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A novel, noninvasive experiment is proposed that reliably shows the strength of glottal oscillations.
The quasi-glottogram(QGG) signal is generated from a microphone array that is trained to
approximate the electroglottogram signal. The QGG may be useful to improve estimates of whether
speech is voiced, to quantify partial voicing, and to reduce the phoneme effect when measuring the
amplitude of speech signals. The technique is well adapted to the generation of text-to-speech
systems, as it allows an estimate of the glottal flow during undisturbed, natural speech. For prosody
studies, it can be used to provide an estimate of amplitude which is relatively unaffected by changes
in phonemes, and is at least as reliable as standard estimators of amplitu@®03CcAcoustical
Society of America.[DOI: 10.1121/1.1608964

PACS numbers: 43.70.Jt, 43.70.Fq, 43.70.BDS]

I. INTRODUCTION prosody, there is a need for measurements of prosody that are
relatively independent of the particular phonemes, so that
The source-filter model of speech production explainsone can compare prosody of different words. Again, mea-
the acoustic speech signal as a convolution of the timesurements of the glottal flow would be useful, because, on
varying glottal airflow (due to the vibrations of the vocal one hand, the glottal flow is much less dependent on the
folds) with the impulse response of the acoustic filter formedchoice of phoneme than the far-field acoustic signal is, and,
by the vocal tract. This model shows why a measurement ofn the other hand, because it can be related to physiological
the glottal airflow is desirable: it would allow the source and parameters like subglottal pressure and muscle tensions.
the filter to be studied independently. In particular, such a  |nvasive estimates of the glottal flow are possible, using
measurement would allow a determination of voicing, andan acoustically matched tubé,but the tube interferes with
allow the amplitude and harmonic content of the gIottaI OS-"p and jaW movements. This interference rules out app”ca_
cillations to be determined. The source-filter model of SpeeClﬁonS that require simultaneous recording of naturaL undis-
is embedded in speech coders, automatic speech recogniti@iyhed speech. One such application is the recording of a
systems, and speech synthesizers; better understanding of fgabase for a text-to-speech-syst€fS). Most commer-
source and filter Sepal‘ately can lead to better algorithms. FQﬁa' TTS Systems Operate by piecing together Segments of
example, speech synthesizers need reliable, precise indicgscorded speech. Natural, high-quality recordings are a basic
tions of glottal oscillation because voiced speech is oftenrequirement, but one also needs to automatically and reliably
processed differently from unvoiced speech. Human listenergstimate acoustic properties of the speech signals. Other es-
will_easily detect errors in the database of a synthesizefimates of glottal parameters, such as intubation to measure
where the speech has a voicing indication that is wrong fO%ungottaI pressurdgirect photography of the vocal folds,
more than 30 ms, a sensitivity that requires improvement iny, photoglottograpy’ to measure the glottal open area are
current techniques if one wants to create synthesizers aut@isg invasive and incompatible with many applications.
matically without tedious manual checking. _ PlethysmograpHy can measure subglottal pressure, but is
Further, a relatively unexplored area of speech science isymbersome, and the acoustic properties of the box in which
the study of prosody. We use the term “prosody” to include e gypject sits need to be carefully considered in order to get
all the acoustic properties of speech that are not part of thg|ggp, speech. Finally, electroglottograpiBGG)°*6is non-
lexical information. Prosody is typically implemented by jnyasive, but measures vocal fold contact rather than glottal
properties such as the pitch, the amplitude, and the spectrgl, - the folds can be contacting while the glottis is partly
tilt of the sound. Prosody is used to mark boundaries, tQpen or noncontacting when the glottis is nearly closed. The
emphasize words or phrases, and to help control dialog&GG signal is only weakly correlated with the width of the
among other functlon_s._ However, quantitative me_asuremen@ottm opening or the glottal flow, and thus is not directly
of prosody are nontrivial, because, other than pitch, all thgg|ated to acoustic measurements.
candidate acoustic features are ;trongly influence_d by the Historically, the glottal flow has been estimated by “in-
phoneme: for example, an emphatic /m/ may be quieter thafese filtering.” Inverse filtering is based on first estimating
emphasized /a/. Thus, to be able to study and understanfle yocal tract transfer function from a microphone or an-

emometer signal, inverting it, and using the inverted filter to
dElectronic mail: gpk@alum.mit.edu remove the effect of the vocal tralt!f the estimated trans-
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fer function is accurate, the result will be close to the actuainstantaneous measurement of whether the vocal folds are
glottal flow. However, the problem is intrinsically indetermi- contacting or not, and thus gives some indication whether the
nate, as one is trying to estimate both a time series of glottajlottis is open or closed. We also use data from a microphone
flow and a time series of vocal tract parameters from a singl@ear the base of the throat to pick up a signal from the sub-
input time series. In practice, assumptions are made that thglottal cavities. The subglottal cavities have an acoustic
microphone signal is quasi-stationary, that the spectrum ofransfer function from the glottis through the throat wall to
the glottal flow is simple(e.g., a periodic pulse train or a an outside microphone that is relatively independent of time,
pulse train fed into a preemphasis filtethat the vocal tract as (unlike the vocal tragtthe trachea is not surrounded by
can be modeled as an all-pole spectrum, and sometimes thanuscles used to articulate speech. The dimensions of the
the formant frequencies change smoothly with time. Whiletrachea and bronchi are also largely unchanged during
the resulting algorithms work reasonably well, none of thebreathing, and even motions of the larynx are expected to
approximations are perfect, and the resulting estimate of thiead to only modest changes in the acoustic resonances of the
glottal flow is only approximate, with ill-determined errors. trachea '

The goal of this study is to develop a new, noninvasive ~ The algorithm requires at least two microphones, one to
technique that allows an estimate of the volume flow of airpick up the throat signal, and one for sound from the vocal
through the glottisJ, based on an array of microphones andtract. The throat signal contains a mixture of sound that
an EGG signal. We partially realize that goal by computingPropagated from the glottis down through the trachea then
an estimate fotJ which is convolved with an unknowfbut  through the skin of the throat, mixed with sound that propa-
time-invarian} transfer function. In the remainder of the pa- gated from the glottis up through the vocal tract, then back

per, this is what we mean when we speak of the QGG as a#own through free air to the throat microphone. The other
“estimator for U.” microphones are used primarily to cancel out the component

