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A Reliability-Based Capability Approach

Armin Tabandeh,1,∗ Paolo Gardoni,1 and Colleen Murphy2

This article proposes a rigorous mathematical approach, named a reliability-based capabil-
ity approach (RCA), to quantify the societal impact of a hazard. The starting point of the
RCA is a capability approach in which capabilities refer to the genuine opportunities open
to individuals to achieve valuable doings and beings (such as being mobile and being shel-
tered) called functionings. Capabilities depend on what individuals have and what they can
do with what they have. The article develops probabilistic predictive models that relate the
value of each functioning to a set of easily predictable or measurable quantities (regressors)
in the aftermath of a hazard. The predicted values of selected functionings for an individual
collectively determine the impact of a hazard on his/her state of well-being. The proposed
RCA integrates the predictive models of functionings into a system reliability problem to
determine the probability that the state of well-being is acceptable, tolerable, or intolera-
ble. Importance measures are defined to quantify the contribution of each functioning to the
state of well-being. The information from the importance measures can inform decisions on
optimal allocation of limited resources for risk mitigation and management.
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1. INTRODUCTION

Risk is commonly described in terms of the prob-
ability of occurrence of a hazardous scenario and the
associated consequences.3 The determination and
evaluation of the relevant consequences are thus cru-
cial steps for risk mitigation and management.(1,2)

For example, to justify the necessity of a risk mit-
igation program in a given region, it is critical to
understand and evaluate the impact a given hazard
might have upon the well-being of individuals within
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3Gardoni and Murphy(3) argued that this definition of risk is not
sufficient and it should be expanded to include the source/cause
of a risk besides the probability of occurrence and the conse-
quences of a given hazard. Then, they proposed a new scale of
risk that categorizes the risks along a multidimensional ranking.

the affected communities. An accurate and complete
assessment of the potential consequences can be an
important source of information for decisions about
how and where to optimally invest limited resources.

There is no consensus on the best way to de-
fine and evaluate the consequences of hazards; these
questions remain the subject of ongoing debate be-
tween, for example, utilitarians and capability theo-
rists. A review of different approaches can be found
in Refs. 1 and 3. The purpose of this article is not to
resolve the disputes over which approach to adopt
when defining consequences. Our starting point is
the definition of consequences used in a capability
approach,(4–6) a definition first introduced by Murphy
and Gardoni.(7) While the argumentation in support
of conceptualizing consequences using capabilities is
beyond the scope of this article, we do provide a brief
overview of some reasons for defining consequences
in terms of capabilities in the next section.4

A capability approach assesses consequences
in terms of the impact on what individuals do or

4Those interested in such a defense can see Refs. 3, 7, and 8.
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become that they have reason to value, called func-
tionings. Examples of functionings include being mo-
bile, being healthy, being adequately nourished, and
being educated. The genuine opportunity to achieve
a particular functioning is called a capability.5 Gen-
uine opportunities and actual achievements are in-
fluenced by what individuals have and what they
can do with what they have. What they can do with
what they have is a function of the structure of so-
cial, legal, economic, and political institutions and of
the characteristics of the built environment (i.e., in-
frastructure). For example, consider the functioning
of being mobile. The number of times an individ-
ual travels per week can be an indicator of mobility
achievement. When explaining a given individual’s
achievement or lack of achievement, a capability ap-
proach takes into consideration the conditions that
must be in place for the individual to be mobile. For
instance, the possession of certain resources, like a
bike, may influence mobility. However, possessing a
bike may not be sufficient to guarantee mobility. If
the individual has physical disabilities, then the bike
will be of no help to travel. Similarly, if there are no
paved roads or if societal culture imposes a norm that
women are not allowed to ride a bike, then it will be-
come difficult or even impossible to travel by means
of a bike. As this example makes clear, different fac-
tors will influence the number of times the individual
travels.

The fundamental aim of this article is to de-
velop a rigorous mathematical formulation to assess
and predict functionings and thereby determine the
state of well-being in terms of the predicted func-
tionings. Because the proposed approach is based
on the theory of reliability analysis,(15,16) we call it
a reliability-based capability approach (RCA). The
proposed RCA can be used in the context of risk
analysis to quantify the broad societal impact of haz-
ards on individuals’ functionings. Disruptive events
can impact the value of each functioning by chang-
ing the values of its influencing factors (those factors
that reflect what individuals have and what they can
do with what they have). For example, an earthquake
can impact mobility by causing damage to the trans-
portation network.

In RCA, we propose probabilistic predictive
models that relate the value of each functioning
(as measured by an indicator) to its influencing fac-
tors. The proposed models account for the various

5For an overview of different approaches of risk analysis and con-
sequence evaluation see Refs. 1, 3, 7, and 9–14.

sources of uncertainties in predicting the values of
functionings.(17–19) The predicted values of different
functionings for an individual collectively determine
his/her state of well-being, which could be accept-
able, tolerable, or intolerable. Due to the uncertainty
in predicting the values of functionings, the state of
well-being has to be determined in a probabilistic
manner. The RCA uses the methods of system relia-
bility analysis to determine the probability associated
with each state of well-being. In the system reliability
problem, we treat the well-being of each individual
as a system, where the indicators of considered func-
tionings define the components of the system.

Following this introduction, the next section
briefly discusses some of the advantages of using
a capability approach to societal risk assessment.
The section focuses on introducing the terms and
variables needed in the proposed RCA and on
reviewing current formulations for assessing func-
tionings that have been proposed across a broader
range of applications (also outside of risk analysis).
In the third section, we present a detailed description
and evaluation of two of the most advanced and
rigorous mathematical formulations of the capability
approach. The purpose of the review of these two
formulations is to motivate the need for an alterna-
tive formulation of the kind proposed in this article.
The first formulation is the capability approach to
risk analysis developed by Murphy and Gardoni(20)

that tracks the possible changes in the capabilities of
individuals due to the impact of a hazard. The second
is a capability approach to multidimensional poverty
measurement developed by Alkire and Foster,(21)

where poverty is understood as capabilities depriva-
tion. Though not directly focusing on risk, discussion
of the multidimensional poverty analysis is valuable
because it highlights the significance of accounting
for the uncertainty in well-being quantification and
demonstrates the need for a probabilistic formula-
tion. In the fourth section, we discuss the proposed
RCA. Actually assessing and predicting the func-
tionings of individuals is challenging. The existing
formulations for operationalizing the capability
approach typically create a composite index that
aggregates the measured or predicted values of the
considered (achieved) functionings for each indi-
vidual to determine his/her state of well-being.(20,21)

Instead, the RCA focuses the attention on the role of
each achieved functioning in the state of well-being.
In addition, we propose an importance measure that
uses the results of system reliability analysis to rank
the functionings on the basis of their contributions
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to the state of well-being. Such information is partic-
ularly useful to optimally allocate limited resources
for risk mitigation and management. The proposed
RCA is a rigorous mathematical formulation that
can be used for the implementation of a capability
approach in any application (e.g., risk analysis and
development economics). In the last section, we
present a specific numerical example to illustrate the
proposed formulation in the context of risk analysis.

