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Abstract

Rhythm is expressed by recurring, hence predictable beat
patterns. Poetry in many languages is composed with atten-
tion to poetic meters while prose is not. Therefore, one way
to investigate speech rhythm is to evaluate how prose reading
differs from poetry reading via a quantitative method that mea-
sures predictability.

We use linear regression to predict the acoustic properties
of segments from the properties of up to 7 preceding segments.
This accounts for as much as 41% of the variance of some re-
gressions on our full (prose) corpus and up to 79% in a sub-
corpus of poetry. While roughly half of the predictive power
comes from the segment immediately preceding the target, the
predicted variance increases by 6% (for the full/prose corpus)
or by 25% (for the poetry sub-corpus) upon extending the pre-
dictor to include the seven preceding segments. Therefore, in-
teractions between segments extend well beyond the immediate
vicinity. Potentially, these longer-range regressions capture the
rhythms of the poetry. This approach could form the founda-
tion of a general method for characterizing the statistical prop-
erties of spoken language, especially in reference to prosody
and speech rhythm.

Index Terms: poetry, rhythm, prosody, syllable, prediction,
machine learning

1. Introduction

Speech is not isochronous. [1]] showed that three syllable-timed
languages do not actually have equally long syllables, and three
stress-timed languages do not have equally spaced stresses. Yet,
there is a common perception, and not just among linguists, that
different languages have a different rhythm.

We began work on this problem in [2], where we studied
rhythm measures based on durations of vocalic and consonan-
tal intervals. We found the measures had substantial person-
to-person and text-to-text variability. Languages could not be
identified from the rhythm measures unless averages were con-
ducted over a substantial corpus. This result seems to conflict
with the intuition that different language = different rhythm.

To check that intuition, we now cast our net wider, inves-
tigating prosodic properties beyond duration and searching for
rhythmic predictability over a range of about 4 syllablesﬂ This
range includes about two prosodic feet or a phrase. Our choice
of acoustic properties was inspired by the substantial effects
seen in loudness and quasi-duration in our previous work [3].

! Prior work has generally not used phonologically defined syllables,
but often the lengths of successive vocalic regions, which are likely to
form the cores of adjacent syllables. We use the term in this latter,
approximate sense.

The essence of rhythm is predictability. For example, in 2/4
music or iambic poetry, one can anticipate the strength of the
next beat, given knowledge of the previous ones. To quantify
predictability, we use a linear regression of acoustic properties
of segments against acoustic properties of preceding segments.
Pearson’s r2 quantifies the success of the regression | Since we
use a time axis defined in segments rather than seconds, we may
find predictability where [1] did not.

Previous rhythm measures (see list in [2]) are all time-
symmetrical, so they would yield the same value if an utterance
were played backwards or forwards. But humans are not time-
symmetrical: [4] found that while infants could distinguish be-
tween French and Russian when speech was played forwards,
they were unable to do so when the speech was played back-
wards. Since previous rhythm measures cannot make these dis-
tinctions and no machine learning system based upon them can
do so, there must be rhythmic information that existing mea-
sures do not capture.

2. Methods

Our corpus consisted of the data collected for [2]; it contains
42 paragraphs read in each of Standard Modern Greek, Parisian
French, Southern British English, Standard Russian, and Tai-
wanese Mandarin.

There were 10 readers for each language (24 readers for
English). Readers were native speakers of the appropriate lan-
guage who (except for the English) had lived in English speak-
ing areas for three years or less. Every speaker also read 4 short
poems consisting of 8-12 lines. For English, Russian and Greek
we selected poems composed in iambic or trochaic tetrameter.
French poems contained 8 syllables in each line. Where possi-
ble, we selected children’s poetry which had a regular metrical
pattern and was likely to be read with a strong rhythm. For
Mandarin we selected nursery rhymes readable in trochees and
amodern poem readable in an iambic meter. We did not instruct
subjects to read the poetry in a rhythmic or expressive style.

We used paragraphs whose syllable count (as predicted
from the texﬁﬁ and recording duration were both between the
10" and 90" percentiles of the corresponding distributions for
that language. Averaged over languages, the limits were 64.4 to
205.6 predicted syllables and 24.7 seconds to 67.3 secondsﬂ

2 Recall that Pearson’s 2 is the fraction of the data’s variance that
can be explained by the linear regression.

3 We used [3] to transcribe French texts. Speech Technology Cen-
ter Ltd. (St.-Petersburg, Russia) transcribed the Russian for us, and the
Institute for Speech and Language Processing (Athens, Greece) tran-
scribed the Greek. Their help is gratefully acknowledged.