This paper will first justify why such an algorithm is Via the vocal tract. This cancellation results in a signal that

possible. Second, it will lay out the details of our algorithm.can be thought of as the glottal waveform, filtered by its
Third, it will describe tests of the algorithm. Since we do notPropagation through the neck. We show that this signal is
have invasive flow measurements available for a direct Coml.ess variable than commercial inverse-filtered Signals, in the
parison, we bring in two lines of indirect evidence to showsense that the signal shows less phoneme-dependent varia-
that the quasig'ottogramQGG) Signa' is closer tdJ than the tion. This Stab|l|ty is what one eXpeCtS of the glOttal wave-
standard signals used for voicing estimation. The first test i€0rm; it should be only weakly influenced by the vocal tract
qualitative: we compare the QGG's behavior to other signal§onfiguratiort”
in “difficult” regions of speech, and show that the QGG It is necessary to cancel out the sound from the vocal
behaves well under conditions where one or another of thifact because we want an estimator of the glottal flow, and
standard signals misbehaves. The second test is quantitatiJ€ do not want our measurement to be disturbed by the
though indirect: To prepare, we introduce a simple “toy” dramatic char}ges in the transfer fupcjuon qf the vocal tract
model of speech, and show that in that model, the signalfat occur during normal speech. This is a different approach
that lead to the least variable amplitude estimates are thOM an inverse-filter estimator, which attempts to dynami-
signals that are closest 1d. We then show that the QGG cally _e_stlmate gn_d m_vert the vpcal tract tran_sfer function: a
signal allows a very steady estimation of amplitude, generontrivial, multiplicative operation on one signal. We look
ally less variable than the result of other standard linear edOr @ signal that has a time-invariant relationship to the glot-
timators. This provides evidence that the QGG signal is closf?! flow via a linear operation on several signals.
to U.

A gooql e.stlm'ator for glottal ﬂow should be noninvasive. Il EXPERIMENTAL METHOD
It should distinguish between voiced sounds and sounds gen-
erated in other constrictions of the vocal tract. It should also  In the experiments described below, we mounted four
be linear, and should be related to the actual glottal airflonBruel and Kjaer type 4165 omnidirectional microphones on
through a time-invariant transfer function. Linearity helpsthe face guard of a hockey helmet. The microphones were
simplify connecting the estimate &f to physiologically im-  mounted near the nosg cm lateral from the end of the
portant parameters like the subglottal pressure and the glottabse, the side of the moutt2 cm lateral of the corner of the
open area, and it allows straightforward quantification of parmouth, near the foreheadcentered, 11 cm above nose
tial voicing. The output of the algorithm should be related tolevel), and near the base of the thrgan centerline, 2 cm
U via a time-invariant transfer function, so that we canfrom skin, 2 cm above the top of the sternurfihe micro-
meaningfully compare signals at one time to signals at anphones were checked to be slightly outside breath streams,
other. Particularly, one would like to compare glottal flows and were protected by 4 mm of windscreen foam. In other
between different phones. experiments, we found that only the placement of the throat

We approach these goals by building a signal from lineamicrophone was critical: it should be placed as close as pos-
combinations of several filtered microphone signals. If sevsible to where the trachea can be palpaftibe fossa jugu-
eral microphones are placed near the head and neck, thégris), so long as the microphone does not collide with the
will capture different signals, containing different informa- subject during normal head motions. The placement of the
tion. We choose the linear combinations and filters to makether microphones is not critical, and we have obtained simi-
the best possible match to the EGG signal, which provides alar signals from a six-microphone arrépcluding cheek and
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ray (using a gradient microphone for the throat signal

back-of-the-head microphoneand a three-microphone ar-
Acoustic
Signals
N

The EGG signal was obtained from a Portable ™

) L Computation of Compute
Laryngograptt! The electrodes were placed to maximize the filter coefficients, QGGP(Eq, 5 _.>

signal strength for long vowels, in modal speech, over the (ggg 2 (Eq. 4) @
normal range of ;. Data was digitized at 12 kHz per chan- Signal

nel with an antialiasing filter. The microphone and EGG sig-
nals are high-pass filtered at 40 Hz to reduce room noise arflG. 1. Diagram of the data and signal flow in the computation of the QGG.
the large-amplitude, slow components of the EGG that cor-

respond to motions of the larynx. estimates for speech that hég outside the range of the

ESPAéI}W |\r;vzzrs_reh f||te;re(élj riSvlggilrs mwn?irer ﬂron(tm(id rby training data inx. Ours did, having meaf, of 248 Hz and
aves. 'ney are derived 1ro cropho ca standard deviation 97 Hz. The sweep rates were*=1AD

the mqutl). ESPS/wayes computes the linear _predlctor a"'Hz/s (average slope over the cedtfas of theutterance
poles filter that will whiten each frame ®, then inverts the

filter and applies it taM.
In the examples that follow, we used Mandarin speech

acquired from a female subject, a native Mandarin speakdl. THE ALGORITHM

fluent in English. Because Mandarin is a tone language,

Mandarin speakers can conveniently contrglmovements.

