Optimal taxation

First-Best Taxes

- Lump-sum taxes are taxes that you have to pay them regardless of what you do.
- \Rightarrow No substitution effects.
- Must depend on immutable characteristics.
- Of course, one wants the characteristics to be relevant.
- They are not necessarily fair.
- Substitution and distortion:
- \Rightarrow It is wasteful to adjust one's behavior to take advantage of the tax system and/or to shift taxes. One's behavior should reflect only one's tastes and real opportunities facing him.

- The question of feasibility.
- Head taxes are feasible but will no do the job.
(i) Do not raise enough revenue (because of poor people, its level must be low).
(ii) Equity.
(iii) Politically; Mrs Thatcher ...
- Differential lump-sum taxes and the question of information.
- Market outcome is F.B. is the sense of being Pareto-efficient.
- LS taxes does not change F.B. efficiency conditions \Rightarrow outcome continues to be Pareto-efficient.
- \Rightarrow The gain in equity does not come at the expense of a loss in efficiency.
- The equity-efficiency trade-off arises with second-best taxes.

Information and incentives

- Informational problems are real problems.
- Ideally, one wants to tax "earning abilities": $w_{1}, w_{2}, \ldots, w_{n}$.
- Lack of public information on w_{i} 's forces the government to use incomes a s a proxy for earning abilities.
- Incomes are: $y_{1}, y_{2}, \ldots, y_{n}$.
- But $y=w L$ is not exogenous.
- Optimal tax theory pinpoints the second-best frontier.
- If we levy sub-optimal taxes, we'll be truly wasteful (inside the second-best frontier).

Introduction to incentives

- Assume preferences are given by:

$$
u_{i}=u\left(c_{i}, l_{i}\right) .
$$

- Further assume that the government can levy differential lumpsum taxes.
- Each individual maximizes the above utility function s.t.

$$
c_{i}=w_{i}\left(1-l_{i}\right)-T_{i} .
$$

- Where T_{i} is the lump-sum tax on person i.
- The F.O.C are

$$
\frac{\partial u_{i} / \partial l_{i}}{\partial u_{i} / \partial c_{i}}=w_{i} .
$$

- This determines c_{i}^{*} and l_{i}^{*} as functions of w_{i} and T_{i}.
$\bullet \Rightarrow$

$$
u_{i}^{*}=u\left(c_{i}^{*}, l_{i}^{*}\right) .
$$

- The Government's problem.
- Assume a utilitarian framework.
- Maximize $W=\sum u_{i}^{*}$ s.t. $\sum T_{i} \geq \bar{R}$.
- This is represented by the Lagrangian:

$$
£=\sum u_{i}^{*}+\lambda\left(\sum T_{i}-\bar{R}\right) .
$$

- The F.O.C. are

$$
\frac{\partial u_{j}^{*}}{\partial T_{j}}=-\lambda, \text { for all } j
$$

- But,

$$
\frac{\partial u_{j}^{*}}{\partial T_{j}}=-\frac{\partial u_{j}^{*}}{\partial c_{j}} .
$$

$\bullet \Rightarrow$

$$
\frac{\partial u_{j}^{*}}{\partial c_{j}}=\lambda, \text { for all } j
$$

- In case, it is not obvious to you that $\partial u_{j}^{*} / \partial T_{j}=-\partial u_{j}^{*} / \partial c_{j}$:
- We have:

$$
\begin{aligned}
\frac{\partial u_{j}^{*}}{\partial T_{j}} & =\frac{\partial u_{j}^{*}}{\partial c_{j}} \frac{\partial c_{j}}{\partial T_{j}}+\frac{\partial u_{j}^{*}}{\partial l_{j}} \frac{\partial l_{j}}{\partial T_{j}} \\
& =\frac{\partial u_{j}^{*}}{\partial c_{j}}\left[\frac{\partial c_{j}}{\partial T_{j}}+\frac{\frac{\partial u_{j}^{*}}{\partial l_{j}}}{\frac{\partial u_{j}^{*}}{\partial c_{j}}} \frac{\partial l_{j}}{\partial T_{j}}\right] \\
& =\frac{\partial u_{j}^{*}}{\partial c_{j}}\left[\frac{\partial c_{j}}{\partial T_{j}}+w_{j} \frac{\partial l_{j}}{\partial T_{j}}\right] .
\end{aligned}
$$