2. THE BENEFITS OF USING A CAPABILITY
APPROACH TO SOCIETAL
RISK ASSESSMENT

The capability approach provides theoretical
resources for defining the broad range of effects of
a hazard on the well-being of individuals, thereby
providing a comprehensive picture of its societal
impact. It does not simply look at immediately
evident effects, such as fatalities or physical dam-
age. Rather, the impact can be defined to include
the effects of a hazard on, for example, mobility,
nutrition, and security, doings and beings that are
constitutive elements of well-being. In a capability
approach, functionings capture distinctive, valuable
dimensions of well-being. The overall capability of
each individual is shaped by his/her opportunity
to achieve a set of distinctive doings and beings.
The capability approach rejects the utilitarian as-
sumption that all goods or dimensions of well-being
are commensurable, comparable, and substitutable.
That is, one does not compensate for a deprivation
in nutrition by an improvement in opportunities for
housing; a deprivation in being adequately nour-
ished requires an improvement in an opportunity for
nourishment.

Second, the capability approach does not quan-
tify consequences using a monetary metric that
has well-known conversion challenges, e.g., in the
definition of the monetary value of a human life.
Instead, the capability approach uses nonmon-
etary indicators, defined as proxies for specific
functionings,(22) to quantify the level of achievement
for a given functioning. For example, a hazard can
impact the functioning of living a long and healthy
life, which can be measured by the indicator health-
adjusted life expectancy.(23) We discuss indicators
in more detail in later sections. For now, we only
want to note that the capability approach is not
vulnerable to concerns about the appropriateness
of monetizing loss of human life or damage to the
environment.(24) Nor is it vulnerable to critiques of

utility measures that focus on concerns about the
accuracy of surveys or market information for cap-
turing the losses associated with hazardous events
given, for example, asymmetries in bargaining power
or limits on knowledge.(8,25,26)

There are further reasons to find a capability ap-
proach to the consequences evaluation attractive. A
capability approach to assessing well-being has al-
ready been adopted in a wide range of applications.
It is currently being used by the United Nations to
quantitatively measure the degree of development
of countries around the world.(27) Multidimensional
poverty measurement is another area in which a ca-
pability approach has been used extensively.(21,28,29)

Formulations have been proposed to identify the
least advantaged in a society and guide the focus of
public policy toward the promotion of distributive
justice.(30) A capability approach has also been de-
veloped to assess the impact of natural and anthro-
pogenic hazards.(7,31–35) Thus, an additional benefit to
using a capability approach is that it makes it possible
to assess, for example, the risk of natural hazards and
the impact of development policies using the same
theoretical framework. This aids the process of pol-
icy and decision making. The possibility of creating a
consistent theoretical framework is increasingly im-
portant given that risk management of natural haz-
ards is recognized by the United Nations and broader
community of development policymakers as critical
to the success of sustainable development initiatives,
especially given climate change.

3. CAPABILITY APPROACH IN PRACTICE:
CURRENT FORMULATIONS AND
THEIR LIMITATIONS

The current formulations for operationalizing
the capability approach generally include two major
steps.(27,34)

1. Quantification of functionings. For this, a set
of properly selected indicators is typically de-
fined to measure the relevant dimensions of
well-being.

2. Aggregation of achievements in various indi-
cators to create an overall measure of well-
being through a composite index.

This section discusses two general formulations
that operationalize these two steps: the one proposed
by Murphy and Gardoni(20) and the one by Alkire
and Foster.(21)
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3.1. Capability Approach to Risk Analysis

Murphy and Gardoni(7,20,31–35) proposed a novel
risk analysis approach that quantifies the possible
consequences of hazardous scenarios in terms of
functionings, achievements, and capabilities of
individuals. For the purposes of quantification, they
developed a hazard impact index, HII, as an aggre-
gate measure that summarizes the overall impact of
hazards.

In constructing the HII, first, the relevant ca-
pabilities are selected. The primary concern is to
provide a collectively exhaustive list of capabili-
ties that represent all aspects of well-being relevant
to the problem. On the other hand, careful atten-
tion should be given to prevent selecting similar ca-
pabilities that provide redundant information and
overemphasize particular dimensions of well-being,
in a sense causing double or multiple counting.(34)

Indicators are then selected to quantify the level
of achieved functionings. Next, each indicator is
converted into an index on a scale from 0 (mini-
mum achievement) to 1 (maximum achievement).
Fig. 1 (adapted from Ref. 20) shows that an indi-
vidual i (out of n) might achieve functioning v j , j ∈
{1, . . . , J } at level l ∈ {1, . . . , L}, so that the achieved
functioning is equal to vjl. The achieved functionings
are then converted into the corresponding indicator
indices, I(i)

j s.
Murphy and Gardoni(20) also discussed the issue

of interdependence of functionings. That is, an indi-
vidual’s choice to achieve one functioning influences
his/her opportunity to achieve other functionings,
therefore creating interdependence among function-
ings. For example, there might be a genuine oppor-
tunity for an individual to have a well-paid full-time
job or to complete higher education but not possi-
ble to achieve both at the same time. Because of the
interdependence of the achieved functionings, an in-
dividual i can only choose a vector of the achieved
functionings, V(i), among a set of possible vectors
(which might not include all possible combinations
of vjl). For example, individual i can choose V(i) :=
(v12, v2L, . . . , vJ1) that includes v1 achieved at level
2, v2 at level L, and so on, up to vJ at level 1. Each
vector V(i) is then converted into a vector of indica-
tor indices I(i) := (I(i)

1 , . . . , I(i)
J ), as shown in the right

plot of Fig. 1 (adapted from Ref. 20).
In the second step, the elements of I(i) are com-

bined to create an aggregate measure for individual
i , HII(i), defined as the statistical average

HII(i) := 1
J

J∑
j=1

I(i)
j . (1)

The average of the HII(i)’s over the sampled
population, Avg.[HII(i)], is then used as an esti-
mate of individuals’ functionings achievement in
an average sense across the sample of size n. The
standard deviation of the HII(i)s over the sampled
population, St.Dev.[HII(i)], captures the breadth of
freedom in functionings achievement. The uncer-
tainty in the value of HII can be described using
a probability density function (PDF) with a mean
value of Avg.[HII(i)] and a standard deviation of
St.Dev.[HII(i)].