4 The poetry is short, so these limits exclude almost all of it from the
“full” corpus; it can be safely thought of as a “prose” corpus.



2.1. Segmentation

We designed our segmentation procedure to be strictly
language-independent, to enable comparison of results across
languagesﬂ To do this, we first processed the recordings by
computing an acoustic description vector, based on [6]. Then
we built a specialised speech recognition system, based on the
HTK toolkit, [7] that produced a sequence of C (consonantal),
V (vowel-like) and S (silence/pause) segments.

The system was trained on 17 paragraphs of the data that
were manually segmented into phones by the authors. Each
language had at least one segmented paragraph. In the train-
ing data, all vowels and sonorants were mapped into V and all
other phonemes into C. Pauses were manually identified and
transcribed as S.

The recogniser was a monophone system: the C segment
had six states and a minimum duration of 20 ms, V had six
states and a minimum duration of 30 ms, and S had 13 states
and a minimum duration of 110 ms. Eight of the states had four
Gaussian mixtures; the others had just one. All the Gaussians
had independent diagonal covariances; nothing was tied. The
acoustic feature vector for the recogniser was 41-dimensional,
differing primarily from the acoustic description vector in [6 8]
in that the spectral components were not smoothed. Addition-
ally, it included analogues of the “Ldur” and “Fdur” values de-
fined below in averaged over the preceding 250 ms.

2.2. Predictors

Once the segment boundaries were defined, five acoustic prop-
erties were computed for each segment. These were used as the
independent variables in the linear regressions. We computed:

1. log(A), where A is the segment duration.

2. Ldur = Y L-dt/(to + A) (“loudness”), where to =
100 ms, 6t = 10 ms is the time step, and the sum is taken
over the segment. This uses the loudness density estima-
tor from [3, 9]]. It was designed to reflect the perceived
loudness. It incorporates (approximately) the result from
[[LO] that the perceived loudness of tone bursts increases
with their duration for durations shorter than ~200 ms.

3. Fdur = > L - (A — A) - 6t/(to + A) (“frication”), as
above, but incorporating the aperiodicity measure from
[3]. A is the average aperiodicity, averaged over the en-
tire paragraph and weighted by loudness. Fdur measures
the strength of frication: voiceless fricatives will give
positive values, vowels negative, and silences and cer-
tain voiced fricatives will yield zero.

4. Lskew = Y L-(t—t.) - 6t/(to + A) (“loudness
skew”), where t is time and ¢, indicates the phoneme
center. This describes whether the loudness density is
concentrated early (negative) or late (positive) in the seg-
ment.

5. dSdt = log(>_(6t/D)/A) (“Spectral Change”), where
D is the running duration measure from [3]. Since D
measures the time interval between substantial changes

5 Human segmentation is probably not language independent be-
cause it depends on phonological knowledge which incorporates much
language-specific information. In [2]] we found that acoustic-based seg-
mentation led to different treatment of stop consonants reflecting dif-
ferences between languages. This raises a potential question for all
rhythm measures derived from manual segmentation: are the language-
to-language differences inherent in the speech or are they a property of
the segmenter?

in the speech spectrum, the sum can be thought of as
the number of substantial spectral changes in the seg-
ment, and the overall value can be interpreted as the rate
at which spectral changes happen within that segment.

2.3. Bootstrap Resampling

In addition to computing statistical significance of our linear re-
gressions via standard F-tests, we used a bootstrap resampling
technique as a second check, e.g. to guard against non-Gaussian
distributions of our acoustic properties. We created 25 bootstrap
replications of our data and computed the linear regression for
each; this gave 25 sets of regression coefficients. Importantly,
the coefficients obtained from bootstrap resampling are nearly
independent samples, and their distribution mirrors the statisti-
cal uncertainty in the regression, almost as if one ran the exper-
iment multiple times.

We used the bootstrap results to obtain a confidence level
for each coefficient. We computed the mean and standard de-
viation of each coefficient’s values and then tested the mean
against zero with Student’s t-test. Likewise, we used the 25
replications for the mean-squared error before and after the re-
gression to compute 25 values of Pearson’s 72, which yielded
histograms and confidence limits for 2.

