Tax Incidence

Overview

- Incidence means the tax "burden".
- The interesting question is whether or not one's tax payment to tax authorities is a correct representation of his tax burden?
- Example:
- One earns a salary of 50,000 ,
- pays a tax of tax 10,000 ,
- has a net pay of 40,000 .
- Is his burden of the tax 10,000 ?
- Clearly, the answer depends on what the person's salary would be if the tax is abolished.

- An example in which:
* the gross of tax salary, w^{g}, remains unaffected, and the net of tax salary, w^{n}, is reduced by the full amount of the tax.
* Note: In this example, the level of labor supply before and after tax is the same.
- The individual is worse off by the full amount of his tax payment.
- \Rightarrow the incidence on him is equal to his tax payment.
(ii) Gross of tax wage does not change!

- A second example in which

L

* w^{g} remains unaffected, and w^{n} is reduced by the full amount of the tax.
* Note: In this example, labor supply changes as a result of the tax.
- If the tax is abolished, the individual would recoup all the tax he currently pays.
- The individual is thus worse off, in terms of income, by the full amount of his tax payment.
- That the individual will increase the number of hours he works if the tax is abolished, however, has a bearing on how much "better off" he will be without the tax. Specifically, his utility decreases as his leisure consumption decreases.
- We call the first effect (the taxes the individual pays effectivelyand also here nominally - to the government) as a "first-order" effect.
- We call the second effect (the change in the individual's utility because of changes in the number of hours worked) as a "secondorder" effect.
- For the time being, we concentrate only on the first-order effect.
- This is sufficient for determining the "division" of incidence between the two sides of the market.
- The second-order effects become relevant when one wants to "exactly" measure the "true" incidence of the tax.
- There are two sides to any transaction: employer and employee, seller and buyer etc.
- One side pays cash to the other for the goods or services rendered by the other side.
- In the absence of taxation, what one side pays is equivalent to what the other side receives.
- Tax is a tax on transaction \Rightarrow It creates a wedge between what one side pays and what the other receives.
- It is plain that both sides together pay the tax. That is, the tax transfers resources from the private to the public sector.
- If we ignore the second-order effects, the incidence on the private sector is equal to the taxes paid.
- The government can levy a tax on either side of the market.
- Yet this does not mean that the side which is taxed is necessarily bearing the burden of the tax. One side can "shift" it to other.
- The key is how the tax changes the prices faced by the two sides of the market.

The irrelevance of who nominally pays the tax

- p^{c} versus p^{s} :

$$
\left\{\begin{array}{l}
q_{d}=f\left(p^{c}\right) \\
q_{s}=\phi\left(p^{s}\right)
\end{array}\right.
$$

- It is crucial to recognize the very obvious point that what matters to consumers is p^{c} and to sellers, p^{s}.
- Why should consumers care about p^{s}; or producers about p^{c} !
- When we write $q_{d}=f(p)$ and $q_{s}=\phi(p)$, we are effectively assuming that $p^{c}=p^{s}$.
- This assumption is correct in the absence of taxation, and in equilibrium.
* Draw a diagram to illustrate this point.
- In the presence of taxation, the equilibrium condition changes to: $p^{c}=p^{s}+t$.
- Observe that $p^{c}=p^{s}+t$ holds regardless of which side of the market the tax is levied on.
- The equilibrium is thus characterized by:

$$
\left\{\begin{array}{l}
q_{d}=f\left(p^{c}\right) \\
q_{s}=f\left(p^{s}\right) \\
p^{c}=p^{s}+t \\
q_{s}=q_{d}
\end{array}\right.
$$

- Note that the equilibrium and the values of p^{c} and p^{s} depend only on the size of t, and not the division of t between the two sides of the market.
- Diagrammatic representation: the so called "Shifting" of D and S curves.
- Real examples (health costs, social security, etc.)
- The same principle applies to realtor fees.
- Non-competitive markets.