- Next, differentiating

$$
c_{i}=w_{i}\left(1-l_{i}\right)-T_{i}
$$

* w.r.t. T_{i} yields

$$
\frac{\partial c_{i}}{\partial T_{i}}+w_{i} \frac{\partial l_{i}}{\partial T_{i}}=-1
$$

- Which proves the point.
- Next, observe that

$$
\frac{\partial u_{j}^{*}}{\partial l_{j}}=\frac{\partial u_{j}^{*}}{\partial c_{j}} w_{j}=\lambda w_{j} .
$$

$\bullet \Rightarrow$

$$
\left\{\begin{array}{l}
\frac{\partial u_{j}^{*}}{\partial c_{j}}=\lambda \\
\frac{\partial u_{j}^{*}}{\partial l_{j}}=\lambda w_{j} .
\end{array}\right.
$$

- This, in turn, implies that more able persons are made worse-off!
- Though the claim is general, its proof is made easier if we assume additive preferences.
- Assume:

$$
u_{i}=f\left(c_{i}\right)+\varphi\left(l_{i}\right) .
$$

- Consider two persons 1 and 2 with $w_{2}>w_{1}$.
- From $\partial u_{j}^{*} / \partial c_{j}=\lambda, \Rightarrow$
- $f^{\prime}\left(c_{1}^{*}\right)=f^{\prime}\left(c_{2}^{*}\right)$.
- $\Rightarrow c_{1}^{*}=c_{2}^{*}$.
- Next, from $\partial u_{j}^{*} / \partial l_{j}=\lambda w_{j}, \Rightarrow$

$$
\begin{aligned}
\varphi\left(l_{1}\right) & =\lambda w_{1} \\
\varphi\left(l_{2}\right) & =\lambda w_{2}
\end{aligned}
$$

- Now that fact that $w_{2}>w_{1} \Rightarrow \varphi^{\prime}\left(l_{1}^{*}\right)<\varphi^{\prime}\left(l_{2}^{*}\right)$.
- Given diminishing marginal utility of leisure (i.e. $\left.\varphi^{\prime \prime}()<0.\right) \Rightarrow$ $l_{2}^{*}<l_{1}^{*}$.

- Individual 2 will thus end up with the same consumption as individual 1 , but with less leisure. $\Rightarrow \mathrm{He}$ will be worse off.

Second-best tax solution

- In the previous problem, if the government does not know who is endowed with w_{2} and who with w_{1}, it cannot rely on people to reveal their type!
- \Rightarrow Post-tax allocations must satisfy "Incentive compatibility" or "self-selection" constraints.

The optimal linear income tax

- Types: $w F(w)$ over the support $[\underline{w}, \bar{w}]$.
- The government chooses t and G to maximize the SWF

$$
\int_{\underline{w}}^{\bar{w}} \phi(u) f(w) d w
$$

- s.t.

$$
\int_{\underline{w}}^{\bar{w}}(t y-G) f(w) d w \geq \bar{R} .
$$

- The solution strikes the "right" balance between efficiency costs and redistributive benefits.

Figure: Equity benefit of progressivity.

- Can the excess burden of a progressive tax be less than the excess burden of a proportional tax?
- Can we have a diagram like above?
- According to such a diagram:

$$
L_{B}>L_{A} ; \quad C_{B}>C_{A} ; \quad \mid \text { slope } \mid \text { at } B<\mid \text { slope } \mid \text { at } A .
$$

- Point F with a slope equal to that of A must be to the right of B.
- $\Rightarrow L_{F}>L_{B}>L_{A}$.
- \Rightarrow This is due only to the income effect (slopes at A and F are the same).
- \Rightarrow Normality of leisure rules this out.

Algebraic solution and discussion

- The problem is represented by the Lagrangian:

$$
\begin{aligned}
£ & =\int_{\underline{w}}^{\bar{w}} \phi(u) f(w) d w+\mu\left[\int_{\underline{w}}^{\bar{w}} t w L f(w) d w-G-\bar{R}\right] \\
& =\int_{\underline{w}}^{\bar{w}}[\phi(u)+\mu(t w L-G-\bar{R})] f(w) d w .
\end{aligned}
$$

- The FOC are

$$
\left\{\begin{array}{l}
\frac{\partial L}{\partial G}=0 \\
\frac{\partial L}{\partial t}=0 .
\end{array}\right.
$$

- Characterization of the solution:

$$
\left\{\begin{array}{l}
E(\gamma)=\mu \\
\frac{t}{1-t}=\frac{1}{\mu} \int_{\underline{w}}^{\infty} y \operatorname{cov}^{\infty}(\underline{\gamma}, \gamma) \\
t \int_{\underline{w}}^{\bar{w}} y d F=G+\bar{R},
\end{array}\right.
$$

