modulation
is applied at the output of the TTS system.

2. Strategies for Representing Intonation

In both singing and speech, there are strong arguments
for representing pitch as a set of accents or embellish-
ments that can be placed in arbitrary combinations on
top of a background. In music, we treat the score as
one component, and embellishments as another. Thus,
a performance is treated as beginning with a mechani-
cal, precise, naı̈ve interpretation of the score, which is
then transformed to a professional, artistic performance
by adding embellishments and adjusting duration. In

speech, we treat the phrase curve as one component,
and accents as another. The phrase curve describes the
larger structures, and depends primarily on how the text
is broken up into phrases by pauses, while accents are
associated with particular words. We draw an analogy
between speech and music by modeling musical em-
bellishments in the same way as accents in speech, and
treating the phrase curve in the same way as the me-
chanical melody derived directly from a musical score.
In both music and speech, we wish to be able to describe
enough detail to convey performance styles.

Figure 1 shows the f0 trace of phrases from the
speech “I have a dream” delivered by Martin Luther
King Jr. A dramatic pitch rise consistently marks the
beginning of the phrase and an equally dramatic pitch
fall marks the end. The middle section of the phrase is
sustained on a high pitch level. We suggest that the gen-
eral shape of this phrase curve is the signature style of
Martin Luther King. The pitch profile is found in many
phrases in the speech, even though the phrases differ in
textual content, syntactic structure, and length. On top
of the phrase curve, one can identify the pitch move-
ment due to accents associated with words. To capture
the details it is desirable to recognize both the phrasal
and accent components and model them accordingly.

Fujisaki’s model (Fujisaki, 1983, 1988) treats sur-
face sentence intonation as the combination of two
components: phrase commands and accent commands.
These commands are filtered by the muscle’s time re-
sponse (which is assumed to be a time-independent
kernel), and added in the log scale to yield the surface
pitch trajectory. His phrase command is modeled after
the phenomenon of declination, which is most suitable
for declarative sentences. To describe a phrase curve
that deviates from the declination shape, one needs to
use extra pulses that are not easily linked to linguis-
tic attributes. Later models such as that of van Santen
and Möbius (2000) also have a rigid view of the phrase
curve, allowing few possibilities for the shape of phrase
curve in the implementation. We see a need to develop
this idea further, both to include the capability to im-
plement unrestricted variations of the phrase curves in
speech, and to describe music scores.

In contrast to the above models which build an
f0 curve by superimposing multiple components, there
is also a tradition of single-component models for f0

(Liberman and Pierrehumbert, 1984; Hirst et al., 2000;
Taylor, 2000) that do not decompose it into phrase
curves and accents. Under this view, all pitch move-
ment in a sentence is accounted for by a linear string of
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On the red hills of Georgia.and live out the true meaning of its creed.

Figure 1. Phrasal f0 profiles from the speech of Martin Luther King Jr.

accents. Pitch movement as shown in Fig. 1 will then
be represented in the standard ToBI transcription con-
vention (Silverman et al., 1992; Beckman and Ayers,
1997) as having a strong rising accent (L*+H) near
the beginning, a strong falling accent (H*+L) near the
end, followed by a phrase accent (L−) and a boundary
tone (L%). This transcription assumes that all medial
words are de-accented, and the high pitch plateau is a
result of pitch interpolation. This is fine as a first ap-
proximation, but one can hear pitch movements in this
section which are due to word accents, and these word
accents cannot be captured in a ToBI transcription that
shows the phrasal structure. We note that ToBI doesn’t
begin to provide a useful transcription of music.

Multi-component modeling of music is valuable be-
cause it allows us to capture the transient nature of
embellishments, adding, deleting, and moving them in-
dependently of the musical scores. One may argue that
embellishment can be expanded and written into music
scores, therefore rendering the two components as one,
but once a embellishment is turned into a sequence of
notes, one loses the distinction between melody and
embellishment. This restricts the ability to change per-
formance styles.

The need for multi-component modeling for speech
is accepted by some recent works that incorporate pitch
range modeling into the ToBI framework (Jilka et al.,
1999; Möhler and Mayer, 2001), by relaxing the strictly
linear sequence view of intonation modeling. There are

implementation constraints in these works, allowing
only uniform compression or expansion of the pitch
range across the whole intonation phrase. This kind of
approach will not work cleanly for King’s speech, as
the wide swings of the rise and fall at the edges of a
phrase are closely related to the compressed pitch range
in the center of each phrase.