The societal impact of a hazard is then explained
by comparing the predicted value of the HII with
the acceptability and the tolerability thresholds as de-
fined in Ref. 32. Threshold levels are set for each
distinctive dimension of well-being. The thresholds
capture demands of justice; as Nussbaum(5) writes, a
“necessary condition of justice for a public political
arrangement is that it deliver to citizens a certain ba-
sic level of capability.” Moreover, the thresholds pro-
vide critical information for policymakers, who need
to know not only what is the case about levels of well-
being, but what they should think about the informa-
tion they have and whether the level of well-being
is such that it requires policy intervention. When
the level of well-being is acceptable, policy interven-
tion is not necessary. However, when it is unaccept-
able, policy intervention is urgent to determine how
to bring individuals to the acceptable level within a
specified period of time. Similarly, intolerable levels
of capability require immediate action to bring indi-
viduals to above at least the tolerable threshold. If
there is an aspect of individuals’ lives that will be in-
tolerable or unacceptable, then that should be the
priority from a public policy perspective. An eval-
uation of the predicted level of well-being is useful
in the definition of policies and resource allocations
that are designed to best mitigate the possible conse-
quences of undesirable events. Most policies targeted
to risk mitigation are based on the evaluation of the
possible consequences.

According to Murphy and Gardoni,(32) the ac-
ceptable threshold, Tacc, is defined as the minimum
value of HII below which individuals ideally should
not fall. For example, it is not acceptable that in-
dividuals lack permanent and adequate shelter in
the aftermath of a hazard. A risk is acceptable if
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Fig. 1. Illustration of the HII formulation (adapted from Ref. 20).

the probability that any HII(i) will be less than Tacc
in the aftermath of a hazard is sufficiently small.
As discussed in Ref. 32, the precise specification of
Tacc can be done through an internal democratic
process.

However, it is not always feasible to keep the
HII(i)s of all individuals above Tacc in the immediate
aftermath of a hazard. For example, some individuals
may lose homes and need to be settled in temporary
housing in the aftermath of a severe earthquake. In
such circumstances, Murphy and Gardoni(32) defined
a tolerable threshold, Ttol, that is an absolute mini-
mum value of HII “below which no individual in a
society should ever fall.” For instance, in the shelter
example, it would be neither tolerable nor acceptable
for individuals to be left homeless. Accordingly, a
risk is not acceptable, but only tolerable, if the HII(i)s
are likely to only temporarily be less than Tacc in the
aftermath of a hazard and the probability of being
less than Ttol is sufficiently small. Similar to the ac-
ceptability threshold, an internal democratic process
can determine the value of Ttol.

(32)

The formulation in Refs. 20 and 32 has four sig-
nificant advantages, both theoretical and in terms
of implementation, with respect to the other ap-
proaches that use capabilities. These advantages are:
(1) it acknowledges the difference between achieved
functionings and capabilities; (2) it accounts for the
interactions of the achieved functionings using a vec-
tor of the achieved functionings instead of the iso-
lated functionings; (3) it captures the variability in
the achieved functionings among individuals by es-
timating the standard deviation of the achieved func-

tionings in addition to the average value; and (4) it in-
troduces the acceptability and tolerability thresholds
for both the indicator indices and aggregate measure.
However, it also has the following two limitations: (1)
the definition of the HII(i), as the statistical average
of the elements of I(i), might be too simplistic, specif-
ically, it does not distinguish between two individu-
als with the same averaged achieved functionings but
different achievements in their specific indicator in-
dices; and (2) it does not account for the uncertainty
in the actual values of the I(i)

j s.
In relation to the first limitation, the formulation

of the HII(i) allows substitutability of the achieved
functionings. That is, the high values of a subset of in-
dices can outweigh the low values of the others. This
fails to account for the incommensurability of capa-
bilities. Thus, a more nuanced formulation is needed
that also considers the performance of each I(i)

j .
The second limitation is that the formulation

treats the I(i)
j s in a deterministic manner, and thus,

does not account for their uncertainties. In this re-
gard, Murphy et al.(19) noted that mathematical for-
mulations should appropriately treat the prevailing
uncertainties like measurement error, statistical un-
certainty, and model error.(17,18) Specifically, in the
context of risk analysis, measurement error is as-
sociated with the estimates of the values of indica-
tors. For example, an indicator capturing the eco-
nomic losses might underestimate the actual losses
of an individual. Statistical uncertainty arises from
the scarcity of data. For example, to formulate the
HII of a society, the information for every single indi-
vidual/household in the society may not be available.
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Thus, a sample of the society is selected in practice as
representative of the entire society. As the size of the
sample increases, the confidence in the estimated HII
increases as well. Finally, the mathematical models
(like those used to predict the values of the indicators
after future events as functions of regressors) might
have errors due to missing variables (here indicators)
and/or inaccurate model form. This type of uncer-
tainty is called the model error. For example, there
might be influencing indicators that are not included
in the models or there might be a more appropriate
form of the model. These uncertainties are epistemic
uncertainties. In addition, when the formulation is
being used for predicting the future values of the in-
dicator indices, there is additional inherent variabil-
ity/randomness that should be included as well.(36)

Therefore, there is a need for a probabilistic formu-
lation that properly accounts for different sources of
uncertainty. Further discussion on the treatment of
uncertainty in mathematical modeling can be found
in Ref. 19.

3.2. Capability Approach to Poverty Measurement

In responding to the widespread recognition of
the insufficiency of income as the sole measure of
poverty,(37) Alkire and Foster(21) developed an ap-
proach that uses functionings achievements to mea-
sure poverty in a multidimensional way. A counting-
based method is developed to identify the poor and
measure dimensions of poverty, like education,
health, and standard of living. This approach includes
an identification step to define and quantify the num-
ber of individuals who are poor, based on counting
the number of (weighted) deprivations, and an ag-
gregation step to summarize the degree of poverty
experienced by the poor.

