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A novel, noninvasive experiment is proposed that reliably shows the strength of glottal oscillations.
The quasi-glottogram~QGG! signal is generated from a microphone array that is trained to
approximate the electroglottogram signal. The QGG may be useful to improve estimates of whether
speech is voiced, to quantify partial voicing, and to reduce the phoneme effect when measuring the
amplitude of speech signals. The technique is well adapted to the generation of text-to-speech
systems, as it allows an estimate of the glottal flow during undisturbed, natural speech. For prosody
studies, it can be used to provide an estimate of amplitude which is relatively unaffected by changes
in phonemes, and is at least as reliable as standard estimators of amplitude. ©2003 Acoustical
Society of America.@DOI: 10.1121/1.1608964#

PACS numbers: 43.70.Jt, 43.70.Fq, 43.70.Aj@DOS#
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I. INTRODUCTION

The source-filter model of speech production expla
the acoustic speech signal as a convolution of the tim
varying glottal airflow ~due to the vibrations of the voca
folds! with the impulse response of the acoustic filter form
by the vocal tract. This model shows why a measuremen
the glottal airflow is desirable: it would allow the source a
the filter to be studied independently. In particular, such
measurement would allow a determination of voicing, a
allow the amplitude and harmonic content of the glottal
cillations to be determined. The source-filter model of spe
is embedded in speech coders, automatic speech recogn
systems, and speech synthesizers; better understanding
source and filter separately can lead to better algorithms.
example, speech synthesizers need reliable, precise in
tions of glottal oscillation because voiced speech is of
processed differently from unvoiced speech. Human listen
will easily detect errors in the database of a synthes
where the speech has a voicing indication that is wrong
more than 30 ms, a sensitivity that requires improvemen
current techniques if one wants to create synthesizers a
matically without tedious manual checking.

Further, a relatively unexplored area of speech scienc
the study of prosody. We use the term ‘‘prosody’’ to inclu
all the acoustic properties of speech that are not part of
lexical information. Prosody is typically implemented b
properties such as the pitch, the amplitude, and the spe
tilt of the sound. Prosody is used to mark boundaries,
emphasize words or phrases, and to help control dial
among other functions. However, quantitative measurem
of prosody are nontrivial, because, other than pitch, all
candidate acoustic features are strongly influenced by
phoneme: for example, an emphatic /m/ may be quieter t
emphasized /a/. Thus, to be able to study and unders

a!Electronic mail: gpk@alum.mit.edu
2206 J. Acoust. Soc. Am. 114 (4), Pt. 1, October 20030001-4966/2003/1

Downloaded 28 Feb 2013 to 130.126.32.13. Redistribution sub
s
-

of

a
d
-
h
ion
the
or
ca-
n
rs
r
r

in
to-

is

e

ral
o
s,
ts
e
e
n

nd

prosody, there is a need for measurements of prosody tha
relatively independent of the particular phonemes, so t
one can compare prosody of different words. Again, m
surements of the glottal flow would be useful, because,
one hand, the glottal flow is much less dependent on
choice of phoneme than the far-field acoustic signal is, a
on the other hand, because it can be related to physiolog
parameters like subglottal pressure and muscle tensions

Invasive estimates of the glottal flow are possible, us
an acoustically matched tube,1,2 but the tube interferes with
lip and jaw movements. This interference rules out appli
tions that require simultaneous recording of natural, und
turbed speech. One such application is the recording o
database for a text-to-speech-system~TTS!. Most commer-
cial TTS systems operate by piecing together segment
recorded speech. Natural, high-quality recordings are a b
requirement, but one also needs to automatically and relia
estimate acoustic properties of the speech signals. Othe
timates of glottal parameters, such as intubation to mea
subglottal pressure,3 direct photography of the vocal folds,4,5

or photoglottography6,7 to measure the glottal open area a
also invasive and incompatible with many application
Plethysmography8 can measure subglottal pressure, but
cumbersome, and the acoustic properties of the box in wh
the subject sits need to be carefully considered in order to
clean speech. Finally, electroglottography~EGG!9–16 is non-
invasive, but measures vocal fold contact rather than glo
flow; the folds can be contacting while the glottis is par
open or noncontacting when the glottis is nearly closed. T
EGG signal is only weakly correlated with the width of th
glottal opening or the glottal flow, and thus is not direct
related to acoustic measurements.

Historically, the glottal flow has been estimated by ‘‘in
verse filtering.’’ Inverse filtering is based on first estimatin
the vocal tract transfer function from a microphone or a
emometer signal, inverting it, and using the inverted filter
remove the effect of the vocal tract.17 If the estimated trans-
14(4)/2206/11/$19.00 © 2003 Acoustical Society of America
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fer function is accurate, the result will be close to the act
glottal flow. However, the problem is intrinsically indeterm
nate, as one is trying to estimate both a time series of glo
flow and a time series of vocal tract parameters from a sin
input time series. In practice, assumptions are made tha
microphone signal is quasi-stationary, that the spectrum
the glottal flow is simple~e.g., a periodic pulse train or
pulse train fed into a preemphasis filter!, that the vocal tract
can be modeled as an all-pole spectrum, and sometimes
the formant frequencies change smoothly with time. Wh
the resulting algorithms work reasonably well, none of t
approximations are perfect, and the resulting estimate of
glottal flow is only approximate, with ill-determined errors

The goal of this study is to develop a new, noninvas
technique that allows an estimate of the volume flow of
through the glottis,U, based on an array of microphones a
an EGG signal. We partially realize that goal by computi
an estimate forU which is convolved with an unknown~but
time-invariant! transfer function. In the remainder of the p
per, this is what we mean when we speak of the QGG a
‘‘estimator for U.’’