If we set our goal to be capturing personal styles
by modeling music embellishment and speech accents,
traditional techniques of accent modeling using a fixed
inventory of pre-defined accents (Anderson et al., 1984;
Jilka et al., 1999) will not be sufficient. So, we propose
a model where there is no restriction on accent shape,
and allow the user to define accent shapes as they see fit.

Unrestricted accent shapes, combined with the pos-
sibility that accents can be placed anywhere opens up
the possibility of conflicting requests. What would hap-
pen if at a given time, one accent wants to be high
and its neighbor wants to be low? What if accents
overlap?

In the following sections, we first explain how to
describe prosodic features with Stem-ML, a prosody
description language that offers the flexibility needed
to control accent shapes, phrasal pitch contours and
amplitude profiles. We explain the mathematical basis
of resolving accent conflicts. We then show examples
of how to use Stem-ML on speech and music.

We start by describing a phrase from Dinah Shore’s
singing to illustrate the procedure of annotation,
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automatic fitting and generation. We then discuss the
modeling of amplitude profile, phrase curve, and ac-
cents. Similar features can be used to support other
stylistic variations and emotional speech (Monaghan
and Ladd, 1991; Abe, 1997; Cahn, 1998). Our singing
synthesis focuses on style and performance rules rather
than on voice quality (Bennett and Rodet, 1991; Cook,
1991; Macon et al., 1997). Note that this paper is an
expanded version of Shih and Kochanski (2001).

3. Describing Prosody with Stem-ML

In this paper, the control of pitch and amplitude in
speech and song is achieved by using Stem-ML tags
(Soft TEMplate Mark-up Language) (Kochanski and
Shih, 2000, 2003; Kochanski et al., 2003). Stem-ML
provides prosody mark-up tags that can be correlated
with linguistic features, and which have approximately
local effects on acoustic parameters. The tags are math-
ematically defined, along with an algorithm for trans-
lating tags into quantitative prosody. The system is de-
signed to be language independent, and furthermore, it
can be used effectively for both speech and music.

3.1. Background

We rely heavily on two of the Stem-ML features to de-
scribe styles in this paper. First, Stem-ML allows the
separation of local (accent templates) and non-local
(phrasal) components of intonation. One of the phrase
level tags, step to (�), sets the pitch to a specified
value (interpolating between step to tags, as needed).
When it is described by a sequence of step to tags, the
phrase curve is a piece-wise linear function. We use this
method to describe both Martin Luther King’s phrase
curve, and notes in music.

Secondly, Stem-ML separates the placement of ac-
cents from their detailed shape. Any accent template
can be inserted at any point, without much considera-
tion of the environment, because Stem-ML calculates
coarticulation effects between neighboring accents and
between accents and the phrase curve. This feature
gives users the freedom to write templates to describe
accent shapes of different languages as well as vari-
ations within the same language. We write speaker-
specific accent templates for speech, and embellish-
ment templates for music. Additionally, it allows the
heuristic rules for accent placement to be simple and
clean, because the rules do not have to work around

limitations concerning which accents can follow what.
From a linguistic point of view, the flexibility of the
phonetics allows for a simpler phonology.

Some combinations of accent and embellishment
templates may conflict or be impossibly difficult to
realize precisely; Stem-ML accepts conflicting spec-
ifications and returns a smooth surface realization that
best satisfies all constraints.

The muscle motions that control prosody are smooth
(i.e., they have finite first and second time derivatives)
because muscles are physical objects and cannot accel-
erate instantaneously (cf. Huxley, 1957). We observe
that when a section of speech material is unimportant,
the speaker may not expend much effort to realize the
targets (Lindblom, 1963; Shih and Kochanski, 2000).
In general, the speaker is simultaneously trying to do
several incompatible things: He wants to carefully pro-
duce the correct pitch contour so that the listener will
understand. He is forced (by his own muscles) to gener-
ate a smooth pitch contour. Finally, he generally wants
to execute the speech with minimum effort. Our model
recognizes that sometimes one goal wins, sometimes
the other, depending on the relative importance of the
goals, but typically the result is a compromise. Loosely
speaking, we assume that the speaker balances the ef-
fort required to speak against the possibility of being
misunderstood.