An Example

- Assume:

$$
\left\{\begin{array}{l}
L_{d}=a-b w^{g} \\
L_{s}=c w^{n}
\end{array}\right.
$$

$\bullet \Rightarrow$

$$
\left\{\begin{array}{l}
w_{g}=\frac{a-L^{d}}{b}, \text { Inverse demand function } \\
w_{n}=\frac{L^{s}}{c}, \text { Inverse supply function }
\end{array}\right.
$$

- Subtracting:
$w_{g}-w_{n}=\frac{a-L^{d}}{b}-\frac{L^{s}}{c}$.
- In equilibrium:
$L^{d}=L^{s}=L$.
- Therefore: $w_{g}-w_{n}=\frac{a-L}{b}-\frac{L}{c}=\frac{a c-(b+c) L}{b c}$
- Or $L=\frac{a c-b c\left(w_{g}-w_{n}\right)}{b+c}$.
- Now in the most general case:

$$
\begin{aligned}
w_{g} & =w+\tau \\
w_{n} & =w-\theta
\end{aligned}
$$

- Substituting in above yields:

$$
L=\frac{a c-b c(\tau+\theta)}{b+c}
$$

- Consequently, the equilibrium level of L does not change as long as we keep $\tau+\theta$ constant.
- What matters is $\theta+\tau$ and not θ and τ alone!
- Note: The distribution of θ and τ affect w, but w in and out itself is not important. For employers w^{g} matter and for employers w^{n}. These depend only on $\tau+\theta$. To see this, substitute for L in the inverse functions:

$$
\left\{\begin{aligned}
w_{g} & =\frac{a}{b}-\frac{a c-b c(\tau+\theta)}{b(b+c)}=\left(\frac{a}{b}-\frac{a c}{b(b+c)}\right)+\frac{b c}{b(b+c)}(\tau+\theta) \\
& =\frac{a}{b+c}+\frac{c}{b+c}(\tau+\theta) \\
w_{n} & =\frac{a-b(\tau+\theta)}{b+c}=\frac{a}{b+c}-\frac{b(\tau+\theta)}{b+c}
\end{aligned}\right.
$$

- Of course, from $w=w^{n}+\theta$, we have:

$$
\begin{aligned}
w & =\frac{a}{b+c}-\frac{b}{b+c}(\tau+\theta)+\theta \\
& =\frac{a}{b+c}-\frac{b \tau}{b+c}+\frac{\theta c}{b+c}
\end{aligned}
$$

- Similarly, from $w=w^{g}-\tau$,

$$
\begin{aligned}
w & =\frac{a}{b+c}+\frac{c(\tau+\theta)}{b+c}-\theta \\
& =\frac{a}{b+c}-\frac{b \tau}{b+c}+\frac{\theta c}{b+c}
\end{aligned}
$$

- But, as we observed, w in and out of itself does not matter.

A general formulation:

$$
\left\{\begin{array}{l}
L^{d}=\phi\left(w^{g}\right) \\
L^{s}=\Omega\left(w^{n}\right) \\
L^{d}=L^{s} \\
w^{g}=w+\tau \\
w^{n}=w-\theta
\end{array}\right.
$$

- In 5 variables: $L^{d}, L^{s}, w^{g}, w^{n}$ and w.
- Exogenous variables: τ and θ
- Note:

$$
\begin{aligned}
L^{d} & =\Phi(w+\tau) \\
L^{s} & =\Omega(w-\theta)
\end{aligned}
$$

- $L^{d}=L^{s} \Rightarrow \Phi(w+\tau)=\Omega(w-\theta)$.
- $\Rightarrow w$ depends on τ and θ.
- But $w^{g}-w^{n}=\tau+\theta=f\left(L^{d}\right)-h\left(L^{s}\right)=f(L)-h(L)$.
$\bullet \Rightarrow L^{d}=L^{s}=L$, depends on $\tau+\theta$ only; not on θ and τ separately.
- Determination of "effective" tax payments in the general case.

- The case of a perfectly inelastic demand curve.
- The case of a perfectly elastic supply curve.

Measuring incidence (including the second-order effects)

- Recall the earlier diagram with w^{g} unaffected but hours of work changed.