This paper will first justify why such an algorithm i
possible. Second, it will lay out the details of our algorith
Third, it will describe tests of the algorithm. Since we do n
have invasive flow measurements available for a direct c
parison, we bring in two lines of indirect evidence to sho
that the quasiglottogram~QGG! signal is closer toU than the
standard signals used for voicing estimation. The first tes
qualitative: we compare the QGG’s behavior to other sign
in ‘‘difficult’’ regions of speech, and show that the QG
behaves well under conditions where one or another of
standard signals misbehaves. The second test is quantita
though indirect: To prepare, we introduce a simple ‘‘to
model of speech, and show that in that model, the sign
that lead to the least variable amplitude estimates are
signals that are closest toU. We then show that the QGG
signal allows a very steady estimation of amplitude, gen
ally less variable than the result of other standard linear
timators. This provides evidence that the QGG signal is cl
to U.

A good estimator for glottal flow should be noninvasiv
It should distinguish between voiced sounds and sounds
erated in other constrictions of the vocal tract. It should a
be linear, and should be related to the actual glottal airfl
through a time-invariant transfer function. Linearity hel
simplify connecting the estimate ofU to physiologically im-
portant parameters like the subglottal pressure and the gl
open area, and it allows straightforward quantification of p
tial voicing. The output of the algorithm should be related
U via a time-invariant transfer function, so that we c
meaningfully compare signals at one time to signals at
other. Particularly, one would like to compare glottal flow
between different phones.

We approach these goals by building a signal from lin
combinations of several filtered microphone signals. If s
eral microphones are placed near the head and neck,
will capture different signals, containing different inform
tion. We choose the linear combinations and filters to m
the best possible match to the EGG signal, which provide
J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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instantaneous measurement of whether the vocal folds
contacting or not, and thus gives some indication whether
glottis is open or closed. We also use data from a microph
near the base of the throat to pick up a signal from the s
glottal cavities. The subglottal cavities have an acous
transfer function from the glottis through the throat wall
an outside microphone that is relatively independent of tim
as ~unlike the vocal tract! the trachea is not surrounded b
muscles used to articulate speech. The dimensions of
trachea and bronchi are also largely unchanged du
breathing, and even motions of the larynx are expected
lead to only modest changes in the acoustic resonances o
trachea.18,19

The algorithm requires at least two microphones, one
pick up the throat signal, and one for sound from the vo
tract. The throat signal contains a mixture of sound t
propagated from the glottis down through the trachea t
through the skin of the throat, mixed with sound that prop
gated from the glottis up through the vocal tract, then ba
down through free air to the throat microphone. The oth
microphones are used primarily to cancel out the compon
via the vocal tract. This cancellation results in a signal t
can be thought of as the glottal waveform, filtered by
propagation through the neck. We show that this signa
less variable than commercial inverse-filtered signals, in
sense that the signal shows less phoneme-dependent v
tion. This stability is what one expects of the glottal wav
form; it should be only weakly influenced by the vocal tra
configuration.20

It is necessary to cancel out the sound from the vo
tract because we want an estimator of the glottal flow, a
we do not want our measurement to be disturbed by
dramatic changes in the transfer function of the vocal tr
that occur during normal speech. This is a different appro
from an inverse-filter estimator, which attempts to dynam
cally estimate and invert the vocal tract transfer function
nontrivial, multiplicative operation on one signal. We loo
for a signal that has a time-invariant relationship to the gl
tal flow via a linear operation on several signals.

II. EXPERIMENTAL METHOD

In the experiments described below, we mounted fo
Brüel and Kjær type 4165 omnidirectional microphones
the face guard of a hockey helmet. The microphones w
mounted near the nose~4 cm lateral from the end of the
nose!, the side of the mouth~2 cm lateral of the corner of the
mouth!, near the forehead~centered, 11 cm above nos
level!, and near the base of the throat~on centerline, 2 cm
from skin, 2 cm above the top of the sternum!. The micro-
phones were checked to be slightly outside breath strea
and were protected by 4 mm of windscreen foam. In ot
experiments, we found that only the placement of the thr
microphone was critical: it should be placed as close as p
sible to where the trachea can be palpated~the fossa jugu-
laris!, so long as the microphone does not collide with t
subject during normal head motions. The placement of
other microphones is not critical, and we have obtained si
lar signals from a six-microphone array~including cheek and
2207G. Kochanski and C. Shih: A quasi-glottogram signal
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G.
back-of-the-head microphones! and a three-microphone a
ray ~using a gradient microphone for the throat signal!.

The EGG signal was obtained from a Portab
Laryngograph.21 The electrodes were placed to maximize t
signal strength for long vowels, in modal speech, over
normal range off 0 . Data was digitized at 12 kHz per chan
nel with an antialiasing filter. The microphone and EGG s
nals are high-pass filtered at 40 Hz to reduce room noise
the large-amplitude, slow components of the EGG that c
respond to motions of the larynx.

All inverse filtered signals were produced b
ESPS/waves.22 They are derived from microphoneM ~near
the mouth!. ESPS/waves computes the linear predictor
poles filter that will whiten each frame ofM , then inverts the
filter and applies it toM .

In the examples that follow, we used Mandarin spee
acquired from a female subject, a native Mandarin spea
fluent in English. Because Mandarin is a tone langua
Mandarin speakers can conveniently controlf 0 movements.
Therefore we expect that vocal fold vibration will be mo
repeatable, reducing unpredictable fluctuations inU.

The data presented in Sec. IV were taken from a rand
~e.g., selected for other purposes! set of English vowels and
words, read at normal volume in modal speech, along w
some unplanned spontaneous phrases. The data for Sec
a database of 979 utterances in the form ‘‘Ta shuo X san
tian’’ ~meaning ‘‘He saysX for three days’’!. In the database
the frame syllables all have high level tone~tone 1! andX is
a randomly selected 979 of the;1300 allowable Mandarin
syllables~here we include the tone as part of the syllabl!.
The subject pushed a key for each prompt, and Chinese c
acters were presented on a screen. Speech began 0.7260.1 s
after the prompt. Overall,f 0 had a mean of 235 Hz and
standard deviation of 26 Hz, with most of the variation onX.