The formulation defines indicators for con-
sidered functionings and scales the indicators to
create indicator indices. The indicator indices take
values between 0 and 1, where 0 represents the
minimum possible achievement and 1 the maximum
achievement. For the identification step, Alkire
and Foster(21) define a deprivation threshold for
each indicator index to identify if the corresponding
functioning has been sufficiently achieved. Mathe-
matically, let i be an individual and Ij be one of the
J selected indicator indices; then, a functioning has
been sufficiently achieved if I(i)

j ≥ T1, j , where I(i)
j is

the jth indicator index of individual i , and T1, j is the
corresponding deprivation threshold.

Then, the number of deprived indicators (i.e., for
which I(i)

j < T1, j ) is counted for each individual and
the number of deprived indicators divided by J is
compared with a poverty threshold, T2 (which is a
selected number between 0 and 1). If such count is
greater than T2, then individual i is labeled poor. A
measure of deprivation of indicator index j is com-
puted as di j := [T1, j − I(i)

j ]α if [T1, j − I(i)
j ] > 0 and

di j = 0, otherwise; where α is a controlling parameter
such that larger values of [T1, j − I(i)

j ] are under – or
overemphasized, depending on the value of α. If the
considered functionings are not equally important,
Alkire and Foster(21) suggested using a weighting
vector of the indicator indices, here denoted as w =
(w1, . . . , wJ ) (such that their sum equals 1), which
captures their relative importance. Once the poor are
identified, the degree of poverty of individual i is cal-
culated as:

Di :=
J∑

j=1

w j di j =
∑

∀ j :I(i)
j <T1, j

w j dij. (2)

For the nonpoor, Di = 0. Finally, the Di s are
combined over the sampled population to construct
an aggregate measure defined as:

D := 1
n

n∑
i=1

Di = 1
n

∑
∀i :Di >0

Di , (3)

where n is the size of the sampled population.
Alkire et al.(38) discuss the sensitivity of D with

respect to (T1, T2), where T1 := (T1,1, . . . , T1,J ). In
particular, they examine how different choices of
(T1, T2) may affect the ranking of the poverty mea-
sure across different groups. They also account for
the statistical uncertainty in estimating D, which
arises from using a sample of society as representa-
tive of the entire population. The result of statisti-
cal uncertainty quantification is used to examine if a
likely change in the ranking of the poverty measure
due to a change in the values of (T1, T2) is statistically
significant.

The formulation in Ref. 21 has the follow-
ing strengths with respect to other formulations of
poverty measurement: (1) it measures poverty in a
multidimensional way by identifying the poor first
and then aggregating the deprivation intensity of
the deprived functionings among those identified as
poor; (2) it satisfies the population decomposability
property (i.e., the overall poverty of a community can
be computed either by considering the entire popu-
lation or as a weighted average of subgroups of the
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entire population where the subgroup size is used as
a weight) and the dimensional breakdown property
(i.e., the same formulation can be used considering
any subset of dimensions to investigate their contri-
bution to poverty); and (3) it is applicable both to
cardinal variables (e.g., years of schooling) as well
as ordinal (e.g., self-reported health) and categori-
cal variables (e.g., modes of access to drinking wa-
ter). In the case of ordinal and categorical variables,
since there is no unique way to measure the depri-
vation intensity, it only measures the headcount of
the poor. However, there are three limitations: (1)
it does not account for and evaluate the role of all
of the relevant sources of uncertainty in quantifying
poverty; (2) it does not consider the deprivation of
the nonpoor individuals; and (3) it makes compar-
ison of poverty measurements of different societies
difficult by allowing for the use of different weight-
ing vectors.

Regarding the first limitation, Alkire et al.(38)

acknowledge the necessity of addressing the uncer-
tainty but their scope of uncertainty treatment is lim-
ited to some sensitivity analyses. In particular, they
do not discuss the role of the various sources of un-
certainty in statistical inference about the poverty
measure of a given populations, how additional in-
formation might help to improve the inference, and
how this relevant uncertainty should be propagated
through the models. The significance of accounting
for different sources of uncertainty, in addition to sta-
tistical uncertainty, was elaborated earlier in this ar-
ticle.

The second limitation is that it does not con-
sider the deprivations of the nonpoor individuals.
The nonpoor individuals might still suffer from a
number of deprived functionings (i.e., dij �= 0). If the
different capabilities are incommensurable in moral
value (as is widely recognized), a measure of depri-
vations should also include the extent of deprivations
of the nonpoor. Therefore, there is a need to develop
a formulation that also captures the variation of well-
being among the nonpoor.

The third limitation is about the subjective
weights of indicators, w, in Equation (2) that show
their relative importance. Using different ws does
not allow us to compare the multidimensional
poverty measurement in different societies. In
practice, it is possible to justify the use of different
ws in measuring poverty in different societies, and,
in fact, different studies use different ws. However,
different ws change the contribution of dijs in the
value of Di s and subsequently in the value of D. This

difference makes comparing poverty measurement
in two different societies difficult.

4. RELIABILITY-BASED CAPABILITY
APPROACH

This section presents the proposed RCA and
shows how this approach addresses the limitations of
the current formulations, as discussed in the previous
section. A reliability analysis is generally concerned
with determining the probability that a component
or system performs a specified function under cer-
tain conditions.(15) A system is an interconnected as-
sembly of components where its state depends on the
states of its components and their roles in the system
(i.e., the definition of the system in terms of its com-
ponents). For example, the state of a transportation
system depends on the states of the bridges, roads,
etc., which constitute it. A system may fail if cer-
tain subsets of its components fail. A component fails
when its performance is no longer satisfactory. For
example, we can define the failure of the transporta-
tion system when the connectivity between any two
nodes in the network is lost, which occurs if selected
sets of components fail.

In the proposed RCA, the well-being of each in-
dividual is treated as a system of indicators such as
life expectancy, number of schooling years, and in-
come, which are the components of the system. In
order to determine the state of well-being, we need
to know the value/state of each indicator and how the
indicators are collectively related to well-being.

We define three states for each indicator index as
follows:

S j :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Acceptable, Ij > Tj,acc,

Tolerable, Tj,tol < Ij ≤ Tj,acc,

Intolerable, Ij ≤ Tj,tol,

(4)

where S j is an auxiliary variable that describes the
state of the indicator index j ; Ij ∈ [0, 1] is the value of
the indicator index j ; and Tj,acc ∈ [0, 1] and Tj,tol ∈
[0, Tj,acc) are the corresponding acceptable and tol-
erable thresholds of the indicator index j .