Therefore we expect that vocal fold vibration will be more

repeatable, reducing unpredictable fluctuationlin

o

The overall structure of the algorithm is shown in Fig. 1.
To explain the design of the algorithm, we can consider a
simplified form of the microphone array as shown in Fig. 2:

ne microphoneM, near the mouth, and anothér, at the

The data presented in Sec. IV were taken from a randorﬁase of the throat. During voiced sounds, the signals are
(e.g., selected for other purposeet of English vowels and excited by the flowlJ, through the glottis. The signal @tis

words, read at normal volume in modal speech, along with . .
P 9 nade of two main components, one traveling through the

some unplanned spontaneous phrases. The data for Sec. i . -
a database of 979 utterances in the forfa“shuo X san vocal tract(transfer functionV) to M, the other traveling

tian” (meaning “He say« for three days). In the database, dwectly through the necR via a transfer functlo_rN. No_t_e
. . that N includes the resonances of the trachea, in addition to
the frame syllables all have high level toftene 1 andX is

a randomly selected 979 of the1300 allowable Mandarin the transmission through the throat, which acts as a low-pass

syllables(here we include the tone as part of the syllable filter. Sound coming out of the mouth and then propagating

The subject pushed a key for each prompt, and Chinese chaqpWn thr.ough the air i’ has a transfer funcqu-V. .
In this paper, we treat these transfer functions as matrix

acters were presented on a screen. Speech begah@I78 T : . e
multiplications in any complete basis, not yet specializing to

after the prompt. Overallf, had a mean of 235 Hz and a _ .. : : ) :
o . o a time series, frequency representation, or some intermediate
standard deviation of 26 Hz, with most of the variationXan . ; . . .
basis, following Ref. 24. The throat microphone signal is

~ Calibration utterances to train the algorithine., fit the T=(N+A-V)-U. We takeM=V-U, neglecting the
filter coefficients for both sections were a broad mixture of
sounds, totaling 197.3 and 232.5 s for the two sessions. We
used 25 calibration utterances from the beginning of the
day’s recordingrandomly selected from-40 recorded utter-
ance$ and another 25 at the end;6 h later. Half were
single-syllable English wordge.g., “nap,” “sap,” “bee,”
“gold,” “hold,” “moo,”... ). The words provided a variety of
vowels and consonants in natural contexts. One quarter of
the utterances were repeated, unvoiced fricatites,” “f,”

“s,” “sh,” “th” ) with no vowel context, and repeated, aspi- M
rated “p” and “h” (again, no vowel context These voice- O
less sounds are useful to force cancellation of the mouth

signal and to check the operation of the algorithm, because A

their U is a relatively steady flow, compared to voiced
speech.
The remainder of the calibration utterances were long
vowels, nasals, and voiced fricativ€®,” “u,” “v,” “z, (@)
“‘m” ) wheref, was swept either up or down. The speaker T N
was asked to sweep at least half of her pitch range in each
utterance, catching either the lowest or highest comfort-
able pitch. Thesé, sweep utterances provide voiced speech!G. 2. Schematic of microphone placement and signal pathis a mi-
with the speaker’s full pitch range. It is useful for the cali- crophone near the moutfii; is a microphone near the throat.refers to the
. ) transfer functions from the larynx along the vocal tracktpandA-V is the
praﬂon Utterances to cover all t""@ range of the speech used ansfer function from the larynx, through the vocal tract,TtoN is the
in the experiments. The algorithm will not produce goodtransfer function from the larynx through the throat wallTto

N oy M
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small amount of sound that comes out through the neck andihere the averagéwritten as angle bracketss taken over
propagates upwards through the airMo all phonemes in the corpus. The change in error is always
We expect thaN andA should be nearly independent of non-negative and is normally nonzero everywhere except on
the phoneme being produced. On the other hahdaries  a hyperplane we will calP, defined bycy=—cy-A. Not
dramatically and systematically as a function of the pho-coincidentally, this relationship between the filter coefficients
neme. We can express this variation by writMg v +a-v, is exactly what is needed to cancel out the part of the signal
whereV depends on the phoneme only throughand{@)=0  that came from the mouth, leaving only the part that came
(the angle brackets denote an average over the corpus @irough the throat wall. The intersection bf and P then
speech In other words, we decomposé into a constant specifies the best estimator f@r(the one that is least sensi-
transfer function,v, and a variable part. Because humantive to changes in the transfer functiomhese results gen-
speech is the result of several independently controlled arralize to arrays of more than two microphones. They also
ticulators, a is normally a vector. ThenT=(N+A-v)-U  can be generalized to the case where all the transfer functions
t+a-A-v-U. vary with time, though Eqg1) and(2) will change in detail.
Hypothetically, if we had a reference sign&), which So, given a reference signal, we can start with an array
was derived fromU via some time-invariant transfer func- of microphones and find the linear combination of filtered
tion, g, we could find a linear filter that would reprodu@  microphone signals that best matches the reference signal.
from the microphone signaléNote that we assume off-line The resulting signal is less variable than any signal derived
processing, so our filters need not be calisthe general py a linear operator from a single microphone. Loosely
form for that linear filter would beC=cy-M+c7-T.  speaking, the best estimator is obtained by canceling out the
To find the filter matrices(coefficienty cy and cr, we  highly variable signal from the mouth microphone and using
would minimize the difference betweer€C and Q:  the part of the signal that did not propagate through the vocal
Cm ,Ct=arg ming(cy ,cy), where tract.
In the real world, one does not have a perfect reference
E(cum.cr)=(C-Q)"T-(C-Q)=[C-Q|? @) signal,Q. The best we can obtain noninvasively is the EGG
is the sum of squared errors between our target sigrand signal. The EGG is related td in a nonlinear and variaple
our reconstruction. manner, because the larynx moves up and down relgtlve to
If a=0, Eq. (1) is degenerate, and its solutions are a”the electrode_s used to measure _the__EGG. Repeating the
filter coefficients on a line which we will call, which goes ~@P0ve analysis shows that the variability of EGG measure-

through cy;=0, cr1=q-(N+A-2)~* and cy,=q-v 1, ments are not important, so long as changes in the EGG

cr,=0. The first of these two solutions corresponds to usinq;ignaI are not correlated with phonemes. This is true, by and
a single filter on the throat microphone to ma@hwhile  'a'g€, as the larynx moves in response to pitch changes and
ignoringM. The second solution is the reverse: using a singldnhalations, neither of which are correlated with most pho-
filter on the mouth microphone while ignorig Points on  N€Mes in most languages. Glottal stops and pharyngeal
L correspond to linear combinations of these two filters, anFOUNds are an exception, but they are not particularly com-
all points onL are equally good solutions and mat€h= Q mon, typically comprising just a few phonemes in a lan-
exactly, so long as¥=0 (assuming that the necessary in- 94age.. . _

verses exist This derivation can be extended to allow white __ Nonlinearities in the relationship betweds and the
additive noise in the microphones, in which case the neced=CGG signal are difficult to analyze analytically. We have
sary inverses always exist. The results are qualitatively similnvestigated their effect empirically in Secs. IV and V.