Calibration utterances to train the algorithm~i.e., fit the
filter coefficients! for both sections were a broad mixture
sounds, totaling 197.3 and 232.5 s for the two sessions.
used 25 calibration utterances from the beginning of
day’s recording~randomly selected from;40 recorded utter-
ances! and another 25 at the end,;6 h later. Half were
single-syllable English words~e.g., ‘‘nap,’’ ‘‘sap,’’ ‘‘bee,’’
‘‘gold,’’ ‘‘hold,’’ ‘‘moo,’’... !. The words provided a variety o
vowels and consonants in natural contexts. One quarte
the utterances were repeated, unvoiced fricatives~‘‘ch,’’ ‘‘f,’’
‘‘s,’’ ‘‘sh,’’ ‘‘th’’ ! with no vowel context, and repeated, asp
rated ‘‘p’’ and ‘‘h’’ ~again, no vowel context!. These voice-
less sounds are useful to force cancellation of the mo
signal and to check the operation of the algorithm, beca
their U is a relatively steady flow, compared to voice
speech.

The remainder of the calibration utterances were lo
vowels, nasals, and voiced fricatives~‘‘a,’’ ‘‘u,’’ ‘‘v,’’ ‘‘z,’’
‘‘m’’ ! where f 0 was swept either up or down. The speak
was asked to sweep at least half of her pitch range in e
utterance, catching either the lowest or highest comf
able pitch. Thesef 0 sweep utterances provide voiced spee
with the speaker’s full pitch range. It is useful for the ca
bration utterances to cover all thef 0 range of the speech use
in the experiments. The algorithm will not produce go
2208 J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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estimates for speech that hasf 0 outside the range of the
training data inx. Ours did, having meanf 0 of 248 Hz and
standard deviation 97 Hz. The sweep rates were 150670
Hz/s ~average slope over the central 1 s of theutterance!.

III. THE ALGORITHM

The overall structure of the algorithm is shown in Fig.
To explain the design of the algorithm, we can conside
simplified form of the microphone array as shown in Fig.
one microphone,M , near the mouth, and another,T, at the
base of the throat. During voiced sounds, the signals
excited by the flow,U, through the glottis. The signal atT is
made of two main components, one traveling through
vocal tract ~transfer functionV) to M , the other traveling
directly through the neck23 via a transfer functionN. Note
that N includes the resonances of the trachea, in addition
the transmission through the throat, which acts as a low-p
filter. Sound coming out of the mouth and then propagat
down through the air toT has a transfer functionA•V.

In this paper, we treat these transfer functions as ma
multiplications in any complete basis, not yet specializing
a time series, frequency representation, or some intermed
basis, following Ref. 24. The throat microphone signal
then T5(N1A•V)•U. We takeM5V•U, neglecting the

FIG. 1. Diagram of the data and signal flow in the computation of the QG

FIG. 2. Schematic of microphone placement and signal paths.M is a mi-
crophone near the mouth;T is a microphone near the throat.V refers to the
transfer functions from the larynx along the vocal tract toM , andA•V is the
transfer function from the larynx, through the vocal tract, toT. N is the
transfer function from the larynx through the throat wall toT.
G. Kochanski and C. Shih: A quasi-glottogram signal
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small amount of sound that comes out through the neck
propagates upwards through the air toM .

We expect thatN andA should be nearly independent o
the phoneme being produced. On the other hand,V varies
dramatically and systematically as a function of the ph
neme. We can express this variation by writingV5 v̄1a• ṽ,
whereV depends on the phoneme only througha, and^a&50
~the angle brackets denote an average over the corpu
speech!. In other words, we decomposeV into a constant
transfer function,v̄, and a variable part. Because hum
speech is the result of several independently controlled
ticulators, a is normally a vector. Then,T5(N1A• v̄)•U
1a•A• ṽ•U.

Hypothetically, if we had a reference signal,Q, which
was derived fromU via some time-invariant transfer func
tion, q, we could find a linear filter that would reproduceQ
from the microphone signals.~Note that we assume off-line
processing, so our filters need not be causal.! The general
form for that linear filter would beC5cM•M1cT•T.
To find the filter matrices~coefficients! cM and cT , we
would minimize the difference betweenC and Q:
cM ,cT5arg minE(cM ,cT), where

E~cM ,cT!5~C2Q!T
•~C2Q!5iC2Qi2 ~1!

is the sum of squared errors between our target signalQ and
our reconstruction.

If a50, Eq. ~1! is degenerate, and its solutions are
filter coefficients on a line which we will callL , which goes
through cM150, cT15q•(N1A• v̄)21 and cM25q• v̄21,
cT250. The first of these two solutions corresponds to us
a single filter on the throat microphone to matchQ, while
ignoringM. The second solution is the reverse: using a sin
filter on the mouth microphone while ignoringN. Points on
L correspond to linear combinations of these two filters, a
all points onL are equally good solutions and matchC5Q
exactly, so long asa50 ~assuming that the necessary i
verses exist!. This derivation can be extended to allow whi
additive noise in the microphones, in which case the nec
sary inverses always exist. The results are qualitatively s
lar, although the derivation and results become substant
more complex.

If the speaker starts talking, instead of just vocalizi
with a stable vocal tract, the transfer functions will vary fro
phoneme to phoneme, and we will not be able to matchQ
perfectly at every moment, soE will be positive. Not every
solution gets the same increment of error, though. BecauV
changes from phone to phone, solutions that depend
dominantly onV will fit worse and have larger errors tha
solutions that depend predominantly onN. This difference
breaks the degeneracy and typically picks out a single
solution. In general, the best solution will use signals fro
all microphones, and it will provide a better approximati
to Q than could be obtained from any linear filter operati
on any single microphone in the array.

If we assume thatV varies slowly enough, we can writ
down the change in error due to the difference betweenV at
a given moment and the average ofV ~i.e., v̄):

DE5^i~cT•A1cM !•a• ṽ•Ui2&, ~2!
J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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where the average~written as angle brackets! is taken over
all phonemes in the corpus. The change in error is alw
non-negative and is normally nonzero everywhere excep
a hyperplane we will callP, defined bycM52cT•A. Not
coincidentally, this relationship between the filter coefficien
is exactly what is needed to cancel out the part of the sig
that came from the mouth, leaving only the part that ca
through the throat wall. The intersection ofL and P then
specifies the best estimator forQ ~the one that is least sens
tive to changes in the transfer function!. These results gen
eralize to arrays of more than two microphones. They a
can be generalized to the case where all the transfer funct
vary with time, though Eqs.~1! and~2! will change in detail.