As mentioned earlier, the values of functionings
and their indicators are influenced by different fac-
tors such as wealth, income, socioeconomic status
of the society, and infrastructure status. To quantify
the influence of such factors, we propose probabilis-
tic predictive models that define each Ij as functions
of regressors that represent the different influencing
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factors. The proposed models also account for the
effect of the various sources of uncertainty in pre-
dicting Ij s. Because of the uncertainty in predicat-
ing the value of Ij , S j is a random variable, where
its three states are the possible outcomes. To deter-
mine the probability of each state of S j , we formu-
late a component reliability problem, described next.
Subsequently, we formulate a system reliability prob-
lem to determine the probability of each state of well-
being.

4.1. Mathematical Formulation of Component
Reliability Problem

To formulate the component reliability problem,
we first develop a probabilistic predictive model for
each Ij . Following the formulation proposed in Ref.
17, we write the general form of the probabilistic
predictive models as:

Cj (x,� j ) = ĉ j (x) + γ j (x,� j ) + σ jε j ,

j ∈ {1, . . . , J }, (5)

where Cj (x,� j ) is the predicted value of the jth in-
dicator index or a suitable transformation thereof;
x is the set of input variables (regressors that cap-
ture the socioeconomic conditions and the charac-
teristics of the built environment); � j := (θ j , σ j ) is a
set of unknown model parameters, corresponding to
the jth indicator index, which need to be estimated;
ĉ j (x) is an existing deterministic model for predict-
ing the value of the jth indicator index (e.g., a prede-
fined function of the average of the measured values
over the population); γ j (x,� j ) is a correction term
for ĉ j (x) that captures some of the dependencies of
Cj on x; and σ jε j is an additive model error (addi-
tivity assumption), in which σ j is the standard devi-
ation of the model error that is assumed to be in-
dependent of x (homoskedaticity assumption) and ε j

is a standard normal random variable (normality as-
sumption). The model error captures the variability
in predicting Cj using ĉ j (x) + γ j (x,� j ) due to, for
example, inaccuracy of the model form, missing vari-
ables, and statistical uncertainties. Measurement er-
ror can be included in the model calibration as dis-
cussed later.

In general, the ε j ’s in Equation (5) are corre-
lated. Thus, letting � denote the covariance matrix
of σ jε j ’s, the set of all unknown model parameters is
� := (θ,�), where θ := (θ1, . . . , θ J ).

In order to satisfy the additivity, homoskedastic-
ity, and normality assumptions, we may use a trans-
formation to define Cj (x,� j ) := T j [Ij (x,� j )] and

ĉ j (x) := T j [ Î j (x)], where T j (·) is the transformation
function for the jth indicator index; Ij (x,� j ) is the
predicted value of the jth indicator index; and Î j (x)
is the deterministic prediction of the jth indicator in-
dex.

The suitability of a specific choice of T j (·) (e.g., a
logit model) can be examined by means of diagnostic
plots.(39)

The correction term in Equation (5), γ j (x,� j ),
can be written in the simplest form as:

γ j (x,� j ) =
Q∑

q=1

θjqhjq(x), (6)

where θjq’s are the elements of θ j and hjq’s are a set
of explanatory functions defined in terms of the ele-
ments of x. The explanatory functions are defined in
terms of the influencing factors that are believed to
be important in predicting Cj . Examples of hjqs in-
clude individuals’ age, gender, ethnicity, income, lan-
guage, socioeconomic status of the society, and the
infrastructure status. To develop an empirical model
that is both parsimonious (with as few θjqs as possi-
ble) and accurate (with small σ jε j ), one can use a
model selection process(17,40) to eliminate unimpor-
tant terms in γ j (x,� j ) that do not significantly con-
tribute to predicting Cj .

The unknown model parameters, �, can be
estimated based on the observed data using, for ex-
ample, a Bayesian approach.(41) The observed data
are the values of Ij s, or the corresponding values of
Cj s, along with the values of the xs, for a group of
individuals. Using the Bayesian approach, we can
combine previous information about � (which could
possibly also be no information) with information
obtained from the observed data to arrive at an
updated PDF of �. Such updating can be carried out
using the Bayesian updating rule.(41) The Bayesian
updating rule can be written as:

f (�) = κL(�)p(�), (7)

where f (�) is the posterior PDF, containing the
updated information about �; L(�) is the likeli-
hood function, representing the objective informa-
tion about � obtained from the observed data; p(�)
is the prior PDF, reflecting our state of knowledge
about � before obtaining the observations; and κ :=
[
∫

L(�)p(�)d�]−1 is a normalizing constant.
Assuming there is no previous information about

�, we use a noninformative p(�) to reflect that no or
minimal information about � is available before the
observed data.(41) Thus, the inferences are unaffected
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by information external to the observations. Further
discussion on noninformative priors can be found in
Refs. 42 and 43. For the set of unknown model pa-
rameters � := (θ ,�), it can generally be assumed
that θ and � are approximately independent;(17,41)

hence, p(�) ≈ p(�)p(�). Then, we use a locally uni-
form noninformative prior on θ such that p(�) ∼=
p(�). Furthermore, following Gardoni et al.,(17) we
can write the noninformative prior of � as:

p(�) ∝ |R|−(J+1)/2
J∏

j=1

1
σ j

, (8)

where |R| is the determinant of R, which is the corre-
lation matrix of the ε j s. Following Gardoni et al.,(17)

L(�) can be written by dividing the observed data
into three groups: (1) equality data, when the mea-
sured values are the values of Ij s; (2) lower bound
data, when the measured values are less than the ac-
tual values of Ij ; and (3) upper bound data, when
the measured values are greater than the actual val-
ues. For example, when we do not know the exact in-
come of an individual but we know it is greater than
a certain amount, that amount is a lower bound da-
tum. Similarly, when we know that the income is not
greater than a certain amount, that amount is an up-
per bound datum. Lower and upper bound data are
also called censored data.

In a general setting, we can write L(�) as:

L(�) ∝ P

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⋂

observation i

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⋂

equality
data j

[σ jε j = ri (θ j )]

⋂
lower bound

data j

[σ jε j > ri (θ j )]

⋂
upper bound

data j

[σ jε j < ri (θ j )]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , (9)

where P(A) is the probability of the event A;
⋂

j Bj

is the intersection of Bj s; and ri (θ j ) := Cji − ĉ j (xi ) −
γ j (xi , θ j ) is the prediction residual of Cj for the ith
individual.