lar, although the derivation and results become substantiallg Algorithm introduction

more complex. i _ )

If the speaker starts talking, instead of just vocalizing  VVe first build the data matrixx, where each row con-
with a stable vocal tract, the transfer functions will vary from t@ins the signal from one of the microphones, and each col-
phoneme to phoneme, and we will not be able to mach UMn corresponds to one moment in timeis ann by m
perfectly at every moment, 6 will be positive. Not every matrix when there ara mlcrophones, eaph dlgmzed to pro-
solution gets the same increment of error, though. Becsluse 9Uce M samples of audio. The EGG signal is a one by
changes from phone to phone, solutions that depend prédatrix. _ _
dominantly onV will fit worse and have larger errors than e then select a set of tafie., taps on a delay lingor
solutions that depend predominantly dh This difference  €ach microphone. Phys!cally, the clos_ure of the glottis is the
breaks the degeneracy and typically picks out a single be§@use of the acoustic signals: when it closes, a sound wave
solution. In general, the best solution will use signals fromPropagates up the vocal tract and down the trachea, reaching
all microphones, and it will provide a better approximationthe microphones roughly a millisecond later. If one tries to
to Q than could be obtained from any linear filter operating@oserve a glottal closure at tinieone will need to use mi-
on any single microphone in the array. crophone data from later times, when the sound waves from

If we assume tha¥ varies slowly enough, we can write the closure reach the microphones. Thus, we use the taps to
down the change in error due to the difference betwéen  build a finite impulse respong€IR) filter which will predict

a given moment and the average\ofi.e., v): the present EGG signal from future microphone signals.
To select the span of the taps, we need to consider the
AE={||(cr-A+cy)-a-v-U|?), (20 purposes of the filter we are building. It needs to cancel out
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the mouth signal that is picked up by the throat microphoneplitude of f, in microphoneM, it will be strongly boosted

and it needs to match the impulse response of the remainingnen the first formant is close fg. The QGG signal should

part to the EGG signal. not be affected by this problem, as it is measuring a combi-
The taps span the range of delays beginning with théyation of signals chosen to match the EGG's relatively stable

earliest propagation from the glottis to the microphone inamplitude: roughly speaking, it is measuring the subglottal

question, ending when the impulse response of the vocaayities through the throat wall, and the formant structure of

tract goes below 1% of its peak value. the vocal tract has little effect down below. The QGG ought
Vocal tract formant bandwidths can be as small as 4Qiso to be more consistent than a low-pass filter if the

Hz*>?® when the glottis is closed, though in real speech aspeaker has a pitch range that swings through more than an

bandwidth of 80 Hz is more realistié. Such a bandwidth octave. In that case, the low-pass filter will sometimes pass

implies that the vocal tract resonances will take about 3he second harmonic, and sometimes not, leading to more

-1/(2wB)~6 ms to decay. Bandwidths for the tracheal reso-amplitude fluctuation.

nances are wider, 200—400 Bfzand so are not the limiting

factor for the window width in the time domain. Matching

the acoustic to the EGG signal requires a window length of ,

about 1f,, which can be slightly longer. We choose the B. Implementation

range of taps to cover the longest of these tirflEs ms in We build a set of linear equations corresponding to the
these experimentsand we use the same number of taps forFIR filter that best predicts the EGG signal, using straight-
every microphone. forward least-squares linear prediction technigti&he pre-

The resulting QGG signal does have some imperfecdicted EGG signal at each time is a linear combination of
tions. It has a nonzer@hough relatively smallresponse to n-q values(q taps on each ofi microphones To start, we
fricatives and plosives. Also, the QGG algorithm does notdefine the covariances between shifted signals fromitthe
estimatelU directly, but estimatel times a transfer function, andjth microphones:
where the transfer function depends on the subject and the
experimental configuration. Finally, the algorithm does not 1 >
adapt to changes in microphone positions relative to the %J'J_E : Xit—a Xjts
mouth, nose, and throat, so stably mounted microphones are
presumably required for good results. wherea is the time shift between théh andjth microphones

Note that we do not claim any absolute calibration for(we neglect end effects, for simplicityand t indexes the
the QGG signal. Because the QGG filter coefficients involvetime. These covariances are estimated from the data and con-
the EGG signal, the QGG amplitude will differ from person tain noise covariances. Analogously, we will writg , ; for
to person and session to session, depending on neck structuhe covariances between the EGG signal and the shifted mi-
and the placement of the EGG electrodes. However, therophone signals. The filter coefficients that minimize the
QGG signal depends on the EGG only through its averagenean squared error are then the solution to
properties during the calibration/training session. So, when
one is actually using the QG@s opposed to calibrating) it
the EGG is entirely unused and may be disconnected. There-
fore, factors that affect the EGG signal during Wsaech as
the momentary position of the larynx with respect to elec-which is a set ofn-q linear equations. We prepare to solve
trodes will have no effect on the QGG. the equations by stacking thug, ; to make a single vectdt,

There are similarities between the QGG signal and thestackinge, ,; to make a single vectd? (of sizen-q by 1),
low-pass filtered mouth signal. Both are generated by lineand placing the elements, ; ; into the corresponding places
time-independent filters. Indeed, in practice, the QGG signaH ., j to make an-q by n matrix. We solve the resulting
also has less high-frequency power than microphbdhe matrix equationHC=P, with a singular value decomposi-
(though more than the output of a high-order low-pass filter tion algorithm to allow for degeneracies and near-
The steep QGG spectrum has its origins in three places: thdegeneraciesC can then be unpacked to yield thg,;,
EGG signal that it is matching has relatively less high-which are the filter coefficients that give the best prediction
frequency power than speech, and high-frequency compaf the EGG signal from the set of microphone signals.
nents radiated from the mouth tend to have phases that are We can now calculate the QGG signal,
strongly dependent on the phone, consequently there is little
cross-correlation between the high-frequency EGG compo-
nents and the high-frequency components fidnand thus
they are deemphasized. Finally, microphdnpicks up some
signal with a stable phase relationship to the EGG, but higlirom thec, ; and microphone signals. The prediction is not
frequencies are not effectively coupled out through the throaat all precise because the EGG signal is a strongly nonlinear
wall. function of the glottal opening: it contains little information

However, we expect that the QGG should give a morebeyond the simple fact of whether the vocal folds are touch-
consistent amplitude measurement than the low-pass filteing or not. It would be surprising indeed if one could build a
Since the low-pass filter signal essentially measures the antinear filter that would exactly match the EGG signal.