So, given a reference signal, we can start with an ar
of microphones and find the linear combination of filter
microphone signals that best matches the reference sig
The resulting signal is less variable than any signal deri
by a linear operator from a single microphone. Loose
speaking, the best estimator is obtained by canceling out
highly variable signal from the mouth microphone and us
the part of the signal that did not propagate through the vo
tract.

In the real world, one does not have a perfect refere
signal,Q. The best we can obtain noninvasively is the EG
signal. The EGG is related toU in a nonlinear and variable
manner, because the larynx moves up and down relativ
the electrodes used to measure the EGG. Repeating
above analysis shows that the variability of EGG measu
ments are not important, so long as changes in the E
signal are not correlated with phonemes. This is true, by
large, as the larynx moves in response to pitch changes
inhalations, neither of which are correlated with most ph
nemes in most languages. Glottal stops and pharyn
sounds are an exception, but they are not particularly co
mon, typically comprising just a few phonemes in a la
guage.

Nonlinearities in the relationship betweenU and the
EGG signal are difficult to analyze analytically. We ha
investigated their effect empirically in Secs. IV and V.

A. Algorithm introduction

We first build the data matrix,X, where each row con-
tains the signal from one of the microphones, and each
umn corresponds to one moment in time.X is an n by m
matrix when there aren microphones, each digitized to pro
duce m samples of audio. The EGG signal is a one bym
matrix.

We then select a set of taps~i.e., taps on a delay line! for
each microphone. Physically, the closure of the glottis is
cause of the acoustic signals: when it closes, a sound w
propagates up the vocal tract and down the trachea, reac
the microphones roughly a millisecond later. If one tries
observe a glottal closure at timet, one will need to use mi-
crophone data from later times, when the sound waves f
the closure reach the microphones. Thus, we use the tap
build a finite impulse response~FIR! filter which will predict
the present EGG signal from future microphone signals.

To select the span of the taps, we need to consider
purposes of the filter we are building. It needs to cancel
2209G. Kochanski and C. Shih: A quasi-glottogram signal
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the mouth signal that is picked up by the throat micropho
and it needs to match the impulse response of the remai
part to the EGG signal.

The taps span the range of delays beginning with
earliest propagation from the glottis to the microphone
question, ending when the impulse response of the vo
tract goes below 1% of its peak value.

Vocal tract formant bandwidths can be as small as
Hz25,26 when the glottis is closed, though in real speech
bandwidth of 80 Hz is more realistic.27 Such a bandwidth
implies that the vocal tract resonances will take abou
•1/(2pB)'6 ms to decay. Bandwidths for the tracheal res
nances are wider, 200–400 Hz,28 and so are not the limiting
factor for the window width in the time domain. Matchin
the acoustic to the EGG signal requires a window length
about 1/f 0 , which can be slightly longer. We choose th
range of taps to cover the longest of these times~13 ms in
these experiments!, and we use the same number of taps
every microphone.

The resulting QGG signal does have some imperf
tions. It has a nonzero~though relatively small! response to
fricatives and plosives. Also, the QGG algorithm does
estimateU directly, but estimatesU times a transfer function
where the transfer function depends on the subject and
experimental configuration. Finally, the algorithm does n
adapt to changes in microphone positions relative to
mouth, nose, and throat, so stably mounted microphones
presumably required for good results.

Note that we do not claim any absolute calibration
the QGG signal. Because the QGG filter coefficients invo
the EGG signal, the QGG amplitude will differ from perso
to person and session to session, depending on neck stru
and the placement of the EGG electrodes. However,
QGG signal depends on the EGG only through its aver
properties during the calibration/training session. So, w
one is actually using the QGG~as opposed to calibrating it!,
the EGG is entirely unused and may be disconnected. Th
fore, factors that affect the EGG signal during use~such as
the momentary position of the larynx with respect to ele
trodes! will have no effect on the QGG.

There are similarities between the QGG signal and
low-pass filtered mouth signal. Both are generated by lin
time-independent filters. Indeed, in practice, the QGG sig
also has less high-frequency power than microphoneM
~though more than the output of a high-order low-pass filte!.
The steep QGG spectrum has its origins in three places
EGG signal that it is matching has relatively less hig
frequency power than speech, and high-frequency com
nents radiated from the mouth tend to have phases tha
strongly dependent on the phone, consequently there is
cross-correlation between the high-frequency EGG com
nents and the high-frequency components fromM and thus
they are deemphasized. Finally, microphoneT picks up some
signal with a stable phase relationship to the EGG, but h
frequencies are not effectively coupled out through the thr
wall.

However, we expect that the QGG should give a m
consistent amplitude measurement than the low-pass fi
Since the low-pass filter signal essentially measures the
2210 J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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plitude of f 0 in microphoneM , it will be strongly boosted
when the first formant is close tof 0 . The QGG signal should
not be affected by this problem, as it is measuring a com
nation of signals chosen to match the EGG’s relatively sta
amplitude: roughly speaking, it is measuring the subglo
cavities through the throat wall, and the formant structure
the vocal tract has little effect down below. The QGG oug
also to be more consistent than a low-pass filter if
speaker has a pitch range that swings through more tha
octave. In that case, the low-pass filter will sometimes p
the second harmonic, and sometimes not, leading to m
amplitude fluctuation.