- "First-order" loss= tax payment.
- "Second-order" effect:
- Additional loss $=w_{0} \Delta L$ earnings lost because your work less ($=$ a rectangle in the diagram).
- Additional gain $=$ value of ΔL that you have in terms of extra leisure (area under the labor supply curve).
- Net additional loss $=$ additional loss minus additional gain ($\Rightarrow=$ a triangle).
- Total incidence: First-order plus second-order effects (rectangle + triangle).

The consumer's and producer's surplus

- Finding the total incidence in the previous diagram in a different way:

- The general case:

Incidence and Elasticities of Demand and Supply

- Diagrammatic expositions.
- Diagrammatic conclusions.
- Perfectly elastic and perfectly inelastic demand and supply curves.

Unit versus ad valorem taxes

- Expressed per unit of output or as a percentage of the price.
- One does not changes with market price and the other does automatically.
- We have

$$
\left\{\begin{array}{l}
p^{c}=p^{s}+t \\
p^{c}=p^{s}(1+\theta) .
\end{array}\right.
$$

- The two are identical if t is set equal to θp^{s}, or $\theta=t / p^{s}$.
- Numerical examples.
- Some caveats.
* The problem with the definition of a "unit".
* Non-competitive markets.

A two-sector General Equilibrium Model

- Two consumption goods: X and Y.
- Two factors of production: L (labor) and K (capital).
- Aggregate available endowments of labor and capital in the economy: \bar{L} and \bar{K}.
- The producer prices of X and $Y: p_{x}$ and p_{y}.
- Net of tax wage and returns to capital: w and r.
- Marginal products of L and K in sector producing X are denoted by subscripts L and K on $F($.$) .$
- Marginal products of L and K in sector producing Y are denoted by subscripts L and K on $G($.$) .$
- Consumption taxes on goods X and $Y: t_{x}$ and t_{y}.
- $t_{L x}$ and $t_{K x}$ are the tax rates on labor and capital in industry X.
- $t_{L y}$ and $t_{K y}$ are the tax rates on labor and capital in industry Y.
- The model:

$$
\begin{cases}X & =F\left(L_{x}, K_{x}\right) \\ Y & =G\left(L_{y}, K_{y}\right) \\ p_{x} F_{L}\left(L_{x}, K_{x}\right) & =w\left(1+t_{L x}\right) \\ p_{x} F_{K}\left(L_{x}, K_{x}\right) & =r\left(1+t_{K x}\right) \\ p_{y} G_{L}\left(L_{y}, K_{y}\right) & =w\left(1+t_{L y}\right) \\ p_{y} G_{K}\left(L_{y}, K_{y}\right) & =r\left(1+t_{K y}\right) \\ K_{x}+K_{y} & =\bar{K} \\ L_{x}+L_{y} & =\bar{L} \\ \frac{X}{Y} & =\phi\left(\frac{p_{x}\left(1+t_{x}\right)}{p_{y}\left(1+t_{y}\right)}\right)\end{cases}
$$