3

Ei: ¢a,i,j'ca,i:¢*,a,j ’ (4)

ptzzi Xi,t—a'ci,a! (5)

2210 J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003 G. Kochanski and C. Shih: A quasi-glottogram signal

Downloaded 28 Feb 2013 to 130.126.32.13. Redistribution subject to ASA license or copyright; see http://asadl.org/terms



Near forehead I QGG

L i g [
Near nose 21 Low-pass
S 1
L T - I fan to high. Whatis fan to high? ]
Inverse filter 1
EGG ]
EGG 1
| 1 i L 1 1 1 1
L * * * * L * * * * ° time (s) ! 2
34 time(s) 3.45

FIG. 5. Output of the QGG algorithm, compared to other standard signals.
FIG. 3. Raw signals, used as input to the QGG algorithm. From top toFrom top to bottom, the signals are from the microphone near the mouth
bottom, the signals are from microphones near the mouth, near the foreheagy), the QGG, a low-pass filter set just above pégk a standard inverse-
near the nose, and near the throat, &patton) the electroglottogram. This  fjltering algorithm, and the EGG signal. The text is marked on the figure,
section of speech corresponds to the *t" in the midst of “...what is... . The approximately aligned with the audi¢The pause at 1.2 s has been short-
throat microphone signalT, has a noticeably smaller ratio of high- ened for a better visual display.
frequency power near 3.45 s to power in the voiced regiedge$ than the
other microphones. That is because the high frequencies geotdy from . . . . .
the mouth, whereas the low frequencies also come through the throat walparison signals in the same region around the “t” burst. Fig-

ure 5 shows the QGG and comparison signals on a longer
stretch of speech.
C. Examples

Figure 3 shows the raw data for all four microphoneslV. QGG AS FODDER FOR VOICING ESTIMATION
and 'ghe EGG signal for a small section of speech. Thg dis-  ap engineering evaluation of the QGG signal as input
play is centered about the burst of a “t” and shows voicedg,, 4 \gicing estimation algorithm is beyond the scope of the
regions(at the edges a burst, an_d then a_fncatlvehke_ region paper. Instead, we will show théat least under some con-
after the burst. Note that the voiced regions are quite S'm'laaitions) the QGG signal can provide a more reasonable indi-

in all four microphonesthough the throat microphong, is 4401 of the presence of voicing than either the EGG or the
F?hase S_h'fted by about 30°0n the other_ hand_, the frictive- inverse-filtered mouth signal. This is the first, qualitative, test
like region (3.44—-3.46 shas a substantially different struc- of the QGG.

ture at microphond’, and also has an amplitude that is rela-
tively small, about 3 dB lower, relative to the voiced regIoNSsiryction: because it is a linear function of the pressure near

than the other three microphones. the glottis, it is well behaved during startup and shutdown of
Figure 4 shows the output of the QGG and several cOMye giottal oscillator. So, unlike the EGG, it may be able to
quantify partial voicing and mark onsets of voicing precisely.

I L Because the QGG is constructed from a time-invariant filter

] operating on acoustic signals, it may be more robust than

The advantages of the QGG signal follow from its con-

" W\/\/\N‘M M L o ] algorithms based on an inverse filteve do not discuss
L v : manual adjustment of inverse filter coefficients here, as such
QGG ] techniques are impractical for large speech corpohay

- 1 time the spectral estimation step of an inverse filter fails to
] produce a good result, or any time the speech signal is not
[ ] well represented by an all-poles transfer function, one ex-
L . pects the inverse-filtered signal will not reflect the glottal
Inverse filtered ] state. The QGG does not suffer from those problems.
Figures 6—8 show examples of speech signals where the
i glottal oscillation is starting or stopping. The figures show
EGG ] that the QGG signal can sometimes provide a much better
explanation of the acoustic signal than does the EGG signal.
w ame e Limitations of EGG signals have previously been described
elsewherg?3!
FIG. 4. Output of the QGG algorithm, compared to other standard signals. In Fig. 6, the envelope of the QGG signal tracks acoustic

From top to bottom, the signals are from the microphone near the mout : ; ;
(M), the QGG, a low-pass filter set just above pégka standard inverse- ?)ower (the mouth SIQnal while the EGG S|gnal shows an

filtering algorithm, and the EGG signal. This section of speech correspondk‘nnatura”){ sharp onset_/ending. If the glottal oscillation
to the “t” in the midst of “...what is... ,” and matches Fig. 3. stopped with the EGG signal, one would have to assume a

signal (arb)

Low-pass filter
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FIG. 6. Comparisons of estimators of the glottal waveform. The signal is thd™/G- 8. Beginning of the word “mosey,” at normal amplitude. Note that the
off-glide [a] in “high.” M is the raw signal from the microphone near the EGG S|gna_l starts lateM is the_ raw S|gr_1al from the microphone near the
mouth, while “low-pass” and “inverse-filtered” are processed versions of Mouth, while “low-pass” and “inverse-filtered” are processed versions of
M. QGG is derived from a microphone array, and EGG is the electroglotM- QGG is derived from a microphone array, and EGG s the electroglot-
togram. The EGG stops more than 30 ms before the end of the glottdP9ram.

oscillation.

denly start to be generated in the harmonics. This is the
bandwidth for the first formant of only 5 Hz for the acoustic situation that is described by the two-mass mdéétwhich
signal to persist as long as it does, which is incompatiblgypically gives a spectrum where the amplitude of titk
with the known bandwidth$=2’ The vocal tract simply is harmonic scales aa,<n"*, or a 6 dB/oct slope. Such a
not a good enough resonator for the sound to persist 30 nhange can be seen in the spectra shown in Fig. 7.
after the end of glottal oscillation. Therefore, glottal oscilla- The effect is not confined to the low-amplitude tails of
tion must be continuing at a lower levedo the vocal folds voiced sounds. For example, in Fig. 8, an acoustic signal
do not touch without showing up on the EGG. Titfeand  begins two periods before the first EGG activity. Again, one
Steven$® have discussed this kind of small oscillation. must assume that the vocal folds are oscillating but not yet