B. Implementation

We build a set of linear equations corresponding to
FIR filter that best predicts the EGG signal, using straig
forward least-squares linear prediction techniques.29 The pre-
dicted EGG signal at each time is a linear combination
n•q values~q taps on each ofn microphones!. To start, we
define the covariances between shifted signals from theith
and jth microphones:

fa,i , j5
1

m(
t

xi ,t2a•xj ,t , ~3!

wherea is the time shift between theith andjth microphones
~we neglect end effects, for simplicity! and t indexes the
time. These covariances are estimated from the data and
tain noise covariances. Analogously, we will writef* ,a, j for
the covariances between the EGG signal and the shifted
crophone signals. The filter coefficients that minimize t
mean squared error are then the solution to

(
i

fa,i , j•ca,i5f* ,a, j , ~4!

which is a set ofn•q linear equations. We prepare to solv
the equations by stacking theca,i to make a single vectorC,
stackingf* ,a, j to make a single vectorP ~of sizen•q by 1!,
and placing the elementsfa,i , j into the corresponding place
Han1 i , j to make an•q by n matrix. We solve the resulting
matrix equation,HC5P, with a singular value decompos
tion algorithm to allow for degeneracies and nea
degeneracies.C can then be unpacked to yield theca,i ,
which are the filter coefficients that give the best predict
of the EGG signal from the set of microphone signals.

We can now calculate the QGG signal,

pt5(
a,i

xi ,t2a•ci ,a , ~5!

from theca,i and microphone signals. The prediction is n
at all precise because the EGG signal is a strongly nonlin
function of the glottal opening: it contains little informatio
beyond the simple fact of whether the vocal folds are tou
ing or not. It would be surprising indeed if one could build
linear filter that would exactly match the EGG signal.
G. Kochanski and C. Shih: A quasi-glottogram signal
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C. Examples

Figure 3 shows the raw data for all four microphon
and the EGG signal for a small section of speech. The
play is centered about the burst of a ‘‘t’’ and shows voic
regions~at the edges!, a burst, and then a fricativelike regio
after the burst. Note that the voiced regions are quite sim
in all four microphones~though the throat microphone,T, is
phase shifted by about 30°!. On the other hand, the frictive
like region ~3.44–3.46 s! has a substantially different struc
ture at microphoneT, and also has an amplitude that is re
tively small, about 3 dB lower, relative to the voiced regio
than the other three microphones.

Figure 4 shows the output of the QGG and several co

FIG. 3. Raw signals, used as input to the QGG algorithm. From top
bottom, the signals are from microphones near the mouth, near the fore
near the nose, and near the throat, and~bottom! the electroglottogram. This
section of speech corresponds to the ‘‘t’’ in the midst of ‘‘...what is... .’’ T
throat microphone signal,T, has a noticeably smaller ratio of high
frequency power near 3.45 s to power in the voiced regions~edges! than the
other microphones. That is because the high frequencies get toT only from
the mouth, whereas the low frequencies also come through the throat

FIG. 4. Output of the QGG algorithm, compared to other standard sign
From top to bottom, the signals are from the microphone near the m
~M !, the QGG, a low-pass filter set just above peakf 0 , a standard inverse
filtering algorithm, and the EGG signal. This section of speech correspo
to the ‘‘t’’ in the midst of ‘‘...what is... ,’’ and matches Fig. 3.
J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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parison signals in the same region around the ‘‘t’’ burst. F
ure 5 shows the QGG and comparison signals on a lon
stretch of speech.

IV. QGG AS FODDER FOR VOICING ESTIMATION

An engineering evaluation of the QGG signal as inp
for a voicing estimation algorithm is beyond the scope of
paper. Instead, we will show that~at least under some con
ditions! the QGG signal can provide a more reasonable in
cation of the presence of voicing than either the EGG or
inverse-filtered mouth signal. This is the first, qualitative, t
of the QGG.

The advantages of the QGG signal follow from its co
struction: because it is a linear function of the pressure n
the glottis, it is well behaved during startup and shutdown
the glottal oscillator. So, unlike the EGG, it may be able
quantify partial voicing and mark onsets of voicing precise
Because the QGG is constructed from a time-invariant fi
operating on acoustic signals, it may be more robust t
algorithms based on an inverse filter~we do not discuss
manual adjustment of inverse filter coefficients here, as s
techniques are impractical for large speech corpora!. Any
time the spectral estimation step of an inverse filter fails
produce a good result, or any time the speech signal is
well represented by an all-poles transfer function, one
pects the inverse-filtered signal will not reflect the glot
state. The QGG does not suffer from those problems.

Figures 6–8 show examples of speech signals where
glottal oscillation is starting or stopping. The figures sho
that the QGG signal can sometimes provide a much be
explanation of the acoustic signal than does the EGG sig
Limitations of EGG signals have previously been describ
elsewhere.30,31

In Fig. 6, the envelope of the QGG signal tracks acous
power ~the mouth signal!, while the EGG signal shows a
unnaturally sharp onset/ending. If the glottal oscillati
stopped with the EGG signal, one would have to assum

o
ad,

ll.

ls.
th

ds

FIG. 5. Output of the QGG algorithm, compared to other standard sign
From top to bottom, the signals are from the microphone near the m
~M !, the QGG, a low-pass filter set just above peakf 0 , a standard inverse-
filtering algorithm, and the EGG signal. The text is marked on the figu
approximately aligned with the audio.~The pause at 1.2 s has been sho
ened for a better visual display.!
2211G. Kochanski and C. Shih: A quasi-glottogram signal
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bandwidth for the first formant of only 5 Hz for the acous
signal to persist as long as it does, which is incompati
with the known bandwidths.25–27 The vocal tract simply is
not a good enough resonator for the sound to persist 30
after the end of glottal oscillation. Therefore, glottal oscil
tion must be continuing at a lower level~so the vocal folds
do not touch! without showing up on the EGG. Titze32 and
Stevens33 have discussed this kind of small oscillation.

Other observations, such as the events aro
t'8.015 s in, again, Fig. 6 can also be explained simila
Imagine comparing two similar vowels, one uttered with a
plitude just small enough so that the glottal folds do n
collide, and the other uttered with slightly more amplitude
that the folds do collide on each cycle. If we consider
decomposition of the signal into a stack of harmonics atf 0 ,
2 f 0 ,3f 0 ,4f 0 ,..., the lowest harmonic will primarily mea-
sure the total air flow per cycle, and will change only gen
and continuously when the vocal folds begin to collide.