3. Results and Discussion
3.1. Performance of the Recognizer

We first determined whether the recognizer treated human-
identified segments consistently. For this, we computed the
fraction of each segment’s duration that was recognized by the
system as vowel-like or consonant-like. Next, we computed the
medians for each phone (e.g. segment identified by human seg-
mentation as [t] (475 occurrences) is typically recognized as
89% C, 11% V, and 0% S). Then, for each instance of that
phone, we checked if the V/C split falls near (within 15% of)
the median. For example, for [t], “near” means a C fraction
between 74% and 100%. Overall, 75% of all instances were
near their corresponding median. For comparison, the consis-
tency score between segmentations done by two professional
phoneticians was 80%.

We also examined the correlation between the number of
segments predicted by the transcription and the number of seg-
ments returned by our recognizer (see Figure[T). This compari-
son showed a close match between the recognized and predicted
number of segments (Pearson’s 12=0.96), although 11% fewer
segments were systematically recognized than expected. This
may be due to connected-speech processes such as consonant
lenition and vowel reduction. Also note that we trained the sys-
tem with sonorants mapped to V, so that about 20% of the time
a V region spanned two syllables.

3.2. Predicting Acoustics

We computed linear regressions for 31 combinations of acoustic
properties and contexts (see the vertical axis for Figure 2). We
predicted the properties of the central segment in the context, so
in a “V,C,S” context, we predicted the properties of a C, and we
selected ones found between V and S: in other words, a phrase-
final consonantal region. For each combination we computed
linear regressions involving a constant plus the acoustic proper-
ties of up to seven preceding segments. If there were any pre-
ceding silences in range not specified in the context, we dropped
the datum. That is, we predicted from a strict C, V, C, ... al-
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Figure 1: Number of vocalic segments in the expected transcrip-
tion (horizontal axis) compared to the number produced by the
recognizer (vertical axis). The dashed line indicates equality,
and the solid line is the best linear fit to the data.

ternation, broken if and where the context specified a silence.
These linear regressions for each of our five languages yielded
atotal of 7 - 31 - 5 = 1085 regressions, each evaluated with 25
bootstrap data sets.

Of the 1085 regressions, 97.5 per cent were statistically sig-
nificant. This is a consequence of the large amount of data:
the regressions had 529 to 110133 degrees of freedom (mean
11486). Note that we were not predicting the difference be-
tween vowels and consonants: our context selected either the
one or the other for each regression. Therefore, the regressions
show the variation of properties within those classes of sounds.

3.3. Predicting Properties of Prose

For the regressions over the entire corpus, values of Pearson’s
2 varied widely: some regressions explain a negligible 2% of
the total variance, and others up to 43%E| Duration is the least
predictable property: on average, 72 was only 8% (min 2%,
max 19% over contexts). This is noteworthy because all the
published rhythm measures are based only on duration. At the
other extreme, the most predictable property is dSdt, with an av-
erage r2 roughly three times larger (mean 27%, min 17%, max
41% over contexts)ﬂ Plausibly, dSdt is related to hyper/hypo-
articulation of a segment: more complete articulation might be
expected to yield larger changes in the spectrum within a seg-
ment and therefore, larger values of dSdt.

Prediction of the properties of phrase-final segments was
more effective than for phrase-medial or phrase-initial seg-
ments. The mean 2 for phrase-final segments was 26%, versus
19% for -initial and 16% for -medial. Effective prediction of
phrase-initial properties was surprising, since they are predicted
based on the preceding segments, which comprise a silence and
the tail end of the previous phrase. We did not expect silences
to be informative nor did we expect much correlation from one
phrase to the next. One interpretation of this result is that the
pause is planned together with the beginning of a phrase. If
they are planned as a unit, then correlations of the pause dura-

6 Pearson’s -2 is averaged over the bootstrap replications.

7 This large value suggests that predictability is not specific to a
single language. It is mathematically impossible for all that r2 to be
concentrated within a single language.
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Figure 2: Pearson’s 7 (horizontal axis) for prose and poetry for
different combinations of context and the target of prediction
(vertical axis). The lines connect the value of 7% for 6-parameter
linear regressions that use only the immediately preceding seg-
ment to predict, to the 72 for 36-parameter models that use data
from seven segments before the prediction target. Dashed lines
mark regressions on the entire corpus and solid lines mark re-
gressions on the poetry sub-corpus. Lines have markers if the
endpoints are significantly different at the 0.001 level.

tion with properties of the phrase-initial segments could occur.
Such global planning has been shown for inspired lung volume
and pitch as a function of sentence length [[11} 12} 13} 114].