Other observations, such as the events aroundompletely closing.
t~8.015s in, again, Fig. 6 can also be explained similarly.  Figure 9 shows a section of a low-amplitude, sustained
Imagine comparing two similar vowels, one uttered with am-“0”" as an extreme example where the EGG fails to explain
plitude just small enough so that the glottal folds do notthe acoustic signal. Several times, the amplitude of the EGG
collide, and the other uttered with slightly more amplitude sosignal jumps up dramatically for a few milliseconds. Little
that the folds do collide on each cycle. If we consider aeffect is seen in the acoustic signal, other than an increase in
decomposition of the signal into a stack of harmonic§sat  the power of the higher harmonics, nor is much change seen
2fy,3f,4fg,..., thelowest harmonic will primarily mea- in the QGG signal. Hypothetically, the vocal folds could be
sure the total air flow per cycle, and will change only gentlyoscillating within a whisker of touching, and some perturba-
and continuously when the vocal folds begin to collide. tion intermittently reduces the spacing just enough to make
However, the higher harmonics do not behave smoothly.

Below the collision threshold, the oscillation is close to a ; . .

simple harmonic oscillator, and there is little power in the \ M
harmonics. Above threshold, there is a strong nonlinearity
when the vocal folds collide; large amounts of power sud- QGG
5. i = Low-pas
il )
G20 | 1 i !
E 30 | . a ‘
5 || a Inverse-filtered
2-40 | E
S i
§-6O -1
"’_70 L 1 1 1 1 | EGG
0 1000 2000 Frequency (Hz) 4000 5000
I | 1
FIG. 7. DFT spectrd16-ms windows on either side of 8.015 s in Fig. 6. 64 Time (sec) 6.5 6.6

The thick, black curve is before 8.015the window ends at 8.015,svhen
the glottal folds are colliding, and the wide, gray curve is afteindow
begins at 8.015)s The fundamenta{225 H32 is essentially unchanged in
amplitude, but the power in the harmonics drops by about 10 dB.
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FIG. 9. The middle of sustained low-amplitude “0” phonation showing
major EGG changegbotton) without large changes in the speech signal
(top). The various signals are labeled.
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them collide. The noteworthy observation here is that thehis as a figure of merit to compare algorithms: less variable
QGG signal is a better predictor than the EGG of whether thestimators are better and probably closer to the glottal signal.
acoustic signal shows voicing. This should not be too sur-  We will work in a short-time Fourier transform basis to
prising, as the QGG is constructed from a set of acousticonveniently describe speech like signals. Signals are then
signals. indexed with two parameters: a time indeéxwhich locates
These problems we have displayed are not hard to findhe transform’s window, and a frequency index, for the
occurring at these levels in 6 of 304 voiced syllables in-low-resolution spectrum in the window. In this toy model,
spected. Because the problems seem to be associated mtis glottal source changes its amplitude but not its spectral
with glottal oscillations where the vocal folds do not contact,shape:U(t,w)=1f(t)-g(w), and we assume that the ampli-
we expect that EGG problems should be much more comtude,f(t), changes slowly compared to structure in the glot-
mon in languages that make more extensive use of murmutsl spectrum,g(»). We can safely assumg,|g(w)|?=1
(i.e., a “breathy” voice quality, most notably Hindi. The without restricting the model, as the overall amplitude can go
inverse filtered signal also tends to behave badly for lowdinto f(t).
amplitude voicing or other conditions where the power inthe  Next, we can write a time- and frequency-dependent
higher harmonics is very low. Among the displayed signalstransfer function for the vocal trad(w, ¢(t)), where¢(t)
the QGG provides signals that display a strong contrast bds the vocal tract configuratiooughly, the phoneat timet.
tween voiced and unvoiced regions, and have most of theifhe pressure outside the mouth is thefih, w)~f(t) - g(w)
power in the fundamental to reduce the likelihood of octave-h(w, ¢(t)), and we can sum over frequency to get the rms
errors in any pitch tracker to which the QGG signal is fed. amplitude of the mouth signah?(t)=3|s(t,w)|?>=f(t)
As input to a voicing estimator, many of the advantages z(¢(t)), where z2(¢)=2,|g(w)-h(w,$)|?> shows how
of the QGG signal are shared with the low-pass filteredefficiently power is coupled from the glottal source out
mouth signal. However, we would expect that the suppresthrough the mouth for a particular phoiie
bursts(e.g., p, t, kand be a closer representation of the state  We can now take the log of the power to write

of the larynx during closures.
log(a(t))=log(f(t))+log(z(t)). (6)

As long as variations of the vocal tract are uncorrelated with
changes in the larynx, the variances of the two right-hand
The quasi-glottogram signal is valuable for more thanterms add, and we can conclude that var(@p(

correcting voicing errors. It also provides an estimate of the=var(log(f))+var(log@). Since var(logf))>0, var(log@))
amplitude of the oscillatory flow through the glottis. We ex- >var(log(f)). In other words, the amplitude outside the
pect that this amplitude will be a better predictor of prosodicmouth is always(in this toy model more variable than the
emphasis and a better measure of the speech effort beirggnplitude ofU. The same conclusion follows if you consider
expended by the speaker than is the total acoustic power &fto include the vocal tract plus an arbitrary linear operator:
the mouth signal, the inverse filtered mouth signal, or thghus any filtered version of the mouth signal will still be
EGG. more variable thamJ.