In the specific case that observations (i.e., ri (θ j )’s
for different is) are statistically independent, we can

write L(�) as:

L(�) ∝
∏

observation i

P

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⋂

equality
data j

[σ jε j = ri (θ j )]

⋂
lower bound

data j

[σ jε j > ri (θ j )]

⋂
upper bound

data j

[σ jε j < ri (θ j )]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (10)

Note that Equation (10) still accounts for the sta-
tistical dependence of indicator indices (i.e., for each
observation i , {ri (θ j )}J

j=1 are statistically dependent).
To model the measurement errors, we use the

formulation proposed by Gardoni et al.(17) We can
write the actual values of Cji and xi as Cji = Ĉji + eCji

and xi = x̂i + exi , where Ĉji and x̂i are the measured
values for the ith individual and eCji and exi are
the corresponding measurement errors. It is assumed
that the measurements are corrected for any system-
atic errors. As a result, the mean values of eCji and
exi are zero. Let s2

ji and �i denote the variance of
eCji and the covariance matrix of exi . We allow the
statistical dependence between the measurement er-
rors for different elements of the vector xi but assume
that the measurement errors for different individuals
are statistically independent. To write L(�) in Equa-
tion (10), accounting for the measurement errors, we
replace ri (θ j ) with ri (θ j , exi ) := r̂i (θ j ) + ∇x̂i r̂i (θ j )exi

and σ j with σ̂ j :=
√

σ 2
j + s2

ji + ∇x̂i r̂i (θ j )�i∇x̂i r̂i (θ j )T ,

where r̂i (θ j ) := Ĉji − ĉ j (x̂i ) − γ j (x̂i , θ j ) and ∇x̂i is the
gradient row vector with respect to x̂i .

To obtain f (�), we have to calculate the nor-
malizing constant, κ , in Equation (7), which requires
evaluating a complex, multifold integral. In general,
this integral is not analytically tractable. However,
we can use simulation methods to estimate the poste-
rior statistics of �. The details of various simulation
methods are discussed, for example, in Ref. 44.

While other regression techniques are generally
available to estimate the unknown model parame-
ters in probabilistic models, we presented a Bayesian
approach because it is ideally suited to consider dif-
ferent types of data (equality or censored data) and
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possible information about the model parameters
that might be available before considering the ob-
served data.

Now, we can formulate a component reliabil-
ity problem for each of the J components to obtain
the corresponding probabilities of the acceptable,
tolerable, and intolerable states. To formulate the
component reliability problem, we define the limit-
state function g[Ij (x,� j ), Tj ] := Ij (x,� j ) − Tj , for
j = 1, . . . , J . Accordingly, we can write the prob-
abilities associated with each state in terms of
g[Ij (x,� j ), Tj ]. For instance, the probability asso-
ciated with the intolerable state can be written as
P{g[Ij (x,� j ), Tj,tol] ≤ 0}. We can solve this prob-
lem using the reliability methods, including the first-
order reliability method (FORM) and the second-
order reliability method (SORM).(15) In explaining
the proposed formulation, we assume that the value
of each Tj is defined a priori. For example, one can
use the values of Tj s described in Ref. 32 as possi-
ble deterministic values. However, one could also de-
velop separate probabilistic models for the Tj s, as we
did for the Cj (x,� j )’s in Equation (5).

4.2. Mathematical Formulation of System
Reliability Problem

To determine the state of well-being, we can
treat the well-being of each individual as a series sys-
tem in which failure of any component (e.g., intol-
erability of the state of any indicator indices) results
in the failure of the system (e.g., intolerability of the
state of well-being). This is because the value of each
indicator index is incommensurable and no amount
of gain in the value of any indicator indices can offset
the reduction in the value of the others. Note that the
proposed formulation is not restricted to the series
system (defined next) and it can simply be extended
to other systems as well. To clarify this point, Fig. 2
shows two possible configurations of a transportation
system consisting of four bridges, connecting cities A
and B. Fig. 2(a) shows a series system, while Fig. 2(b)
shows an example of a general system. In terms of
failure (cities A and B are disconnected), the series
system fails if any bridges in the system fail. On the
other hand, the general system fails if either set of
bridges {1} or {2, 3, 4} fails. Analogously, it is pos-
sible to formulate the well-being of individuals as a
general system of indicator indices.

Following Murphy and Gardoni,(32) and similarly
to what was presented for the individual indicators,

(a)

Bridge 1 · · · Bridge 4A B

(b)

Bridge 1

Bridge 2 Bridge 3

Bridge 4

A B

Fig. 2. Illustration of two different configurations of a transporta-
tion system: (a) series system and (b) general system.

Components System

Ωacc (Θ)

Ωtol (Θ)

Ωintol (Θ)

Acceptability
performance
threshold

Tolerability
performance
threshold

Fig. 3. Illustration of the system states and their relations with the
indicator indices.

we define three states of well-being that are delimited
by two performance thresholds: an acceptability per-
formance threshold that delimits the acceptable and
tolerable states and a tolerability performance thresh-
old that delimits the tolerable and intolerable states.
Specifically, we define the three states of the system
as follows: (1) the state of well-being is acceptable if
all the indicator indices are in their acceptable states;
(2) the state of well-being is not acceptable but is
still tolerable if at least one indicator index is in its
tolerable state and the other indicator indices are in
the acceptable state; and (3) the state of well-being
is intolerable if at least one indicator index is in
its intolerable state. Fig. 3 schematically explains
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different states of well-being and the relation with
the values/states of the indicator indices in the case
of J = 3. Note that if one requires to obtain a more
refined information on the state of well-being (i.e.,
beyond the three considered states), the proposed
formulation can be extended to model multistate
systems, composed of multistate components.(45)

Mathematically, we can write the following ex-
pressions for the states of well-being:

�acc(�) : =
{

z :
J⋂

j=1
g[Ij (x,� j ), Tj,acc] > 0

}
,

�tol(�) : =
{

z :

[
J⋃

j=1
g[Ij (x,� j ), Tj,acc] ≤ 0

]

⋂[
J⋂

j=1
g[Ij (x,� j ), Tj,tol] > 0

]}
,

�intol(�) : =
{

z :
J⋃

j=1
g[Ij (x,� j ), Tj,tol] ≤ 0

}
,

(11)

where �acc(�) is a set containing all the vectors
z that lead to the acceptable state of system, in
which z := (x, ε1, . . . , εJ );

⋃J
j=1 Aj and

⋂J
j=1 Aj are

the union and the intersection of the events Aj s. Sim-
ilarly, �tol(�) and �intol(�) are the sets containing
all the vectors z that lead to the tolerable and intol-
erable states of the system.