3.2. Mathematical Definition

We start out by assuming that speakers and singers have
in their mind a set of ideal targets which they are trying
to communicate to the listeners. Some of these targets
may correspond to local movements such as tones, ac-
cents, or music embellishments, and some to non-local
movements such as phrase curves and musical scores.

Local movements typically have clear linguistics
functions. We describe them with the Stem-ML stress
tag. The stress tag specifies the accent component, and
it normally corresponds to a syllable or a word; the
phrase curve is specified by several step to tags. The
most important attribute of the stress tag is the shape
template, which draws the ideal shape of an accent. The
stress tag can define the pitch at one or more points,
and so can be used to implement slopes, peaks, or val-
leys, in addition (or instead of) specifying a particular
pitch at a particular time. The stress tag has other at-
tributes to be explained momentarily, such as strength,
type and atype, that control the way the specified shape
is realized in different environments.
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In this work, each pitch target, yi , consist of an accent
component (embellishment) added to the underlying
phrase curve (musical score):

yi = P + Yi · atypei · si
|atypei | (1)

where P is the phrase curve, Yi is the shape of the
i th accent, and atype · si

|atype| is a scale factor on the i th
accent’s pitch range, which normally expands the range
of high strength accents. We assume that the atype pa-
rameter is shared amongst all instances of a particular
accent (embellishment); it controls how the pitch range
of the template scales with the tag’s strength (Eq. (1)).
Note that yi and P and Yi are all functions of time, and
we have suppressed the t subscript, for clarity. P is de-
fined across the entire phrase, but yi and Yi are defined
only over the scope of the tag.

These targets are subject to performance constraints
during production. We can represent the surface re-
alization of prosody as the solution to an optimization
problem, minimizing the sum of two functions: a phys-
iological constraint G, which forces the pitch curve to
be smooth, and a communication constraint R which
is the sum of errors ri between the pitch and the pitch
target (yi ) for each tag:

G =
∑

t

ṗ2
t + (πτ/2)2 p̈2

t (2)

The “effort” term, which, when the sum is minimized,
forces the solution to be smooth and continuous.

R =
∑

i∈tags

s2
i ri (3)

The “error” term. This is a weighted sum of template-
by-template errors.

ri =
∑

t∈tagi

α((pt − p̄i )− (yi,t − ȳi ))
2 +β( p̄i − ȳi )

2 (4)

The error in template i; this drives the pitch, p, to be
close to the target, y.

The errors are weighted by the strength, si , of each
stress tag, which indicates how important it is to satisfy
the specifications of the tag. We do not claim that G
provides a detailed representation of muscle behavior,
but it captures the damped mass-and-spring dynamics
of real muscles, and provides results similar to the clas-
sic Hill (1938) model of muscle behavior.

If the strength of a tag is low, the physiological con-
straint dominates, and smoothness is more important

than accuracy. Each tag’s strength controls the interac-
tion of accent tags with their neighbors by way of the
smoothness requirement, G. Stronger tags are realized
more accurately and also exert more influence on their
neighbors.

Stress tags also have a parameter which controls
whether errors in the shape or average value of the
pitch relative to the target is more important. (This is
the Stem-ML type parameter.) We write this parameter
as α = cos(type · π/2) and β = sin(type · π/2), so
α2 + β2 = 1.

In Eqs. (2) to (4) above, pt is the normalized pitch at
time t , that is, the pitch relative to the speaker’s normal
range. Also, p̄i is the average of p over the scope of
tag i , and ȳi is the average of yi over its scope.

For the speech modeling, we simply scale p to
get f0: f0 = p · range + base, where range and base
are speaker-dependent constants that give the normal
range of f0 variation and the speaker’s typical f0. For
the singing examples, we use an exponential scaling to
make defining the phrase curve (i.e., the notes) more
convenient: f0 = 2(p/12) · base. The range of f0 in the
examples presented here is small enough so that the
two representations are not too different.

3.3. Notation

Local movements such as accents, tones, and musical
embellishments are described by Stem-ML shape tem-
plates in the stress tags. In this paper, we define and use
bow-tie (��), wiggle (≈), rise (
), fall (�) and droop
(�) shapes. Each shape is specified as line segments
connecting a set of points [(x1, y1), (x2, y2), . . .], and
α (see Eq. (4)). The subscript in shapestrength specifies
the strength of the tag, which is the si in Eqs. (1) and (3).
These can be used to describe word accents in speech
and embellishment in singing. Each tag has a scope
(over time), and while it can strongly affect the prosodic
features inside its scope, it has a decreasing effect as
one goes farther outside its scope. In Sections 4.1, 4.2,
and 4.4, we explore several examples where local f0

or amplitude modification is controlled by Stem-ML
shape templates.