Amplitude has been known to be a significant compo-  The limits to the assumption thhandz are uncorrelated
nent of prosody since the 19585;*° and into more recent come from two sources: First, the speaker’s intentional
literature?'~**However, all these studies have been severelynuscle motions can cause correlations between the glottis
limited by the large intrinsic variability of speech amplitude and the vocal tracte.g., a hypothetical language might
measurements. The experimental desidesy.,, ANOVA  specify that high vowels are always spoken in a pressed
analysis on p. 190 of Ref. 4invariably compare the pro- Vvoice). Second, some vocal tract configurations with tight
sodic effect in question to the unpredictable variations. Reconstrictions can change the glottal waveform. However, nei-
ducing this variability can be seen to be just as good agher circumstance seems common.
having a larger effect to measure. This is one value of the As a concrete example of this, consider a vowel where
QGG: it allows a cleaner, low-variance amplitude measuref, matches the first formant frequendy,; . Acoustic power
ment, and should lead to more conclusive experiments. ~ will then be efficiently coupled from the glottis out the
mouth, because a peak g{w) matches with a peak of
h(w,¢(t)), zwill be large, and the amplitude at the mouth

To justify our intuition that the QGG signal will allow will therefore be large. On the other hand, if {2 F, with

better amplitude measurements, consider a toy model of thine same amplitude df, the fundamental frequency will be
speech apparatus: a glottal source that drives the vocal tradielow the first resonance of the vocal tractyill be small,
which we model as a time-varying filter. Loosely speaking,and the amplitude at the mouth will be small. Comparing the
the variability of the amplitude outside the mouth comestwo cases, we see that substantial variance in amplitude can
from two sources: intrinsic variability itJ and changes in be generated as the sound wave propagates through different
the coupling through the vocal tract transfer functidh,  configurations of the vocal tract.
Since the two variances add, the variability of the mouth  This toy model contains several loose assumptions and
power will be greater than the variability of glottal power. should not be taken too far, but it does give important clues
Consequently, we expect that the best linear estimators of tHer finding good algorithms, since the mathematics remains
glottal source should have the lowest variability. We can usealid if the transfer functionh, includes the behavior of the

V. QGG AS A MEASURE OF AMPLITUDE OR
EMPHASIS

A. Model of amplitude variance
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TABLE |. Variability of speech amplitude, after processing by four algorithms. Regios the variable
syllable, and shows larger variability because the amplitude is a function of the phonétne in

Fractional standard Region 1  Region 2 X X' Region 3  Region 4
deviation of amplitude ta shuo X (tone 1 only san tian
Raw 0.22 0.16 0.48 0.32 0.31 0.29
Low-pass filtered 0.29 0.23 0.42 0.34 0.32 0.35
Inverse filtered 0.14 0.14 0.42 0.24 0.22 0.24
QGG 0.09 0.09 0.37 0.16 0.19 0.20

microphones and a linear signal processing algorithm. Fofon averagga standard deviation 46% smaller than the cor-
example, ith is time-invariant, var(logd) will be zero, and responding low-pass filtered speech, 38% smaller than un-
the variability of the amplitude estimate, var(lagi will be  processed speech, and 20% less than the inverse filtered sig-
as small as possible. Converselysit always close tg, the  nal. These improvements in SNR are conservative limits, as
transfer function must be near unity, so that var(#)gfnust  the speech contains some intrinsic variability that cannot be
be small and thus var(log)) will be as small as possible. So, removed by signal processing.
we expect that algorithms that are good glottal estimators  Comparisons of cells in Table | have several implica-
will give stable amplitude estimates and vice versa. Note thafions. First, one expects the variation of the frafmegions
for further arguments, we do not require any of the details off —4) to be small, where we always have the same syllable in
the toy model, merely this conclusion, which is indepen-the same position. In contrast, the variation in ¥eegion
dently testable, and likely to be truly independent of theshould be bigger, because the syllable identity changes. This
model. is reflected in Table I, where thé region shows the largest
Purely pragmatic considerations will also lead us to theygriation under all conditions.
same figure of merit. If one is studying prosody, then any  why is the QGG variability not smaller in thé region,
variation of amplitude that is a function of the phonemeit it indeed removes the effect of changes in the vocal tract?
should be considered noise: it prevents one from comparing is not smaller because, unfortunately, the QGG is not an
prosodies of different words. Good comparisons are onlstimator forU, but rather(see Sec. Il a filtered version of
possible if the amplitude measure is independent of phoy q.y, where the filter,g, is time invariant but can be

neme. So, we would like to improve the signal-to-noise ratiodependent on frequency. The QGG estimate can therefore
of prosody experiments by reducing the noise, which agair\1,ary with thef, of the speech.

means finding an amplitude estimator that is less variable. We tested this by choosing a subset of the data that all

. . . have similarf, and recalculating the standard deviation of
B. Comparison of QGG and acoustic power variance regionX. We chose all 260 syllables that have Mandarin tone

We conducted a second, quantitative test. This test dil- This is a high, level tone, which is the same tone that
rectly establishes the usefulness of the QGG signal as a me@ccurs in regions 1-4. In this subset of the data, the
sure of amplitude prosody. We also show that the QGG Sigtrajectory is relatively flat in each syllable, as well as across
nal allows a very steady estimation of amplitude, lessthe whole utterance. The results are displayed in coldhn
variable than the result of other standard linear estimator$f Table I. The standard deviation of the amplitude of all the
Following the logic in Sec. VA, this test indirectly estab- signals is lower, but the QGG drops most dramatically.
lishes that the QGG signal is a reasonable estimator of a One can also see both the pitch dependence of the QGG
filtered version ofU. and its relative insensitivity to the vocal tract configuration in

We used the database of 979 utterances in the fofen “ Fig. 10. This is a scatter plot of the meégof all syllables
shuo X san tiahdescribed. We calculated the QGG for all versus the measured amplitude of the QGG signal. We used
the utterances, along with an inverse-filteeld low-pass the same windowas defined aboveo calculate the meafy,
filtered M, and the rawM. The boundaries of the variable as was used for the amplitude measurement. Syllables with
syllable (X) were hand-segmented, and an algorittESPS/ tone 1 are seen as a tight cluster in the upper right corner.
WAVES get f,) was run to find the two voiced regions on That cluster spans the full range of phonemic variation, cov-
the left side of the segmented ar@asumed to correspond to ering all vowels in combination with a variety of consonants
the vowels in ‘ta” and “ shud ), the voiced region insid,  and glides. The other syllables in Manda(ghown as dojs
and the two voiced regions to the right ¥f (assumed to have either low pitch or they are rising from or falling to low
correspond to the vowels insari and “tian”). Four of the  pitch, thus they have an average pitch below that of tone 1.
utterances were voiced through betweem”“and “ shud There is a clear trend of increasing amplitude measurement
and were dropped because we could not assume that théth increasing pitch, perhaps as the resuligoOne could
voiced region matched the vowels. We then calculated thempirically correct for this trend, if one knew how much of
mean power near the center of the five voiced regions, usinthe effect is the result af, and how much is the result of the
a cosine window. speaker’s glottal flow changing as a function of pitch.