If we call �S(�) the domain of the system
state, as a function of � (i.e., �acc(�), �tol(�), or
�intol(�)), we can write the probability associated
with the system state as:

PS(�) =
∫

�S (�)

fZ(z)dz, (12)

where PS(�) is the probability associated with
the system state S ∈ {Acceptable, Tolerable,
Intolerable} as a function of � and fZ(z) is the joint
PDF of Z.

In addition, we can determine the contribution of
each component to the state S. For this purpose, we
define the importance measure of the jth component
as follows:(46)

IM j,S(�) := 1
PS(�)

∫
{�S (θ j )∩�S (�)}

fZ(z)dz, (13)

where IM j,S(�) is the importance measure of the jth
component as a function of � and {�S(θ j ) ∩ �S(�)}
is the domain containing all zs such that, for the given

�, both the jth component and the system are in the
same state S (e.g., intolerable state).

To solve Equations (12) and (13), we can use the
simulation methods. Specifically, we can first obtain
fZ(z) using a Nataf model.(47) The Nataf model re-
quires as inputs the individual PDFs of each element
of Z (i.e., their marginal PDFs) and their correlation
matrix. Then, we can compute PS(�) in Equation
(13) numerically as follows:

PS(�) ≈ 1
K

K∑
k=1

1{zk∈�S (�)}, (14)

where K samples of zks are drawn from fZ(z); and
1{zk∈�S (�)} = 1 if {zk ∈ �S(�)} is a true statement and
1{zk∈�S (�)} = 0, otherwise. Similarly, we can compute
IM j,S(�) in Equation (13) as:

IM j,S(�) ≈ 1
PS(�)

1
K

K∑
k=1

1{zk∈[�S (θ j )∩�S (�)]}, (15)

where PS(�) is obtained from Equation (14).
There are two possible ways of incorporat-

ing the uncertainty in � in computing PS(�) and
IM j,S(�).(17) First, we may ignore the uncertainty in
� and obtain a point estimate of the state probability,
P̂S , by replacing � in Equation (14) with a fixed set
of values, �̂ (e.g., the posterior mode of �). Alterna-
tively, to incorporate the uncertainty in � in Equa-
tion (14), we can estimate the predictive state proba-
bility, P̃S , as:

P̃S :=
∫

PS(�) f (�)d�. (16)

Intuitively, P̃S is a weighted average of PS(�) for
different values of � where the weights are propor-
tional to f (�). Similarly, we can define a point esti-
mate ÎM j,S and a predictive estimate ĨM j,S of IM j,S .

We can perform the system reliability analysis
for all individuals in a given region and develop a
map that visualizes the spatial distribution of the
states of well-being over the region. For example, a
map that shows the spatial distribution of the intoler-
able state can give insights on which subpopulations
in the study region are suffering more in the after-
math of a disruptive event. Furthermore, by calcu-
lating the importance measures corresponding to the
intolerable state for all individuals, we can determine
which indicator indices are the main causes of being
in an intolerable state. This information can inform
the decision making and resource allocation both for
predisaster mitigation and for postdisaster recovery.
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5. NUMERICAL EXAMPLE

In this section, we illustrate, through a hypothet-
ical example, how the proposed RCA can be used.
The example provided here is given in the context of
risk analysis; however, the proposed formulation can
also be used for other applications of the capability
approach, including the multidimensional poverty as-
sessment. In this example, we consider the well-being
in terms of the functioning of meeting physiological
needs that includes three indicators: (1) the source
of drinking water; (2) problems with having access
to drinking water; and (3) problems satisfying food
needs.

The selected indicators are modeled as random
variables with Beta probability distributions. Table I
summarizes the parameters of the assigned Beta dis-
tributions, before and after a disruption, together
with the corresponding acceptability and tolerability
thresholds. Considering actual data, one can develop
probabilistic predictive models, similar to Equation
(5), for each indicator index, instead of assuming
probability distributions. Assuming that the indica-
tor indices are statistically independent random vari-
ables, we calculate the probability that the state of
well-being is acceptable, tolerable, or intolerable, be-
fore and after the disruption, using Equations (11)
and (12), as follows.

Before the disruption, the probability of each
state of well-being is:

Pacc = P

⎧⎨⎩
3⋂

j=1

Ij ∈ [0.6, 1]

⎫⎬⎭ =
3∏

j=1

P{Ij ∈ [0.6, 1]}

= (0.3520)(0.5248)(0.8154) = 0.1506, (17)

Pintol = P

⎧⎨⎩
3⋃

j=1

Ij ∈ [0, 0.4]

⎫⎬⎭ = 1 − P

⎧⎨⎩
3⋂

j=1

Ij ∈ [0.4, 1]

⎫⎬⎭
= 1 −

3∏
j=1

P{Ij ∈ [0.4, 1]}

= 1 − (0.6480)(0.8208)(0.9657) = 0.4864. (18)

Because the states are pairwise disjoint and col-
lectively exhaustive, we can write Ptol as:

Ptol = 1 − Pacc − Pintol = 0.3630. (19)

The current approaches using capabilities, like
the ones discussed earlier in this article, ignore the
uncertainty in the values of indicator indices and use

deterministic values (e.g., the means) to represent
the achieved functionings. In this example, using
only the mean values of the indicator indices, the
state of well-being would be “tolerable” because
the mean value of the indicator index 1 is below
the corresponding acceptability threshold and the
mean values of all indicator indices are above their
tolerability thresholds. However, accounting for the
uncertainty in the values of the indicator indices,
using the proposed RCA, the most likely state of
well-being is “intolerable.” Moreover, using Equa-
tion (13), the importance measures of the indicator
indices for the tolerable state of well-being are:

IM1,tol = 1
Ptol

P

⎧⎨⎩I1 ∈ [0.4, 0.6],
3⋂

j=2

Ij ∈ [0.4, 1]

⎫⎬⎭
= 1

Ptol
P{I1 ∈ [0.4, 0.6]}

3∏
j=2

P{Ij ∈ [0.4, 1]}

= 1
0.3630

(0.2960)(0.8208)(0.9657) = 0.6463. (20)

Similarly, the importance measures of the other
two indicator indices are:

IM2,tol = 0.5103, IM3,tol = 0.2202. (21)

The obtained result shows that when consider-
ing the tolerable state of well-being, the contribution
of I1 is more significant than I2 and I3. To explain
this observation, we note that the assumed probabil-
ity distributions are such that I1 has a higher proba-
bility of being in the tolerable state (i.e., in the range
[0.4, 0.6]) with respect to I2 and I3. As a result, it
becomes more likely that tolerable state of I1 is the
main cause of the tolerable state of well-being.