Non-local movements, including musical notes and
phrase curve, are controlled by Stem-ML step to
tags (�), such that �value pins the phrase curve to
value at the time of the tag, and the pitch will follow.
Section 4.3 shows an example describing larger scope
features such as a phrase curve with Stem-ML step to
tags.
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4. Examples

In this section, we give several examples illustrating
the use of Stem-ML.

4.1. Musical Embellishments—Changing Pitch

We use Stem-ML in two directions, both to evaluate
prosody from tags and, in reverse, to deduce the val-
ues of numerical parameters of tags from the data. The
Stem-ML evaluation component takes tag and attribute
values as input and generates time series data such as f0

or an amplitude curve. The Stem-ML optimizer takes
data and partial tag annotation as input, and it finds the
best description of the data in terms of the tags’ param-
eters. One feeds it Stem-ML tags with free parameters
(e.g., a tag with an undetermined strength attribute),
and it finds the values of the parameters that lead to the
best fit to the data. We show here how this works with a
single phrase from Dinah Shore’s rendition of A Bicycle
Built for Two, originally written by Dacre (1892).

This song is historically important in the text-to-
speech synthesis tradition (Olive, 1998). John Kelly
and colleagues at Bell Labs synthesized A Bicycle Built
for Two in the early 1960’s (Mathews, 1963). It was
the first computer synthesized song. The work was the
inspiration behind the movie 2001: A Space Odyssey
(Kubrick, 1968), where the rebellious computer HAL
was singing this song as he was being disconnected,
claiming (historically correctly) that this is the first
song his master taught him. We chose Dinah Shore’s

Figure 2. A musical phrase and its score.

recording because she gave several variations of the
same song, with light accompaniment, so that f0 and
amplitude could be reliably extracted.

Musical scores do not completely specify the sound,
in the sense that performers may have very different
renditions based on the same scores. We make use of
the musical structures and phrasing notation to insert
embellishments (Garretson, 1993) and to implement
performance rules, which include the default rhyth-
mic pattern, retard, and duration adjustment (Sundberg
et al., 1983; Friberg, 1995).

Indeed, real performances may differ enough from
a naı̈ve, mechanical interpretation of the score so that
even the identification of a note with a particular time
interval may be ambiguous or difficult. For example,
in Fig. 2, none of the musical notes fall on expected
frequencies, neither do they show step-like frequency
jumps as implied by the musical score, despite the fact
that the performance is pleasant and sounds in tune.

Given a song and the corresponding musical score,
we manually annotate notes and their locations as
shown in Fig. 2. We place the note boundaries close
to the beginning of voicing onset, therefore the half
note D is annotated as being shorter than one would
expect from the music, because it begins with a voice-
less consonant cluster st. This definition of note bound-
ary works better with embellishment fitting and allows
us to align the glide-up embellishment (
) with the
beginning of the note.

In Stem-ML models, musical notes are treated analo-
gously to the phrase curve in speech: both are built with
step to tags. For music, the Stem-ML pitch range is set
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Figure 3. The difference between singing performance and the musical score.

to be an octave and we use an exponential mapping be-
tween the Stem-ML strength values and f0. Note that
the pitch range doesn’t limit the pitch: It merely sets
the scaling.

We use the Stem-ML optimizer to find the base fre-
quency, so that we can identify the key and the tun-
ing. With base frequency known, we can then draw
in the un-embellished notes (derived directly from the
musical score), study the differences between the per-
formance and the scores, and classify the differences
into embellishments. Figure 3 plots the f0 curve of the
singing performance in solid lines, and the notes in the
score as dashed lines.

We marked locations where a note glides up with 

and when a note glides down, we marked �. The wiggle
shape, perhaps the perceptually most obvious feature,
is marked with ≈, and occurs near 2.2 seconds in Figs. 2
and 3. We avoid conventional terms for these embellish-
ments, because we wish to avoid the rigid definitions
of musical ornaments. For instance, the wiggle shape is
similar to a classical inverted mordent, but without any
particular intervals, and it can have freer movement.
The pitch undulation on the last note (G) is a vibrato.
We handled vibrato separately in our song program,
because the neural and physiological mechanisms may
be different, so we did not annotate it for the fitting.