Table | shows the standard deviation of (pgwep for While the QGG algorithm dramatically reduced the
each combination of region and signal. In every case, theariation of regions 1 and 2o around 10% in Table)] it
QGG signal is more reproducible than the others, yieldingvas less successful in regions 3 and 4. This suggests that
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3.6 T T TABLE II. Unpredictable variability of speech amplitude, after processing
= B by four algorithms. Here, we use the subset of the data widras tone 1
- 4 (a high level tong so that the pitch matches regions 1-4. The amplitude in
@ L 4 each region was predicted in terms of the other four regions; the table shows
2 L - the remainders.
=l |
§ L B Fractional standard Regions X' Regions
»v L | deviation of amplitude, 1and 2 (tone 1 3and 4
E | | after linear prediction ta shuo only) san tian
S 1 Raw 0.16 0.32 0.11
L r ] Low-pass filtered 0.09 0.16 0.06
u 7 Inverse filtered 0.14 0.23 0.10
3+ . QGG 0.08 0.14 0.09
KM ‘1 ! 1 1 L L 1 1 L 1 1 1 . .
2-8150 200 f0 (Hz) 250 200 and then measure the rms size of the residual, Agg(

—Iog(AX). Here,Ag is the amplitude of th&th region(a rms

FIG. 10. Amplitude measuremetfrom QGG signal versus mean pitch of average of the signal inside a cosine windpandA is the

a syllable. Syllables with tone (Used in columnX’ of Tables | and If are predicted amplitude, based on the other regions. The predic-
shown as “X.” Other tones are shown as dots. In this plot, the pitch depen-t . fi ter li fit d fit t di
dencies(from one tone to anothpmare larger than the dependence on the orisa |ve_-parame er linear i, an We It separate predic-
syllable, within the tone 1 syllables. tors for regions 1, 2X’, 3, and 4. Again, the QGG leads to
a nicely small variance: it has predictable amplitude. Surpris-
ingly enough, the low-pass filtered signal is comparably pre-
dictable, even though its performance before prediction
?Table ) is quite poor.

The most important terms are generally those that pre-
Az in terms of A, and vice versa. After prediction, the

there is more inherent variability in regions 3 and 4, which
may well be some carry-over from the pitch and phonem
change in regioX. This larger inherent variation can also be
seen for all the signals, although not as clearly because th&ct

other algorithms do not yield as reproducible an amp"tUderrame regions on both sides &f have similar variabilities

S'gnﬁl izs tgsesi%IiGtHat much of the variability in regions 1 approximately 8% for the QGG signal. This remainder seems
P Y 9 intrinsic to the speaker. The excess variation in regions 3 and

and 2 is external to the speaker. The major source of variz o gone, even though the variation in regions 1 and 2 is

ability ogt5|de the speal_<er Is expected tp be the mOt'On of th ractically unchanged. This suggests that amplitude varia-
throat microphone relative to the throat if the speaker tilts the. . . ,
ions in X, which are driven by phoneme arfg changes,

head forward or back, because the throat microphone was . :

. . carry forward into the following syllables.

fixed to the helmet. We do not have accurate estimates of this L . : :
Because regiorX’ contains a diverse set of different

effect, as head motions were not measured. However, Wgyllables while the frame regiorsegions 1—4 always have

estlmate.(aftler the fact th_at 2—mm changes in throat tq the same syllable in the same position, we expect more vari-
throat-mic distance are quite plausible, and these could yiel bility in the amplitude ofX’. Table Il shows this. However
amplitude changes .Of 5%-10%. A secondary effect is tha hanging syllables only diéturbs QGG amplitu.de measu're—

0 SR .
to move about 1 mm relative to the skull. This movement ijnents by 11%pbeyond the intrinsic 8% so long as the pitch

. isr nabl le.
expected to lead t6-3% changes in values of the transfer s reasonably stable
functions (changing some more than othgrghich would
lead to comparable changes in measured amplitude.

VI. SUMMARY

C. QGG for amplitude prosody We have shown that the QGG algorithm can produce a
As a further test with the same datab&%able Il), we u_seful, noninvasive est.lmate of the glottal “C“"f"ore pre-
sely, the glottal flow filtered by an unknown linear filter

attempt to eliminate any changes in amplitude by predictin%c/'v :
the amplitude of each region in terms of the amplitudes o hef‘.used to analyze speech, It can pe wel pehaved under
nditions where EGG and inverse-filtered signals would

the other regions. Essentially, this normalizes the measured dt . . imati It al old bst
amplitudes to the rest of the utterance, and would eliminatg%_eal‘I 0 errorts tI)T vomr;_gt] zs imation. asto }['r']e s fhu stanr-]
the effect of a uniform change in amplitude from utterance t lally more stable amplitude measurements than other tech-

utterance. The goal here is to reduce the variability derivin iques. Amplitude measurements of repeated words using
from the experimental subje@t.g., from changes in the vol-

he QGG signal can have a fractional standard deviation as
ume of inspired ajrand focus more tightly on variations that small as 9%(0.4 dB), and the fractional standard deviation
result from the signal processing.

across different syllables in the same location in the sentence
We fit a least-squares linear predictor to the logs of th S J.USt 37%(1'4 dB, W'th m.UCh qf that standard deviation

amplitudes, e.g. eing attributable to intonation differences.

) ' The QGG algorithm should find applications in studies

log(Ayx)=bgy+b;-log(A;) +b,-log(Ay) +- -+, (7) of the amplitude part of prosody. We also see applications in
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