Public Economics

(Econ 512)
F. Gahvari

Fall 2011

Answer all questions. I wish everyone a wonderful holiday break.

1. (9 points.) Assume that the representative consumer has a utility function $U=$ $\sqrt{x_{1}}+\ln x_{2}-L$, where x_{1} and x_{2} are the consumption levels of good 1 and good 2 respectively, while L is the labor supply. Producer prices, p_{i}, and the wage, w, are constant. Consumer prices are denoted by $q_{i}=p_{i}+t_{i}$, where t_{i} is a per unit tax. Taxes are set according to a Ramsey problem with revenue requirement $R_{0}>0$.
(i) Solve the individual's optimization problem.
(ii) Give the expressions for the optimal tax rates $\tau_{i}=t_{i} /\left(p_{i}+t_{i}\right)=t_{i} / q_{i}$.
(iii) Find the value of τ_{1} / τ_{2}.
(iv) Determine the value of the labor supply.
(v) Determine the value of the individual's marginal utility of income.
2. (19 points.) Consider an economy consisting of two types of consumers, $i=1,2$ with of equal size with wage levels $w_{2}>w_{1}$. The two types are of equal size and have identical preferences given by

$$
U_{i}=u\left(x_{i}-\frac{L_{i}^{2}}{2}\right),
$$

where $u^{\prime}>0$ and $u^{\prime \prime}<0$. (This is a concave transformation of quasi-linear preferences). Production technology is linear and an individual's pre-tax income is denoted by $I_{i}=$ $w_{i} L_{i}$. There is no exogenous revenue requirement.
(i) Determine the utilitarian first-best (full information) allocation.
(ii) Write the incentive constraints and show that this allocation is not incentive compatible.
(iii) State the problem determining the constrained Pareto-efficient allocations that can be achieved with an optimal nonlinear income tax $T(I)$.
(iv) Write the Lagrangian expression that is associated with this problem and derive the first-order conditions.
(v) Prove that an i-type individual, with the above preferences facing a nonlinear income tax schedule $T(I)$, chooses his optimal allocation such that

$$
T^{\prime}\left(I_{i}\right)=1-\frac{I_{i}}{w_{i}^{2}}
$$

(vi) Assuming that the downward incentive compatibility constraint is binding, prove that
(a) Individuals of type 2 face a zero marginal income tax rate and choose the same level of labor supply as in the first best.
(b) Individuals of type 1 face a positive marginal income tax rate.
3. (12 points.) Consider an economy consisting of H individuals, indexed $h=1, \ldots, H$, who have the same preferences but differ in their income m_{h} with $m_{1} \leq m_{2} \ldots \leq$ $m_{h} \ldots \leq m_{H}$. Individuals have identical preferences over a private good x and a public good G.
(i) Does the Samuelson's rule for optimal provision of the public good determine the level of public good uniquely? Why or why not? Under what circumstances G is determined uniquely?
(ii) What is a Lindahl equilibrium? Is it efficient? Is it implementable?
(iii) Assume the public good is produced from the numeraire good x with a constant marginal cost of 1 . It is provided through voluntary contribution $g_{h} \geq 0$, with

$$
G=\sum_{h=1}^{H} g_{h} .
$$

Preferences are represented by

$$
U\left(x_{h}, G\right)=\ln \left(x_{h}\right)+\ln (G) .
$$

(a) Is the Nash equilibrium of the contribution game efficient? Why or why not?
(b) Prove that all contributors consume the same amount of the private good.
(c) Prove that the higher is the income of a contributor, the more he contributes (to the provision of the public good).
4. Why would the government want to redistribute through in-kind as opposed to cash transfers? (A good answer covers at least five distinct reasons.)