* $\gamma \equiv \phi^{\prime}(u(c, L)) \alpha_{w}+\mu w t \frac{\partial L}{\partial m}$ is the net social marginal utility.
* $\varepsilon_{L L}$ is the compensated wage elasticity of labor supply.
- Observe that the solution depends on \bar{R}.
- Need to simplify to see the intuition.
- Assume quasi-linear preferences.

$$
\begin{aligned}
& * \Rightarrow \partial L / \partial m=0 \Rightarrow \gamma=\phi^{\prime}(u(c, L)) \alpha_{w} . \\
& * \Rightarrow \alpha_{w}=1 \Rightarrow \gamma=\phi^{\prime}(u(c, L))
\end{aligned}
$$

- Dependence on \bar{R} continues.
- Assume, as before,

$$
u=c-\frac{\varepsilon}{1+\varepsilon}\left(L_{0}\right)^{-\frac{1}{\varepsilon}} L^{1+\frac{1}{\varepsilon}}
$$

- Recall that in this case,

$$
\begin{aligned}
\varepsilon_{L L} & =\varepsilon=\mathrm{constant} \\
y & =w L=L_{0}(1-t)^{\varepsilon} w^{1+\varepsilon}
\end{aligned}
$$

- Substituting in the FOC \Rightarrow

$$
\begin{cases}E\left(\phi^{\prime}(v)\right) & =\mu \\ \frac{t}{1-t} & =\frac{1}{\mu} \frac{-\int_{\underline{w}}^{\bar{w}} w^{1+\varepsilon}\left(\phi^{\prime}-E\left(\phi^{\prime}\right)\right) d F}{\varepsilon \int_{\underline{w}}^{\bar{w}} w^{1+\varepsilon} d F} \\ t\left[L_{0}(1-t)^{\varepsilon}\right] \int_{\underline{w}}^{\bar{w}} w^{1+\varepsilon} d F & =G+\bar{R}\end{cases}
$$

- Observe also that the middle equation can be written as

$$
\begin{aligned}
\frac{t}{1-t} & =\frac{1}{\mu \varepsilon} \frac{-E\left(w^{1+\varepsilon} \phi^{\prime}\right)+E\left(\phi^{\prime}\right) E\left(w^{1+\varepsilon}\right)}{E\left(w^{1+\varepsilon}\right)} \\
& =\frac{1}{\varepsilon}\left[1-\frac{E\left(w^{1+\varepsilon} \phi^{\prime}\right)}{E\left(\phi^{\prime}\right) E\left(w^{1+\varepsilon}\right)}\right]
\end{aligned}
$$

- Observe that as long as $\phi^{\prime}($.$) depends on \bar{R}$, so will t.
- Assume $\phi^{\prime}=\frac{w^{-\gamma}}{E\left(w^{-\gamma}\right)}$. \Rightarrow
* t is independent of \bar{R}.
* \bar{R} affects the size of G only.

$$
G=t_{0}(1-t)^{\varepsilon} E\left(w^{1+\varepsilon}\right)-\bar{R} .
$$

* Sum of the weights are normalized to one:

$$
\int \phi^{\prime} d F=E\left(\phi^{\prime}\right)=\frac{E\left(w^{-\gamma}\right)}{E\left(w^{-\gamma}\right)}=1
$$

- Further implications of the weighting scheme:
- Suppose $w_{2}>w_{1}$: The weight put on the poorer guy (1) relative to the rich (2) is:

$$
\frac{w_{1}^{-\gamma}}{w_{2}^{-\gamma}}=\left(\frac{w_{2}}{w_{1}}\right)^{\gamma} .
$$

- With $\frac{w_{2}}{w_{1}}>1$, this relative weight increases as γ increases. It is lowest at $\gamma=0$, where the poor and the rich get the same weight as with utilitarian preferences. It will be highest as $\gamma \rightarrow \infty$ as with Rawlsian preferences.
- Assume further that w has a lognormal distribution over the support $(0, \infty) . \Rightarrow \ln w$ is normally distributed with mean m and variance σ^{2}.
- \Rightarrow One can find a closed-form solution for t according to:

$$
\frac{t}{1-t}=\frac{1}{\varepsilon}\left[1-\left(1+\eta^{2}\right)^{-\gamma(1+\varepsilon)}\right] .
$$