Given f0 and annotations expressed in Stem-ML
tags, we again use the optimizer to fit parameter val-
ues of shapes and strengths that best describe the ob-
served f0. We fixed the strength value of the musical
step to notes to 8. This large value helps to maintain

≈ � �

*

*

* *

*

*

*

*

Figure 4. Best-fit shapes of the musical embellishments.

the specified frequency as the tags pass through the
prosody evaluation component. We obtained from the
fitting process the best shape for each of the abstract
embellishment categories ≈, 
, � (Fig. 4), along with
the strength values of each instance (Fig. 5). From these
annotations, including musical notes, embellishment
types and fitted strength values, Stem-ML generated
the f0 curve shown in Fig. 5.

The training cleanly separates the melodic compo-
nent of the song from the embellishments, resulting
in tags that describe portable embellishments that can
be moved around and used as building blocks of new
renditions. For instance, by moving ≈ from marriage
to can’t, we generate a different rendition of the same
musical phrase as shown in Fig. 6.

We can follow this method to build a library of musi-
cal embellishments. With such a library, we can change
embellishments, shift the embellishments to different
locations, or change their strengths to write the song in
a different style. Currently, embellishment placement
is handled by heuristic rules. For example, ≈ is used
by Dinah Shore on an accented syllable with a strong
beat, in a sequence of phrase final descending notes.
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Figure 5. Embellishments with fitted strength values, and the resulting generated f0 curve.

Figure 6. Moving embellishment around to generate a different performance.

Changing these rules is part of changing the musical
style.

When deciding where to place an embellishment,
one should follow musical conventions as well as
reflecting a personal style. For instance, placing an
embellishment on any note gives a melody that can
be sung and sounds ‘natural’, but many choices do
not make good music. This is not unexpected, because
Stem-ML models the low level physiological interac-
tions between tags, but makes no attempt to model aes-
thetic judgments.

Shore’s wiggle (≈) also has characteristic amplitude
profile. This embellishment has two humps in the f0 tra-
jectory, where the first f0 peak coincides with the am-
plitude valley. We use an amplitude template in tandem
with the f0 template to coordinate these two channels.
Figure 7 shows these two templates on the same time
axis.

Shore sang nine wiggles in the three variations of
the song On a Bicycle Built for Two. These rendi-
tions had different tempos, keys, and improvisation,
thus providing an interesting range of contexts for this
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Figure 7. Templates for the embellishment wiggle (≈). The fig-
ure shows the f0 (top) and amplitude (bottom) templates for this
embellishment.

embellishment. Table 1 lists the duration of these wig-
gles in seconds, the length of the measure, the estimated
length of the note, and the textual context.

Since the note boundary in the signal is ambiguous
and difficult to label with standard tools such as Xwaves
(ESPS/Waves, 2002), we asked three subjects to tap the
beat (one tap per measure) while listening to the music.
Subjects can perform this task easily, and it gives a
clear mark of the boundary of each measure. Subjects
also agree on their transcriptions of note-to-measure
ratio (e.g., 2-to-1 or 3-to-1). We then estimate the note
length from the measure length and the transcription of
the note-to-measure ratio.

We fit a regression model predicting the length of
wiggle from the consonant voicing status and from
the length of the measure and the length of note
respectively:

wiggle = −0.05s + 0.42 · measure + 0.07 · voice

(5)

The prediction based on measure length and voicing
is better (Pearson’s r = 0.63) than the prediction from
note length and voicing (Pearson’s r = 0.35).

Table 1. Lengths of wiggle embellishments in Daisy as they relate to the duration of the notes and measures that contain them.

≈1 ≈2 ≈3 ≈4 ≈5 ≈6 ≈7 ≈8 ≈9

Wiggle 0.33 s 0.30 s 0.34 s 0.37 s 0.28 s 0.32 s 0.44 s 0.45 s 0.37 s

Measure 0.82 s 0.80 s 0.79 s 0.80 s 0.80 s 0.99 s 0.98 s 0.91 s 0.91 s

Note 0.27 s 0.26 s 0.40 s 0.26 s 0.26 s 0.50 s 1.47 s 0.30 s 0.30 s

Text marr(iage) carr(iage) dai(sy) do carr(iage) for love marr(iage) carr(iage)

The fit implies that the length of a wiggle is longer
at slower tempos. Voicing also has an effect; a voice-
less onset to a note shortened the wiggle’s length.
It is interesting that one can predict the length of
wiggle better from the tempo than from the note to
which it is applied. It appears that there is a minimum
length requirement of this embellishment. If the note
length is too short it lengthens to accommodate the
embellishment.