However, the higher harmonics do not behave smoot
Below the collision threshold, the oscillation is close to
simple harmonic oscillator, and there is little power in t
harmonics. Above threshold, there is a strong nonlinea
when the vocal folds collide; large amounts of power su

FIG. 6. Comparisons of estimators of the glottal waveform. The signal is
off-glide @ai# in ‘‘high.’’ M is the raw signal from the microphone near th
mouth, while ‘‘low-pass’’ and ‘‘inverse-filtered’’ are processed versions
M . QGG is derived from a microphone array, and EGG is the electrog
togram. The EGG stops more than 30 ms before the end of the gl
oscillation.

FIG. 7. DFT spectra~16-ms windows! on either side of 8.015 s in Fig. 6
The thick, black curve is before 8.015 s~the window ends at 8.015 s!, when
the glottal folds are colliding, and the wide, gray curve is after~window
begins at 8.015 s!. The fundamental~225 Hz! is essentially unchanged in
amplitude, but the power in the harmonics drops by about 10 dB.
2212 J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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denly start to be generated in the harmonics. This is
situation that is described by the two-mass model,34,35which
typically gives a spectrum where the amplitude of thenth
harmonic scales asan}n21, or a 6 dB/oct slope. Such
change can be seen in the spectra shown in Fig. 7.

The effect is not confined to the low-amplitude tails
voiced sounds. For example, in Fig. 8, an acoustic sig
begins two periods before the first EGG activity. Again, o
must assume that the vocal folds are oscillating but not
completely closing.

Figure 9 shows a section of a low-amplitude, sustain
‘‘o’’ as an extreme example where the EGG fails to expla
the acoustic signal. Several times, the amplitude of the E
signal jumps up dramatically for a few milliseconds. Litt
effect is seen in the acoustic signal, other than an increas
the power of the higher harmonics, nor is much change s
in the QGG signal. Hypothetically, the vocal folds could
oscillating within a whisker of touching, and some perturb
tion intermittently reduces the spacing just enough to m

e

t-
al

FIG. 8. Beginning of the word ‘‘mosey,’’ at normal amplitude. Note that t
EGG signal starts late.M is the raw signal from the microphone near th
mouth, while ‘‘low-pass’’ and ‘‘inverse-filtered’’ are processed versions
M . QGG is derived from a microphone array, and EGG is the electrog
togram.

FIG. 9. The middle of sustained low-amplitude ‘‘o’’ phonation showin
major EGG changes~bottom! without large changes in the speech sign
~top!. The various signals are labeled.
G. Kochanski and C. Shih: A quasi-glottogram signal
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them collide. The noteworthy observation here is that
QGG signal is a better predictor than the EGG of whether
acoustic signal shows voicing. This should not be too s
prising, as the QGG is constructed from a set of acou
signals.

These problems we have displayed are not hard to fi
occurring at these levels in 6 of 304 voiced syllables
spected. Because the problems seem to be associated
with glottal oscillations where the vocal folds do not conta
we expect that EGG problems should be much more c
mon in languages that make more extensive use of murm
~i.e., a ‘‘breathy’’ voice quality!, most notably Hindi. The
inverse filtered signal also tends to behave badly for lo
amplitude voicing or other conditions where the power in
higher harmonics is very low. Among the displayed signa
the QGG provides signals that display a strong contrast
tween voiced and unvoiced regions, and have most of t
power in the fundamental to reduce the likelihood of octa
errors in any pitch tracker to which the QGG signal is fe

As input to a voicing estimator, many of the advantag
of the QGG signal are shared with the low-pass filte
mouth signal. However, we would expect that the suppr
bursts~e.g., p, t, k! and be a closer representation of the st
of the larynx during closures.

V. QGG AS A MEASURE OF AMPLITUDE OR
EMPHASIS

The quasi-glottogram signal is valuable for more th
correcting voicing errors. It also provides an estimate of
amplitude of the oscillatory flow through the glottis. We e
pect that this amplitude will be a better predictor of proso
emphasis and a better measure of the speech effort b
expended by the speaker than is the total acoustic powe
the mouth signal, the inverse filtered mouth signal, or
EGG.

Amplitude has been known to be a significant comp
nent of prosody since the 1950s,36–40 and into more recen
literature.41–45However, all these studies have been sever
limited by the large intrinsic variability of speech amplitud
measurements. The experimental designs~e.g., ANOVA
analysis on p. 190 of Ref. 41! invariably compare the pro
sodic effect in question to the unpredictable variations. R
ducing this variability can be seen to be just as good
having a larger effect to measure. This is one value of
QGG: it allows a cleaner, low-variance amplitude measu
ment, and should lead to more conclusive experiments.

A. Model of amplitude variance

To justify our intuition that the QGG signal will allow
better amplitude measurements, consider a toy model of
speech apparatus: a glottal source that drives the vocal t
which we model as a time-varying filter. Loosely speakin
the variability of the amplitude outside the mouth com
from two sources: intrinsic variability inU and changes in
the coupling through the vocal tract transfer function,V.
Since the two variances add, the variability of the mou
power will be greater than the variability of glottal powe
Consequently, we expect that the best linear estimators o
glottal source should have the lowest variability. We can
J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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this as a figure of merit to compare algorithms: less varia
estimators are better and probably closer to the glottal sig

We will work in a short-time Fourier transform basis
conveniently describe speech like signals. Signals are t
indexed with two parameters: a time index,t, which locates
the transform’s window, and a frequency index,v, for the
low-resolution spectrum in the window. In this toy mode
the glottal source changes its amplitude but not its spec
shape:U(t,v)5 f (t)•g(v), and we assume that the amp
tude, f (t), changes slowly compared to structure in the gl
tal spectrum,g(v). We can safely assume(vug(v)u251
without restricting the model, as the overall amplitude can
into f (t).

Next, we can write a time- and frequency-depend
transfer function for the vocal tract:h(v,f(t)), wheref(t)
is the vocal tract configuration~roughly, the phone! at timet.
The pressure outside the mouth is thens(t,v)' f (t)•g(v)
•h(v,f(t)), and we can sum over frequency to get the r
amplitude of the mouth signal:a2(t)5(vus(t,v)u25 f 2(t)
•z2(f(t)), where z2(f)5(vug(v)•h(v,f)u2 shows how
efficiently power is coupled from the glottal source o
through the mouth for a particular phonef.

