# Tax Incidence

# Overview

- Incidence means the tax "burden".
- The interesting question is whether or not one's tax payment to tax authorities is a correct representation of his tax burden?
- Example:
  - One earns a salary of 50, 000,
  - pays a tax of tax 10,000,
  - has a net pay of 40,000.
  - Is his burden of the tax 10,000?
- Clearly, the answer depends on what the person's salary would be if the tax is abolished.



- An example in which:
  - \* the gross of tax salary,  $w^g$ , remains unaffected, and the net of tax salary,  $w^n$ , is reduced by the full amount of the tax.
  - \* Note: In this example, the level of labor supply before and after tax is the same.
- The individual is worse off by the full amount of his tax payment.
- $\Rightarrow$  the incidence on him is equal to his tax payment.



• A second example in which

- \*  $w^g$  remains unaffected, and  $w^n$  is reduced by the full amount of the tax.
- $\ast$  Note: In this example, labor supply changes as a result of the tax.
- If the tax is abolished, the individual would recoup all the tax he currently pays.
- The individual is thus worse off, *in terms of income*, by the full amount of his tax payment.
- That the individual will increase the number of hours he works if the tax is abolished, however, has a bearing on how much "better off" he will be without the tax. Specifically, his utility decreases as his leisure consumption decreases.

- We call the first effect (the taxes the individual pays effectively and also here nominally—to the government) as a "first-order" effect.
- We call the second effect (the change in the individual's utility because of changes in the number of hours worked) as a "second-order" effect.
- For the time being, we concentrate only on the first-order effect.
  - This is sufficient for determining the "division" of incidence between the two sides of the market.
  - The second-order effects become relevant when one wants to "exactly" measure the "true" incidence of the tax.

- There are two sides to any transaction: employer and employee, seller and buyer etc.
- One side pays cash to the other for the goods or services rendered by the other side.
- In the absence of taxation, what one side pays is equivalent to what the other side receives.
- Tax is a tax on transaction  $\Rightarrow$  It creates a wedge between what one side pays and what the other receives.
- It is plain that both sides together pay the tax. That is, the tax transfers resources from the private to the public sector.

- If we ignore the second-order effects, the incidence on the private sector is equal to the taxes paid.
- The government can levy a tax on either side of the market.
- Yet this does not mean that the side which is taxed is necessarily bearing the burden of the tax. One side can "shift" it to other.
- The key is how the tax changes the prices faced by the two sides of the market.

### The irrelevance of who nominally pays the tax

•  $p^c$  versus  $p^s$ :

$$\begin{cases} q_d = f(p^c) \\ q_s = \phi(p^s) \end{cases}$$

- It is crucial to recognize the very obvious point that what matters to consumers is  $p^c$  and to sellers,  $p^s$ .
- Why should consumers care about  $p^s$ ; or producers about  $p^c$ !
- When we write  $q_d = f(p)$  and  $q_s = \phi(p)$ , we are effectively assuming that  $p^c = p^s$ .
- This assumption is correct in the absence of taxation, *and in equilibrium*.

\* Draw a diagram to illustrate this point.

- In the presence of taxation, the equilibrium condition changes to:  $p^c = p^s + t.$
- Observe that  $p^c = p^s + t$  holds regardless of which side of the market the tax is levied on.
- The equilibrium is thus characterized by:

$$\begin{cases} q_d = f(p^c) \\ q_s = f(p^s) \\ p^c = p^s + t \\ q_s = q_d \end{cases}$$

- Note that the equilibrium and the values of  $p^c$  and  $p^s$  depend only on the size of t, and not the division of t between the two sides of the market.
- Diagrammatic representation: the so called "Shifting" of D and S curves.
- Real examples (health costs, social security, etc.)
- The same principle applies to realtor fees.
- Non-competitive markets.