4.2. Musical Embellishments—Changing Amplitude

Figure 8 shows the amplitude profiles of the first
four syllables Dai-sy Dai-sy in our example by Dinah
Shore. She merged a de-crescendo and crescendo in
the same note, creating a bow-tie-shaped amplitude
profile (The second syllable, centered near 1.2 sec-
onds, is the clearest example.). The decrease of am-
plitude in the middle of a note contrasts with notes
from most singers. For instance, Fig. 9 shows the more
even, slowly changing amplitude profile of another
singer. The bow-tie amplitude profile shows up very
frequently in Shore’s singing. Her consistent use of this
profile and the contrast with the norm mark the ampli-
tude profile as an important component of her distinct
style.

To model the local amplitude changes seen in Fig. 8,
we describe the shapes of the amplitude profile with
templates the same way as we describe the shapes of the
pitch embellishments. The same modeling techniques
are applicable, because (at least during vowels, and if
one normalizes for the vowel), the amplitude is pri-
marily controlled by the sub-glottal pressure (Strik and
Boves, 1992), and that pressure is controlled in turn by
the dynamics of the chest, diaphragm, and abdominal
muscles.

A note should have at least two beats to allow suf-
ficient time to realize this pattern (minimally one beat
for de-crescendo and one beat for crescendo). In all
of observed cases the note starts as the first beat of the
measure. In addition, Shore didn’t use bow-tie on notes
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Figure 8. Dinah Shore’s signature amplitude profile.

Figure 9. Amplitude profile of another singer.

with heavy pitch embellishment, vibrato, or on the very
last note.

The bow-tie amplitude is used frequently. Out of
the 50 notes in the first repetition of the song, there
are 22 notes that are 2 beats or longer. Among them,
14 have the bow-tie amplitude profile. In the second
repetition, Shore inserted words which shorten some
notes. Consequently, the number of long notes is re-
duced to 16, out of which 10 have the bow-tie am-
plitude pattern. The third repetition is in slow tempo
where Shore opted for crescendo and vibrato instead
of bow-tie on long notes. Out of 24 candidates, 7 have
the bow-tie pattern. In contrast, we didn’t find any bow-
tie amplitude profile in the recording of the same song
by two other singers, one amateur and one professional.

The amplitude control for the first phrase of Shore’s
On a Bicycle Built for Two is shown in Fig. 10. A bow-
tie shaped template (��) is applied to long notes as on
each syllable of the word Daisy, the stressed syllable
of answer, and the final note do. A droop template (�)
is applied to short notes.

4.3. Speaking Styles—Phrasal Scope

In this section, we switch to speech, exploring a way to
model Martin Luther King’s distinctive style. Techni-
cally, much of the style is carried by the phrase curve,
which we control in the same way as we control music
scores. The combination of accent and phrase curve
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Figure 10. Amplitude control in synthesized song. Stem-ML is used to produce a time series of amplitude vs. time, which is used to multiply
the amplitude profile of TTS-generated sound to implement the style. This figure displays (from top to bottom), the amplitude control time series,
acoustic waveform produced by the synthesizer without amplitude control, and acoustic waveform produced by the synthesizer with amplitude
control.

is the same as the combination of music scores and
embellishments.

In the f0 traces of typical English sentences from typ-
ical speakers, most of the f0 movements reflect word
accent and emphasis. The phrasal component, if any,
is a smooth decline. They are different from Martin
Luther King’s rhetorical style (Fig. 1), where word ac-
cent and emphasis modifications are present but the
magnitude of the change is relatively small compared
to the f0 change marking the phrase. The f0 profile
over the phrase is one of the salient features of King’s
style.

Figure 11 shows a set of histograms comparing snap-
shots of the phrase curves of Martin Luther King Jr. and
another professional speaker (J). Speaker J’s data are
presented in the left column and King’s data in the right
column.