We can now take the log of the power to write

log~a~ t !!5 log~ f ~ t !!1 log~z~ t !!. ~6!

As long as variations of the vocal tract are uncorrelated w
changes in the larynx, the variances of the two right-ha
terms add, and we can conclude that var(log(a))
5var(log(f))1var(log(z)). Since var(log(z)).0, var(log(a))
.var(log(f)). In other words, the amplitude outside th
mouth is always~in this toy model! more variable than the
amplitude ofU. The same conclusion follows if you conside
h to include the vocal tract plus an arbitrary linear operat
thus any filtered version of the mouth signal will still b
more variable thanU.

The limits to the assumption thatf andz are uncorrelated
come from two sources: First, the speaker’s intentio
muscle motions can cause correlations between the gl
and the vocal tract~e.g., a hypothetical language migh
specify that high vowels are always spoken in a pres
voice!. Second, some vocal tract configurations with tig
constrictions can change the glottal waveform. However, n
ther circumstance seems common.

As a concrete example of this, consider a vowel wh
f 0 matches the first formant frequency,F1 . Acoustic power
will then be efficiently coupled from the glottis out th
mouth, because a peak ofg(v) matches with a peak o
h(v,f(t)), z will be large, and the amplitude at the mou
will therefore be large. On the other hand, if 3/2f 05F1 with
the same amplitude ofU, the fundamental frequency will be
below the first resonance of the vocal tract,z will be small,
and the amplitude at the mouth will be small. Comparing
two cases, we see that substantial variance in amplitude
be generated as the sound wave propagates through diff
configurations of the vocal tract.

This toy model contains several loose assumptions
should not be taken too far, but it does give important clu
for finding good algorithms, since the mathematics rema
valid if the transfer function,h, includes the behavior of the
2213G. Kochanski and C. Shih: A quasi-glottogram signal
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2214 J. Acoust. S
TABLE I. Variability of speech amplitude, after processing by four algorithms. RegionX is the variable
syllable, and shows larger variability because the amplitude is a function of the phoneme inX.

Fractional standard
deviation of amplitude

Region 1
ta

Region 2
shuo

X
X

X8
~tone 1 only!

Region 3
san

Region 4
tian

Raw 0.22 0.16 0.48 0.32 0.31 0.29
Low-pass filtered 0.29 0.23 0.42 0.34 0.32 0.35
Inverse filtered 0.14 0.14 0.42 0.24 0.22 0.24
QGG 0.09 0.09 0.37 0.16 0.19 0.20
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microphones and a linear signal processing algorithm.
example, ifh is time-invariant, var(log(z)) will be zero, and
the variability of the amplitude estimate, var(log(a)), will be
as small as possible. Conversely, ifs is always close tog, the
transfer function must be near unity, so that var(log(z)) must
be small and thus var(log(a)) will be as small as possible. So
we expect that algorithms that are good glottal estima
will give stable amplitude estimates and vice versa. Note
for further arguments, we do not require any of the details
the toy model, merely this conclusion, which is indepe
dently testable, and likely to be truly independent of t
model.

Purely pragmatic considerations will also lead us to
same figure of merit. If one is studying prosody, then a
variation of amplitude that is a function of the phonem
should be considered noise: it prevents one from compa
prosodies of different words. Good comparisons are o
possible if the amplitude measure is independent of p
neme. So, we would like to improve the signal-to-noise ra
of prosody experiments by reducing the noise, which ag
means finding an amplitude estimator that is less variabl

B. Comparison of QGG and acoustic power variance

We conducted a second, quantitative test. This test
rectly establishes the usefulness of the QGG signal as a m
sure of amplitude prosody. We also show that the QGG
nal allows a very steady estimation of amplitude, le
variable than the result of other standard linear estimat
Following the logic in Sec. V A, this test indirectly esta
lishes that the QGG signal is a reasonable estimator o
filtered version ofU.

We used the database of 979 utterances in the formTa
shuo X san tian’’ described. We calculated the QGG for a
the utterances, along with an inverse-filteredM , low-pass
filtered M , and the rawM . The boundaries of the variabl
syllable ~X! were hand-segmented, and an algorithm~ESPS/
WAVES getI f 0) was run to find the two voiced regions o
the left side of the segmented area~assumed to correspond t
the vowels in ‘‘ta’’ and ‘‘ shuo’’ !, the voiced region insideX,
and the two voiced regions to the right ofX ~assumed to
correspond to the vowels in ‘‘san’’ and ‘‘ tian’’ !. Four of the
utterances were voiced through between ‘‘ta’’ and ‘‘ shuo’’
and were dropped because we could not assume tha
voiced region matched the vowels. We then calculated
mean power near the center of the five voiced regions, u
a cosine window.

Table I shows the standard deviation of log~power! for
each combination of region and signal. In every case,
QGG signal is more reproducible than the others, yield
oc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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~on average! a standard deviation 46% smaller than the c
responding low-pass filtered speech, 38% smaller than
processed speech, and 20% less than the inverse filtered
nal. These improvements in SNR are conservative limits
the speech contains some intrinsic variability that cannot
removed by signal processing.

Comparisons of cells in Table I have several implic
tions. First, one expects the variation of the frame~regions
1–4! to be small, where we always have the same syllable
the same position. In contrast, the variation in theX region
should be bigger, because the syllable identity changes.
is reflected in Table I, where theX region shows the larges
variation under all conditions.

Why is the QGG variability not smaller in theX region,
if it indeed removes the effect of changes in the vocal tra
It is not smaller because, unfortunately, the QGG is not
estimator forU, but rather~see Sec. III! a filtered version of
U, q•U, where the filter,q, is time invariant but can be
dependent on frequency. The QGG estimate can there
vary with the f 0 of the speech.

We tested this by choosing a subset of the data tha
have similarf 0 and recalculating the standard deviation
regionX. We chose all 260 syllables that have Mandarin to
1. This is a high, level tone, which is the same tone t
occurs in regions 1–4. In this subset of the data, thef 0

trajectory is relatively flat in each syllable, as well as acro
the whole utterance. The results are displayed in columnX8
of Table I. The standard deviation of the amplitude of all t
signals is lower, but the QGG drops most dramatically.