The importance measures of the indicator in-
dices for the intolerable state of well-being are:

IM1,intol = 1
Pintol

P{I1 ∈ [0, 0.4)}

= 1
0.4864

(0.3520) = 0.7237. (22)

Similarly, the importance measures of the other
two indicator indices are obtained as:

IM2,intol = 0.3684, IM3,intol = 0.0706. (23)

Similar to the observations for the tolerable
state, we observe that the contribution of I1 to the in-
tolerable state of well-being is more significant than
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Table I. Probability Distributions of Indicator Indices and Their Thresholds

Before Disruption After Disruption

Variable Distribution Mean Standard Deviation Distribution Mean Standard Deviation Tacc Ttol

I1 Beta (2.0,2.0) 0.50 0.22 Beta (1.10,1.25) 0.47 0.27 0.6 0.4
I2 Beta (3.0,2.0) 0.60 0.20 Beta (1.55,1.45) 0.53 0.25 0.6 0.4
I3 Beta (4.5,1.5) 0.75 0.16 Beta (1.75,1.25) 0.58 0.25 0.6 0.4

Table II. Probabilities of the State of Well-Being along with the Importance Measures, before and after Disruption (Independent
Indicator Indices)

Before Disruption After Disruption

Variable IMtol IMintol Pacc Ptol Pintol IMtol IMintol Pacc Ptol Pintol

I1 0.6463 0.7237 0.1506 0.3630 0.4864 0.5195 0.5996 0.0697 0.2038 0.7265
I2 0.5103 0.3684 0.5200 0.4799
I3 0.2202 0.0706 0.4309 0.3524

I2 and I3. We also observe that the contribution of
I1 to the intolerable state becomes even more signif-
icant with respect to the tolerable state. To explain
these observations, we note that, in this example, the
mean value of I1 is less than those of I2 and I3. Also,
the probability distribution of I1 is symmetric but
those of I2 and I3 are left skewed. As a result, when
considering the intolerable range of indicator indices
(i.e., the range [0, 0.4)), the focus is on the left tail of
the probability distributions, where the contribution
of I1 becomes more significant than those of I2 and I3

and also with respect to the tolerable state.
After the disruption, the values of the indicator

indices and the probability of each state of well-being
might change. The changes in the values of the indi-
cator indices are represented by updating the param-
eters of their distributions, as shown in Table I. The
assumed changes in the distribution parameters of
the indicator indices lead to smaller mean values and
larger standard deviations, representing more uncer-
tainties. Table II summarizes the calculated probabil-
ities of the three states of well-being.

The deterministic estimation of the state of well-
being, based on the new mean values of the indicator
indices, remains “tolerable.” The most likely state of
well-being is again “intolerable” ; however, now the
probability of the intolerable state is increased with
respect to the predisruption one. Table II also sum-
marizes the calculated importance measures of the
indicator indices after the disruption.

The proposed formulation can also account for
the likely correlation between the values of the indi-
cator indices. To study the effects of the correlation,
we assume that the three indicator indices have the
same distributions as in the previous case (and sum-
marized in Table I) but they are statistically depen-
dent with correlation coefficients ρij = 0.3 for i, j ∈
{1, 2, 3}, and i �= j .

Table III summarizes the new results that re-
flect the ability of the proposed method to account
for the correlation between indicator indices. We ob-
serve that the introduction of the positive correlation
between the indicator indices increases the probabil-
ity of the acceptable state. To explain this observa-
tion, we note that the positive correlation enforces
similar behavior of the three indicator indices (i.e.,
all three take large values or all three take small val-
ues). Because the probability distributions of I2 and
I3 are such that they are more likely to be in the
acceptable range (i.e., take large values), the posi-
tive correlation, which favors similar behavior, helps
to increase the probability of the acceptable state of
well-being. The contribution of I1 to the tolerable
state of well-being becomes more significant when
introducing positive correlation with respect to the
independent case. Because the probability distribu-
tion of I1 is symmetric, the probability of I1 being
in a tolerable state is less affected by introducing a
positive correlation in comparison to I2 and I3, which
have skewed probability distributions. As a result, its
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Table III. Probabilities of the State of Well-Being along with the Importance Measures, before and after Disruption
(Correlated Indicator Indices)

Before Disruption After Disruption

Variable IMtol IMintol Pacc Ptol Pintol IMtol IMintol Pacc Ptol Pintol

I1 0.7059 0.7898 0.2129 0.3411 0.4460 0.5358 0.6718 0.1302 0.2210 0.6487
I2 0.5058 0.4021 0.5135 0.5376
I3 0.1691 0.0772 0.3922 0.3946

contribution to the tolerable state of well-being be-
comes even more significant with respect to the inde-
pendent case.

6. CONCLUSIONS

This article proposed a general-purpose mathe-
matical approach, called a Reliability-based Capabil-
ity Approach (RCA) to evaluate the well-being of
individuals. Though the specific contexts of applica-
tion discussed here are risk analysis and poverty as-
sessment, the RCA can be used for different appli-
cations as well. In the proposed RCA, the well-being
of each individual is treated as a system that is com-
posed of interconnected indicator indices that define
the components of the system. The values or states of
the indicator indices collectively determine the state
of well-being. To predict the value of each indicator
index, probabilistic predictive models are proposed.
A Bayesian approach is presented to estimate the
unknown parameters of the predictive models. The
proposed RCA integrates the predictive models into
a system reliability problem to determine the prob-
ability that the state of well-being is acceptable, tol-
erable, or intolerable. Such calculations can be per-
formed for each individual in a study region, and a
map could be developed to visualize the spatial dis-
tribution of each state of well-being over the entire
region. Such maps can help decisionmakers visualize
which subpopulations suffer more in the aftermath of
a disruptive event. In addition, an importance mea-
sure is developed that determines the contribution
of each indicator index to an unfavorable state of
well-being (i.e., tolerable or intolerable). Such infor-
mation is particularly important in optimal allocation
of limited resources to mitigate a hazard or expedite
the recovery process. The proposed formulation is
general and applicable to several different fields and
therefore makes a step forward toward the develop-
ment of a uniform approach to the societal risk as-

sessment and decision making across all fields that
use a capability approach.
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