Each histogram shows the distribution of 10 voiced
f0 samples collected from different regions of phrases,
where phrase is defined as speech signal followed
by at least 250 ms of silence. Samples of f0 were
taken every 10 ms, and we excluded voiceless re-
gions, so each region is at least 100 ms long. The
rows, from top to bottom, show the changes of f0 pat-
terns as time progresses. The picture shows two dis-
tinct patterns of f0 usage and their sensitivity to phrasal
positions.

The plots show several regions of interest: the first
10 voiced samples of a phrase, from the 30th to the 40th
samples, 10 samples from the mid point of the phrase,
and the final 10 samples of the phrase. All sentences
are long—therefore, the mid point always comes after
the 30th sample.

The speech materials from both speakers are contin-
uous. King’s speech includes 12 minutes of The Amer-
ican Dream (King, 2000). Speaker J’s speeches were
movie critiques and commentaries. There are around
35,000 f0 samples in each database. The two speakers
have similar pitch range spanning from 50 to 300 Hz,
but with very different patterns of f0 usage.

Speaker J’s pattern, shown on the left, exhibits a
broad distribution in f0 ranges in all but the final posi-
tions. The middle region has lower range than the ear-
lier regions, which is consistent with declination effect
and downstep effect (Fujisaki, 1983; Pierrehumbert,
1979). The final region is markedly lower than previ-
ous regions, where most of the f0 samples are below
100 Hz. This pattern is consistent with the final low-
ering effect and the sentence final low boundary tone
(Liberman and Pierrehumbert, 1984).

King’s speech has a strong phrasal component with
an outline defined by an initial rise, optional stepping
up to climax, and a final fall. His initial and final f0 pat-
terns are similar, both dominated by f0 values around
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Figure 11. Histograms showing the contrast between Martin Luther King Jr. (right) and a professional speaker J (left). Each column of plots
forms a time-series of how the pitch behaves through a phrase, where time increases downwards. Successive rows are the first 100 ms of the
phrase, the region from 300 ms to 400 ms, the 100 ms following the midpoint, and the last 100 ms of the phrase.

100 Hz. As early as 300 msec into the phrase, and per-
sistent throughout the phrase, the f0 range is character-
ized by a narrower band around 250 Hz. King may use
pitch step-up to emphasize words, causing pitch to rise
rather than to decline. This may account for the higher
pitch range around the mid point region, compared to
the earlier 300 msec region.

To model this style, we use step to tags (�) to con-
trol the rise and fall in the phrase curve. The argu-
ment value of the tag controls where the phrase curve
should be relative to the speaker’s pitch range. The
intended f0 value of the phrase curve at the time of the
tag is calculated as base + step to value × range, where
base is the baseline and range represents the speaker’s
pitch range.

We use heuristic grammar rules to place the tags.
Each utterance starts from the base value (�0), steps

up on the first stressed word, remains high till the end
for continuation phrases, and steps down on the last
word of the final phrase. At every pause, it returns
to 20% of the pitch range above base, and steps up
again on the first stressed word of the new phrase. The
amount of step to (�) correlates with sentence length.
Additional stepping up is used on annotated, strongly
emphasized words.

The step to tags above produce the phrase curve
shown in dotted lines in Fig. 12 for the sentence This
nation will rise up, and live out the true meaning of
its creed. The solid line shows the generated f0 curve,
which is the combination of the phrase curve and the
accent templates.

Figure 13 displays the accent templates used to gen-
erate Fig. 12. King’s choice of accents is largely pre-
dictable from the phrasal position: a rising accent in the
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Figure 12. Generated phrase curve and pitch contour in the style of Martin Luther King.
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accent 3accent 2accent 1

Figure 13. Accent templates for King’s prosody.

beginning of a phrase, a falling accent on emphasized
words and in the end of the phrase, and a third accent
elsewhere.

Our emphasis is to explore portable prosodic fea-
tures rather than copy synthesis, so in addition to re-
producing the input f0 curve, we also require that
the features behave similarly as they are moved, that
they produce physically possible f0 curves, and more
or less sound the same, no matter where they are
placed.

This is an example where dominant features of a style
can be used successfully in style imitation. The features
and rules are portable due to their simplicity. The rules
refer to the edges of a sentence or phrase with minor
adjustments for sentence length, without resorting to
complex information such as sentence structure and
the part of speech of words.