The regressions were about equally successful at predicting
the properties of vocalic and consonantal regions: the ten best
lines in contexts are split half-and-half between predicting C
and V. Figure 2] summarizes the results of linear regressions
showing different amounts of prior context, for the entire corpus
and also for the “poetry” fraction of it. The data displayed here
have 41 to 3977 degrees of freedom, with a mean of 526.

Finally, we note that — averaged over all targets and con-
texts — all five languages are be nearly equally predictable. In
our analysis the range is only from 16% (English) to 19% (Man-
darin and Greek). However that ranking seems to be context-
and target-dependent, so an analysis looking at different texts
or acoustic properties could very well give a different ranking.

3.4. Predicting properties in poetry

Overall, poetry is much more predictable than prose (12 values
are roughly twice as large). This is consistent with the intuition
that poetry is more ‘rhythmical’.

Figure shows a different pattern of r2 between prose and
poetry. Overall, phrase-final and phrase-initial segments were
more predictable in poetry. Averaging over all targets, r2 for
phrase-final was 45% with 38% for -initial and 20% for -medial;
all are above the corresponding averages for the full corpus.
Considering that the pauses in poetry most commonly occurred
between the lines, our algorithms show that the acoustic prop-
erties of the first and last segment of each line are highly pre-
dictableﬂ At the same time, there was little difference in pre-

8 When we compute 72, we compare a full model to a simple model



dictability of spectral change (dSdt) of phrase-medial segments.
This is consistent with our hypothesis that dSdt may reflect hy-
per/hypoarticulation and thus in phrase-medial position should
not be affected by the differences between prose and poetry.

We also observed that the long-range effects were stronger
in poetry than in prose. While in prose mean difference between
2 for the regressions based on 1 and 7 preceding segments was
6%, in poetry this difference was 25%. Given that all poetry in
our corpus had regular metrical pattern, this confirms that the
long-range effects we observe are likely to be related to such
linguistic patterns as feet.

Predictable acoustic properties can have very different in-
terpretations, depending on what they are predicted from. For
instance, a local effect, depending only on the immediately pre-
ceding segment, could be a universal, physiological limitation
of muscle motion or motor planning, while a longer range pre-
diction would suggest linguistic patterns and might correspond
to feet and rhythm. This is what we observe, and the effect is
stronger in poetry.

In poetry, the overall average - is also (as for prose) nearly
equal across languages: it ranges from 35% (Greek and French)
to 39% (Russian). This is somewhat surprising, as descriptions
of French and Mandarin poetry are not obviously centered on a
stressed/unstressed alternation. There may be a common poetic
reading style that applies at least to children’s poetry in most
languages, even though it may be described differently.

4. Conclusions

We investigated the predictability of certain acoustic properties
for speech, where the prediction is based on the properties of
the preceding 1 through 7 segments. All the acoustic properties
used were plausibly related to prosodic properties of the speech.

We found substantial and statistically significant differ-
ences in predictability (measured by Pearson’s 72 of linear re-
gressions) from one acoustic property to another and from one
context to another. Languages, averaged over all contexts and
targets have similar values of 72, but different languages may
have different patterns of high and low 72 as a function of con-
text and target.

We argue that more rhythmical styles of speech will be
more predictable from previous segments, if those previous seg-
ments span several prosodic feet. For the full corpus, which
is dominated by prose, a consistent, modest increase in % oc-
curred as we extended our predictor from the single preceding
segment out to a 7-segment long predictor. Almost every com-
bination of target and context that we investigated is influenced
by longer-range interactions as well as those from the immedi-
ately preceding segment.

Our poetry sub-corpus, was much more predictable than the
prose and had a much larger increase in 2 as the predictor ex-
tended from 1 to 7 segments. This is consistent with the po-
etry being read in a much more rhythmic style, as would be
expected.

The predictability of a language depends on what is being
predicted and the context of the target phones, so we anticipate
that there will be at least several different ways to characterise

that just contains a single constant. So, this is not just a statement that
the final segment is stressed (or unstressed, as the case may be). If the
final segment were always stressed, the information would be captured
by the constant term and would not be included in r2. A plausible
interpretation is that sometimes it is stressed and sometimes not, and
the values of 72 correspond to the ability to predict which.

the rhythm of each language. We propose that using linear re-
gressions to predict segmental properties in terms of previous
segmental properties could be the foundation of a new set of
rhythm measures.
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