- Exogenous variables: $\bar{K}, \bar{L}, t_{L x}, t_{K x}, t_{L y}, t_{K y}, t_{x}, t_{y}$.
- Endogenous variables: $X, Y, L_{x}, K_{x}, L_{y}, K_{y}, w, r, p_{x}$.
- $p_{y} \equiv 1$; is the numeraire.
- The important point in GE is that a tax in one sector affects the other sectors as well.
- \Rightarrow The welfare of people working in the untaxed sectors are also affected and thus they also bear some tax burden.
- The emphasis here is what happens to the net of tax returns to labor and capital: w and r.
- In GE, p_{x} / p_{y} changes as a result of tax changes \Rightarrow
* When considering incidence for workers, we should look at both w / p_{y} and w / p_{x}.
* When considering incidence for owners of capital, workers we should look at both r / p_{y} and r / p_{x}.
- Taxing a good is equal to taxing the factors of production that produce that good.
- Important factors determining incidence:
* Factor mobility.
* Factor intensity effect.
* Factor substitution effect.
- Factor mobility and the "law of one price".
- If labor in X is taxed and labor is mobile it will move elsewhere until the net of tax wage is equalized everywhere. This means all workers are equally affected not just labor in X.
- This cannot be the case with land which is immobile.
- Factor intensity effect concerns the relative employment of labor and capital in different sectors of the economy.
- Definition: If K / L in Y industry is greater that K / L in X industry, Y is termed "capital intensive".
- $\Rightarrow X$ will then be labor intensive.
- Analysis:
- When an industry is taxed, that industry shrinks and reduces its employment of labor and capital.
- The unemployed labor and capital will have to find employment in the other industry.
- If the taxed industry is, say, labor intensive, its downsizing releases more labor relative to capital.
- Thus relatively more labor would be seeking employment than capital.
$-\Rightarrow$ There will be relatively more pressure on wages in the labor market.
$-\Rightarrow$ Worse for the labor. seeks empshow up Taxing a labor intensive industry is bad for labor. Why?
- Factor substitution effect.
- This refers to the "ease" of substituting one factor of production for another.
- It is measured by the "lasticity of substitution"
- When a factor, say labor, is taxed in one industry but not another, incidence is greatly affected by the elasticity of substitution in the taxed industry as wll as in the untaxed industry.
- If the elasticity of substitution is high in the taxed industry, the industry can turn to the untaxed factor (capital) and substitute that for the taxed factor (labor). \Rightarrow This will hurt labor in that it pushes its wage down.
- If the elasticity of substitution is low in the taxed industry, the industry cannot easily turn to the untaxed factor (capital) for the purpose of substitution. \Rightarrow This will be advantageous to labor.
- If the elasticity of substitution is high in the untaxed industry, the taxed factor (labor) can easily be hired there. \Rightarrow This will be good for the labor and lowers the downward pressure on wages.
- If the elasticity of substitution is low in the untaxed industry, the taxed factor (labor) cannot easily be hired there. \Rightarrow This will hurt labor in that it pushes its wage down in order to find employment.

Tax Incidence in non-competitive markets

- More complicated; no unified theory. No unified price theory!
- The point is that with non-competitive markets; there are "pure profits" and these can be taken away through taxation. [Note that the "producer surplus" in competitive markets is a shortrun phenomenon. In the long run we do not have "profits".]
- Two illustrations:

1. Vertical MC:

- All the incidence is on producers.
- This is precisely the same outcome as in competitive markets.

2. Horizontal MC:

* "Profit" in the absence of tax $=P_{0} A B C$ (ignoring fixed costs).
* "Profit" with tax $=P_{1} A^{\prime} B^{\prime} C^{\prime}$ (ignoring fixed costs).
* Reduction in profits $=$ area of $P_{0} A B C-$ area of $P_{1} A^{\prime} B^{\prime} C^{\prime}$.
* Reduction in profits $=$ Areas $2+3+4+5-(1+2)=3+4+5-1$.
* Note with a linear demand curve Area 5 is twice as much as Area 1.
* Therefore, with a linear demand, difference $=$ areas $3+4+1$

- Intuition:
- When output is cut from q_{0} to q_{1} producers lose all the profit associated with $q_{1} q_{0}$ units of output (i.e. areas $3+4$). In addition, in selling q_{1} they gain area 1 because of the price increase from p_{0} to p_{1}, but they lose area 5 to taxes. The net reduction in their profits is thus $3+4-1+5=3+4+1$.
- Compare with the incidence on consumers which is area 1 plus the small triangle (the "second-order" effect).
- Linear demand and the change in consumer price:
* Demand: $p=a-b q$, with $a>0, b>0$.
* $\Rightarrow M R=a-2 b q$.
* This can be proved by differentiating $T R=p q=a q-b q^{2}$.
* Write $M R$ as a function of price (by substituting for $b q$ from the demand curve).
* $M R=a-2(a-p)=-a+2 p$.
* In equilibrium, for all t, including $t=0$,
* $M R=M C+t \Rightarrow$
* $-a+2 p=M C+t \Rightarrow$
* $\Rightarrow p=\frac{a+M C}{2}+\frac{t}{2}$.
* $\Rightarrow \frac{d p}{d t}=\frac{1}{2}$.
* Note a and $M C$ are independent of the tax.