### An Example

• Assume:

$$\begin{cases} L_d = a - bw^g \\ L_s = cw^n \end{cases}$$

 $\bullet \Rightarrow$ 

$$\begin{cases} w_g = \frac{a - L^d}{b}, \text{ Inverse demand function,} \\ w_n = \frac{L^s}{c}, \text{ Inverse supply function.} \end{cases}$$

• Subtracting:

$$w_g - w_n = \frac{a - L^d}{b} - \frac{L^s}{c}.$$

• In equilibrium:

$$L^d = L^s = L.$$

- Therefore:  $w_g w_n = \frac{a-L}{b} \frac{L}{c} = \frac{ac-(b+c)L}{bc}$
- Or  $L = \frac{ac bc(w_g w_n)}{b + c}$ .
- Now in the most general case:

$$w_g = w + \tau,$$
  
$$w_n = w - \theta.$$

• Substituting in above yields:

$$L = \frac{ac - bc(\tau + \theta)}{b + c}$$

- Consequently, the equilibrium level of L does not change as long as we keep  $\tau + \theta$  constant.
- What matters is  $\theta + \tau$  and not  $\theta$  and  $\tau$  alone!
- Note: The distribution of θ and τ affect w, but w in and out itself is not important. For employers w<sup>g</sup> matter and for employers w<sup>n</sup>. These depend only on τ + θ. To see this, substitute for L in the inverse functions:

$$\begin{cases} w_g = \frac{a}{b} - \frac{ac - bc(\tau + \theta)}{b(b+c)} = \left(\frac{a}{b} - \frac{ac}{b(b+c)}\right) + \frac{bc}{b(b+c)}(\tau + \theta) \\ = \frac{a}{b+c} + \frac{c}{b+c}(\tau + \theta) \\ w_n = \frac{a - b(\tau + \theta)}{b+c} = \frac{a}{b+c} - \frac{b(\tau + \theta)}{b+c} \end{cases}$$

• Of course, from  $w = w^n + \theta$ , we have:

$$w = \frac{a}{b+c} - \frac{b}{b+c}(\tau + \theta) + \theta$$
$$= \frac{a}{b+c} - \frac{b\tau}{b+c} + \frac{\theta c}{b+c}.$$

• Similarly, from  $w = w^g - \tau$ ,

$$w = \frac{a}{b+c} + \frac{c(\tau+\theta)}{b+c} - \theta$$
$$= \frac{a}{b+c} - \frac{b\tau}{b+c} + \frac{\theta c}{b+c}.$$

 $\bullet$  But, as we observed, w in and out of itself does not matter.

A general formulation:

$$\left\{ \begin{array}{l} L^d = \phi(w^g) \\ L^s = \Omega(w^n) \\ L^d = L^s \\ w^g = w + \tau \\ w^n = w - \theta \end{array} \right. \label{eq:Ldef}$$

- In 5 variables:  $L^d, L^s, w^g, w^n$  and w.
- Exogenous variables:  $\tau$  and  $\theta$
- Note:

$$L^{d} = \Phi(w + \tau)$$
  

$$L^{s} = = \Omega(w - \theta).$$

- $L^d = L^s \Rightarrow \Phi(w + \tau) = \Omega(w \theta).$
- $\Rightarrow w$  depends on  $\tau$  and  $\theta$ .
- But  $w^g w^n = \tau + \theta = f(L^d) h(L^s) = f(L) h(L)$ .
- $\Rightarrow L^d = L^s = L$ , depends on  $\tau + \theta$  only; not on  $\theta$  and  $\tau$  separately.

• Determination of "effective" tax payments in the general case.



- The case of a perfectly inelastic demand curve.
- The case of a perfectly elastic supply curve.

# Measuring incidence (including the second-order effects)

• Recall the earlier diagram with  $w^g$  unaffected but hours of work changed.



- "First-order" loss= tax payment.
- "Second-order" effect:
  - Additional loss =  $w_0 \Delta L$  earnings lost because your work less (= a rectangle in the diagram).
  - Additional gain = value of  $\Delta L$  that you have in terms of extra leisure (area under the labor supply curve).
  - Net additional loss = additional loss minus additional gain  $(\Rightarrow = a \text{ triangle}).$
- Total incidence: First-order plus second-order effects (rectangle + triangle).