* where $\eta \equiv \frac{\sigma}{m}$ is the "coefficient of variation".
- Interpreting the optimal tax rule:

$$
\frac{t}{1-t}=\frac{1}{\varepsilon}\left[1-\left(1+\eta^{2}\right)^{-\gamma(1+\varepsilon)}\right] .
$$

* ε term represents efficiency.
* $\left[1-\left(1+\eta^{2}\right)^{-\gamma(1+\varepsilon)}\right]$ represents equity.
- The higher is ε, the lower is the tax rate (on efficiency grounds).
- The higher is γ, the higher is the tax rate (on equity grounds).
- The higher is η, the higher is the tax rate (on equity grounds).
$-\Rightarrow$ High degree of inequality calls for a high tax rates.

A numerical study by Nic Stern

- Assume CES preference:

$$
u(c, l)=\left[\alpha l^{-\mu}+(1-\alpha) c^{-\mu}\right]^{-1 / \mu},
$$

* where the elasticity of substitution between l and c, σ, is

$$
\sigma=\frac{1}{1+\mu}
$$

- The SWF criterion is Atkinson-type,

$$
\frac{1}{1-\varepsilon} \int_{0}^{\infty}(u(c, l))^{1-\varepsilon} f(w) d w,
$$

* with ε denoting the inequality aversion index.
- The income tax is linear so that a person with wage w has a budget constraint

$$
c=(1-t) w(1-l)+G
$$

- The government's budget constraint is

$$
t \int_{0}^{\infty} w(1-l) f(w) d w=G+\bar{R} .
$$

Calculations of Optimal Linear Marginal Tax Rates

(By Nicholas Stern, 1976)

	$\varepsilon=0$		$\varepsilon=2$	$\varepsilon=3$	$\varepsilon=\infty$			
σ	t	G	t	G	t	G	t	G
$\mathrm{R}=0$ (purely redistributive tax)								
0.2	36.2	0.096	62.7	0.161	67.0	0.171	92.6	0.212
0.4	22.3	0.057	47.7	0.116	52.7	0.126	83.9	0.167
0.6	17.0	0.042	38.9	0.090	43.8	0.099	75.6	0.135
0.8	14.1	0.034	33.1	0.073	37.6	0.081	68.2	0.111
1.0	12.7	0.029	29.1	0.062	33.4	0.068	62.1	0.094

$\mathrm{R}=0.05$ (equivalent to about 20 percent of $G D P$)									
0.2	40.6	0.063	68.1	0.135	72.0	0.144	93.8	0.182	
0.4	25.4	0.019	54.0	0.089	58.8	0.099	86.7	.0139	
0.6	18.9	0.000	45.0	0.061	50.1	0.071	79.8	0.107	
0.8	19.7	0.000	38.9	0.042	43.8	0.051	73.6	0.082	
1.0	20.6	0.000	34.7	0.029	39.5	0.037	68.5	0.064	

$\mathrm{R}=0.10$ (equivalent to about 45 percent of GDP)

| 0.2 | 45.6 | 0.034 | 73.3 | 0.110 | 76.7 | 0.119 | $95.0+$ | - |
| :--- | ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0.4 | 35.1 | 0.000 | 60.5 | 0.065 | 65.1 | 0.076 | 89.3 | 0.112 |
| 0.6 | 36.6 | 0.000 | 52.0 | 0.036 | 57.1 | 0.047 | 83.9 | 0.081 |
| 0.8 | 38.6 | 0.000 | 46.0 | 0.016 | 51.3 | 0.026 | 79.2 | 0.057 |
| 1.0 | 40.9 | 0.000 | 41.7 | 0.002 | 47.0 | 0.011 | 75.6 | 0.039 |

Usefulness of General Income taxes

- Consider an optimal linear income tax schedule, which is optimal for a given SWF assuming income taxes have to be linear.
- The question is if we can improve SWF by introducing bracketing.

- Yes! Given two schedules: A linear income tax for all incomes reported bellow I_{A}, and a lump-sum tax for incomes above I_{A} (equal to the distance between the 45 degree line and $A A^{\prime}$). The poor stays put; the rich goes to A^{\prime} : Individuals have same utility; but tax revenue is higher!
- Note: This does not mean that $\left(B, A^{\prime}\right)$ is optimal. We may want to use the extra revenue for further redistribution.
- Question: Why not give them a choice between two Lump-sum taxes?
- With full information, we could. And this would improve things further.
- When incomes are publicly unobservable, we face the IC constraints. \Rightarrow The rich would now want to go to B^{\prime}.