4.4. Speaking Styles—Local Scope

Speaker-dependent speaking styles may also be con-
veyed by idiosyncratic shapes for a given accent type.
We examined the DARPA Communicator (NIST, 2000)
travel reservation database, where subjects interact
with a dialogue system trying to make flight reserva-
tions, and found many examples of speaker-specific
accent shapes. One of the most common intonation
patterns associated with a request of flight origin and
destination is the rising intonation (Shih et al., 2001),
which in ToBI notation would be annotated as having
the tone sequence L*H-H%, a low accent followed by a
high phrase accent and a high boundary tone. Different
instances of the rising shapes by the same speaker are
fairly consistent, but there are substantial differences
between speakers.
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Figure 14. A sentence from Speaker 1 with two rising accents. “I live in Nashville, Tennessee and I’d like to go to Baltimore, Maryland.”

Figure 15. A sentence from Speaker 2 with multiple rising accents. “Um I would like a flight to Seattle from Albuquerque.”

Speakers 1 and 2 in Figs. 14 and 15 convey different
personal styles by using distinct rising contours. We
interpret these differences as stylistic, rather than as
different meanings because the speakers are, broadly
speaking, making the same request to the system, they
both know it is a machine that cannot understand any
linguistic subtleties, and because no clear difference in
intent could be heard in the recordings. In both figures,

the natural f0 tracks are plotted in stars and the gener-
ated f0 tracks as solid lines. The distinct accent shapes
are captured in the accent templates, which are shown
above the figures. We set the scope of the template to
be equal to the scope of the word.

Figure 14 shows the sentence . . . I live in Nashville,
Tennessee and I’d like to go to Baltimore, Maryland.
The rising intonation in question shows up on the words
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Tennessee and Maryland, where the pitch rises early
and peaks before the end of the word. The final section
of these two words has relatively flat f0.

Figure 15 shows the sentence Um I would like a flight
to Seattle from Albuquerque. The speaker used the ris-
ing accent on flight, Seattle, and twice on Albuquerque,
where both Al- and -quer- are accented. In contrast to
the first speaker, the second speaker’s rising slopes are
fairly straight, rising from the valley near the center of
the word to a peak near the end of the word. The four
rising contours in Fig. 15 are all generated from the
same rising template shown above the figure.

This treatment opens up the possibility that the
same annotation in intonational phonology, such as
L*H-H%, may map to substantially different pitch con-
tours, because different speakers have different habitual
execution of the same linguistic functions. A related
example is intonation patterns that are part of a for-
eign accent. A non-native speaker may have the same
linguistic intent as the native speaker, but may simply
implement an accent differently under the influence of
their native language.

This is similar to the style/content distinction shown
earlier in the paper, where the phonology plays a role in
the content, and the style is the individual’s implemen-
tation of the accent. Technically, this treatment is no
different than the modeling of musical embellishment
and the modeling of accent types that have different
phonological status. We simply allow the user to de-
fine unrestricted shapes for accents in the modeling
process.

5. Conclusion

In this paper, we have described prosodic features that
are related to personal styles. We have shown exam-
ples of modeling embellishments and amplitude in
music, as well as phrase curves and accent shapes in
speech.

We can represent styles of speech or performance
styles in music by a set of prosodic features, along with
rules to show where the features are placed. With this
approach, we can convey the impression of a particular
speaker/singer by capturing the most salient prosodic
features.

These examples suggest a common theme in terms
of prosodic modeling: There are local effects such as
accent shape and musical embellishment, and longer
term effects such as phrase curve and musical notes.
The accents and embellishments should be portable,

so that they can be placed arbitrarily, but still produce a
physically possible f0 curve, and have similar percep-
tual results. This portability of the accents allows the
heuristic rules that place them to be simple and more
intuitive, because they then do not have to work around
illegal combinations of accents.

Practical applications of this technique might in-
clude implementation of quotes in news articles, multi-
ple characters in games or dialogue systems, or reading
email with the prosodic characteristics of the sender.

All the examples discussed in this paper are avail-
able on the web at: http://prosodies.org/papers/2003/
IJST/styles.wav or http://kochanski.org/gpk/papers/
2003/IJST/styles.wav.
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van Santen, J.P.H. and Möbius, B. (2000). A quantitative model
of f0 generation and alignment. In A. Botinis (Ed.), Intonation:
Analysis, Modelling and Technology. Dordrecht, The Netherlands:
Kluwer Academic Publishers, pp. 269–288.





Copyright of International Journal of Speech Technology is the property of Springer Science & Business Media

B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright

holder's express written permission. However, users may print, download, or email articles for individual use.