# The consumer's and producer's surplus

• Finding the total incidence in the previous diagram in a different way:







# Incidence and Elasticities of Demand and Supply

- Diagrammatic expositions.
- Diagrammatic conclusions.
- Perfectly elastic and perfectly inelastic demand and supply curves.

### Unit versus ad valorem taxes

- Expressed per unit of output or as a percentage of the price.
- One does not changes with market price and the other does automatically.
- We have

$$\left\{ \begin{array}{ll} p^c &= p^s + t \\ p^c &= p^s (1+\theta). \end{array} \right.$$

- The two are identical if t is set equal to  $\theta p^s$ , or  $\theta = t/p^s$ .
- Numerical examples.
- Some caveats.
  - \* The problem with the definition of a "unit".
  - \* Non-competitive markets.

# A two-sector General Equilibrium Model

- Two consumption goods: X and Y.
- Two factors of production: L (labor) and K (capital).
- Aggregate available endowments of labor and capital in the economy:  $\overline{L}$  and  $\overline{K}$ .
- The producer prices of X and Y:  $p_x$  and  $p_y$ .
- Net of tax wage and returns to capital: w and r.
- Marginal products of L and K in sector producing X are denoted by subscripts L and K on F(.).
- Marginal products of L and K in sector producing Y are denoted by subscripts L and K on G(.).
- Consumption taxes on goods X and Y:  $t_x$  and  $t_y$ .
- $t_{Lx}$  and  $t_{Kx}$  are the tax rates on labor and capital in industry X.
- $t_{Ly}$  and  $t_{Ky}$  are the tax rates on labor and capital in industry Y.

• The model:

$$\begin{pmatrix}
X &= F(L_x, K_x) \\
Y &= G(L_y, K_y) \\
p_x F_L(L_x, K_x) &= w(1 + t_{Lx}) \\
p_x F_K(L_x, K_x) &= r(1 + t_{Kx}) \\
p_y G_L(L_y, K_y) &= w(1 + t_{Ly}) \\
p_y G_K(L_y, K_y) &= r(1 + t_{Ky}) \\
K_x + K_y &= \overline{K} \\
L_x + L_y &= \overline{L} \\
\frac{X}{Y} &= \phi \left(\frac{p_x(1 + t_x)}{p_y(1 + t_y)}\right).
\end{cases}$$

- Exogenous variables:  $\overline{K}, \overline{L}, t_{Lx}, t_{Kx}, t_{Ly}, t_{Ky}, t_x, t_y$ .
- Endogenous variables:  $X, Y, L_x, K_x, L_y, K_y, w, r, p_x$ .
- $p_y \equiv 1$ ; is the numeraire.

- The important point in GE is that a tax in one sector affects the other sectors as well.
- $\Rightarrow$  The welfare of people working in the untaxed sectors are also affected and thus they also bear some tax burden.
- The emphasis here is what happens to the net of tax returns to labor and capital: w and r.
- In GE,  $p_x/p_y$  changes as a result of tax changes  $\Rightarrow$ 
  - \* When considering incidence for workers, we should look at both  $w/p_y$  and  $w/p_x$ .
  - \* When considering incidence for owners of capital, workers we should look at both  $r/p_y$  and  $r/p_x$ .
- Taxing a good is equal to taxing the factors of production that produce that good.

- Important factors determining incidence:
  - \* Factor mobility.
  - \* Factor intensity effect.
  - \* Factor substitution effect.
- Factor mobility and the "law of one price".
  - If labor in X is taxed and labor is mobile it will move elsewhere until the net of tax wage is equalized everywhere. This means *all* workers are equally affected not just labor in X.
  - This cannot be the case with land which is immobile.