One can also see both the pitch dependence of the Q
and its relative insensitivity to the vocal tract configuration
Fig. 10. This is a scatter plot of the meanf 0 of all syllables
versus the measured amplitude of the QGG signal. We u
the same window~as defined above! to calculate the meanf 0

as was used for the amplitude measurement. Syllables
tone 1 are seen as a tight cluster in the upper right cor
That cluster spans the full range of phonemic variation, c
ering all vowels in combination with a variety of consonan
and glides. The other syllables in Mandarin~shown as dots!
have either low pitch or they are rising from or falling to lo
pitch, thus they have an average pitch below that of tone
There is a clear trend of increasing amplitude measurem
with increasing pitch, perhaps as the result ofq. One could
empirically correct for this trend, if one knew how much
the effect is the result ofq, and how much is the result of th
speaker’s glottal flow changing as a function of pitch.

While the QGG algorithm dramatically reduced th
variation of regions 1 and 2~to around 10% in Table I!, it
was less successful in regions 3 and 4. This suggests
G. Kochanski and C. Shih: A quasi-glottogram signal
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there is more inherent variability in regions 3 and 4, whi
may well be some carry-over from the pitch and phone
change in regionX. This larger inherent variation can also b
seen for all the signals, although not as clearly because
other algorithms do not yield as reproducible an amplitu
signal as the QGG.

It is possible that much of the variability in regions
and 2 is external to the speaker. The major source of v
ability outside the speaker is expected to be the motion of
throat microphone relative to the throat if the speaker tilts
head forward or back, because the throat microphone
fixed to the helmet. We do not have accurate estimates of
effect, as head motions were not measured. However,
estimate ~after the fact! that 2-mm changes in throat t
throat-mic distance are quite plausible, and these could y
amplitude changes of 5%–10%. A secondary effect is t
the design of our microphone array allows the micropho
to move about 1 mm relative to the skull. This movemen
expected to lead to;3% changes in values of the transf
functions ~changing some more than others!, which would
lead to comparable changes in measured amplitude.

C. QGG for amplitude prosody

As a further test with the same database~Table II!, we
attempt to eliminate any changes in amplitude by predict
the amplitude of each region in terms of the amplitudes
the other regions. Essentially, this normalizes the meas
amplitudes to the rest of the utterance, and would elimin
the effect of a uniform change in amplitude from utterance
utterance. The goal here is to reduce the variability deriv
from the experimental subject~e.g., from changes in the vol
ume of inspired air! and focus more tightly on variations tha
result from the signal processing.

We fit a least-squares linear predictor to the logs of
amplitudes, e.g.,

log~ÂX!5b01b1• log~A1!1b2• log~A2!1¯, ~7!

FIG. 10. Amplitude measurement~from QGG signal! versus mean pitch of
a syllable. Syllables with tone 1~used in columnX8 of Tables I and II! are
shown as ‘‘3.’’ Other tones are shown as dots. In this plot, the pitch dep
dencies~from one tone to another! are larger than the dependence on t
syllable, within the tone 1 syllables.
J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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and then measure the rms size of the residual, log(AX)
2log(ÂX). Here,AR is the amplitude of theRth region~a rms
average of the signal inside a cosine window!, andÂ is the
predicted amplitude, based on the other regions. The pre
tor is a five-parameter linear fit, and we fit separate pred
tors for regions 1, 2,X8, 3, and 4. Again, the QGG leads t
a nicely small variance: it has predictable amplitude. Surp
ingly enough, the low-pass filtered signal is comparably p
dictable, even though its performance before predict
~Table I! is quite poor.

The most important terms are generally those that p
dict A3 in terms ofA4 and vice versa. After prediction, th
frame regions on both sides ofX have similar variabilities,
approximately 8% for the QGG signal. This remainder see
intrinsic to the speaker. The excess variation in regions 3
4 is gone, even though the variation in regions 1 and 2
practically unchanged. This suggests that amplitude va
tions in X, which are driven by phoneme andf 0 changes,
carry forward into the following syllables.

Because regionX8 contains a diverse set of differen
syllables while the frame regions~regions 1–4! always have
the same syllable in the same position, we expect more v
ability in the amplitude ofX8. Table II shows this. However
changing syllables only disturbs QGG amplitude measu
ments by 11%~beyond the intrinsic 8%!, so long as the pitch
is reasonably stable.

VI. SUMMARY

We have shown that the QGG algorithm can produc
useful, noninvasive estimate of the glottal flow~more pre-
cisely, the glottal flow filtered by an unknown linear filter!.
When used to analyze speech, it can be well behaved u
conditions where EGG and inverse-filtered signals wo
lead to errors in voicing estimation. It also yields substa
tially more stable amplitude measurements than other te
niques. Amplitude measurements of repeated words u
the QGG signal can have a fractional standard deviation
small as 9%~0.4 dB!, and the fractional standard deviatio
across different syllables in the same location in the sente
is just 37%~1.4 dB!, with much of that standard deviatio
being attributable to intonation differences.

The QGG algorithm should find applications in studi
of the amplitude part of prosody. We also see application

-

TABLE II. Unpredictable variability of speech amplitude, after processi
by four algorithms. Here, we use the subset of the data whereX has tone 1
~a high level tone!, so that the pitch matches regions 1–4. The amplitude
each region was predicted in terms of the other four regions; the table sh
the remainders.

Fractional standard
deviation of amplitude,
after linear prediction

Regions
1 and 2
ta shuo

X8
~tone 1
only!

Regions
3 and 4
san tian

Raw 0.16 0.32 0.11
Low-pass filtered 0.09 0.16 0.06
Inverse filtered 0.14 0.23 0.10
QGG 0.08 0.14 0.09
2215G. Kochanski and C. Shih: A quasi-glottogram signal
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text-to-speech systems, where there is a need for reli
automatic processing of speech data, and possibly in med
screening or diagnostics of voice disorders.
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