- Factor intensity effect concerns the *relative* employment of labor and capital in different sectors of the economy.
- Definition: If K/L in Y industry is greater that K/L in X industry, Y is termed "capital intensive".
- $\Rightarrow X$  will then be labor intensive.
- Analysis:
  - When an industry is taxed, that industry shrinks and reduces its employment of labor and capital.
  - The unemployed labor and capital will have to find employment in the other industry.
  - If the taxed industry is, say, labor intensive, its downsizing releases more labor relative to capital.
  - Thus relatively more labor would be seeking employment than capital.
  - $\Rightarrow$  There will be relatively more pressure on wages in the labor market .
  - $-\Rightarrow$  Worse for the labor. seeks empshow up Taxing a labor intensive industry is bad for labor. Why?

- Factor substitution effect.
  - This refers to the "ease" of substituting one factor of production for another.
  - It is measured by the "lasticity of substitution"
  - When a factor, say labor, is taxed in one industry but not another, incidence is greatly affected by the elasticity of substitution in the taxed industry as wll as in the untaxed industry.
  - If the elasticity of substitution is high in the taxed industry, the industry can turn to the untaxed factor (capital) and substitute that for the taxed factor (labor).  $\Rightarrow$  This will hurt labor in that it pushes its wage down.
  - If the elasticity of substitution is low in the taxed industry, the industry cannot easily turn to the untaxed factor (capital) for the purpose of substitution.  $\Rightarrow$  This will be advantageous to labor.
  - If the elasticity of substitution is high in the untaxed industry, the taxed factor (labor) can easily be hired there.  $\Rightarrow$  This will be good for the labor and lowers the downward pressure on wages.
  - If the elasticity of substitution is low in the untaxed industry, the taxed factor (labor) cannot easily be hired there.  $\Rightarrow$  This will hurt labor in that it pushes its wage down in order to find employment.

### Tax Incidence in non-competitive markets

- More complicated; no unified theory. No unified price theory!
- The point is that with non-competitive markets; there are "pure profits" and these can be taken away through taxation. [Note that the "producer surplus" in competitive markets is a short-run phenomenon. In the long run we do not have "profits".]
- Two illustrations:
  - 1. Vertical MC:



– All the incidence is on producers.

– This is precisely the same outcome as in competitive markets.



### 2. Horizontal MC:

- \* "Profit" in the absence of  $tax = P_0 ABC$  (ignoring fixed costs).
- \* "Profit" with  $\tan = P_1 A' B' C'$  (ignoring fixed costs).
- \* Reduction in profits = area of  $P_0ABC$  area of  $P_1A'B'C'$ .
- \* Reduction in profits = Areas 2+3+4+5-(1+2) = 3+4+5-1.
- \* Note with a linear demand curve Area 5 is twice as much as Area 1.
- \* Therefore, with a linear demand, difference = areas 3 + 4 + 1



- Intuition:
  - When output is cut from  $q_0$  to  $q_1$  producers lose all the profit associated with  $q_1q_0$  units of output (i.e. areas 3 + 4). In addition, in selling  $q_1$  they gain area 1 because of the price increase from  $p_0$  to  $p_1$ , but they lose area 5 to taxes. The net reduction in their profits is thus 3 + 4 - 1 + 5 = 3 + 4 + 1.
- Compare with the incidence on consumers which is area 1 plus the small triangle (the "second-order" effect).

- Linear demand and the change in consumer price:
  - \* Demand: p = a bq, with a > 0, b > 0.
  - $^* \Rightarrow MR = a 2bq.$
  - \* This can be proved by differentiating  $TR = pq = aq bq^2$ .
  - \* Write MR as a function of price ( by substituting for bq from the demand curve).
  - \* MR = a 2(a p) = -a + 2p.
  - \* In equilibrium, for all t, including t = 0,
  - \*  $MR = MC + t \Rightarrow$

$$* -a + 2p = MC + t \Rightarrow$$

$$* \Rightarrow p = \frac{a+MC}{2} + \frac{t}{2}.$$

 $* \Rightarrow \frac{dp}{dt} = \frac{1}{2}.$ 

\* Note a and MC are independent of the tax.