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Abstract

This paper studies environmental taxation in a Mirrlees setting with two novel

features. First, energy, a polluting good, is used both as a factor of production

and a final consumption good; second, the wage is determined endogenously while

labor of different individual types remain homogeneous. The model is calibrated

for the French economy. We show that: (i) The optimal tax is less than the

marginal social damage of emissions and turns into an outright subsidy when the

inequality aversion index is high; (ii) the optimal tax on energy as an input is

always equal to its marginal social damage; (iii) the social welfare gain due to

lowering the current energy taxes to their optimal levels, with the general income

tax being set optimally in both cases, is between 17 to 32 euro per household.

This hurts the rich and benefits the poor.

JEL classification: H21; H23; D62

Keywords: The general income tax; endogenous earning abilities; emission taxes,

consumption and intermediate goods; welfare gains.



1 Introduction

The existing empirical studies of environmental taxes are almost exclusively in the

(homogeneous households) Ramsey tradition. They typically allow only for linear

tax instruments and adhere to a “representative consumer” framework.1 Some

papers, starting with Sandmo (1975) and followed up more recently by Mayeres

and Proost (2001) and Schöb (2003) have introduced consumer heterogeneity and

distributional aims. However, these papers remains within the Ramsey tradition

considering only linear tax instruments. The current paper attempts to break

loose from this tradition and examine the efficiency and redistributive properties

of optimal environmental taxes for the French economy within the context of the

modern optimal tax theory à la Mirrlees (1971). This theory allows for hetero-

geneity among individuals, and includes nonlinear tax instruments. In this, we

follow Cremer et al. (2003) while addressing two major shortcomings of our earlier

work (as explained below). Additionally, we calculate the optimal environmental

taxes, and their associated welfare gains, for a one-consumer representation of

the French economy. This allows us to compare the implications of Mirrlees and

Ramsey approaches to optimal taxation.

The first shortcoming of Cremer et al. (2003) is that it considered only pol-

luting goods, ignoring polluting inputs. This is a serious omission; lumping final

goods and inputs together may lead to incorrect policy recommendations. On

the one hand, it is not difficult to find intermediate goods that are polluting;
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energy being an obvious example. On the other, we know from Diamond and

Mirrlees (1971) that the tax treatment of intermediate and final goods should

in general be different. Applying their production efficiency result to economies

with a consumption externality, leads to the conclusion that polluting intermedi-

ate goods should be taxed only in so far as they correct externalities. In contrast,

Cremer and Gahvari (2001) have shown that polluting final goods are taxed for

Pigouvian considerations as well as for redistributive concerns.

Second, Cremer et al. (2003) assumed that earning abilities are exogenously

fixed. This is, with the notable exception of Naito (1999), the common assump-

tion of the literature on optimal general income taxation. However, when there

are other factors of production besides labor in the economy, the workers’ pre-

tax earning abilities (wages) change. We consider this problem at a theoretical

level, we also compute an optimal general income tax schedule numerically while

allowing for this endogeneity.

We model an open economy with three factors of production and two cate-

gories of consumption goods. The factors of production are labor, capital, and

energy. Labor is homogeneous in efficiency units with different individual types

having different endowments of labor in efficiency units . The assumption of ho-

mogeneity of labor in efficiency units rules out the possibility that energy used

as an intermediate good can be a substitute to some type of labor and a comple-

ment to another. As will be demonstrated later, this assumption ensures that the
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Diamond and Mirrlees production efficiency result continues to hold despite the

endogeneity of wage.2 All workers are immobile and no labor is either exported

or imported. Capital inputs are rented from outside so that all capital incomes

go to “foreigners”; energy inputs are also imported.3 Emissions come from two

sources: the use of energy input on the production side, and the consumption

of one category of final goods on the consumption side (designated as polluting

goods). The specific emissions we are concerned with are carbon dioxide emis-

sions. The production process consists of two stages. First, a constant returns to

scale production technology uses the three inputs to produce a “general-purpose”

output. Second, a linear technology transforms the output into the two cate-

gories of consumption goods at constant marginal (equal to average) costs. The

first-stage production function is “nested CES”. Consumers’ preferences are also

nested CES, being a function of labor and the two final goods.

The model is calibrated for the French economy on the basis of the data from

the “Institut National de la Statistique et des Etudes Economiques” (INSEE),

France. We identify four groups of individuals who differ not only in earning abil-

ities but also in tastes. They are identified as “managerial staff”, “intermediate-

salaried employees”, “white-collar workers” and “blue-collar workers”. The pol-

luting and non-polluting goods are constructed from 117 consumption goods ac-

cording to whether they are energy related or not.4 We use two values for the

marginal social damage of emissions. A French Government Commission (Groupe
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Interministériel sur l’effet de Serre) recommended a figure of 229 euro as the cost

per ton of carbon. This is the basis for the benchmark figure we use. For the pur-

pose of comparisons, we also use a second value for the social damage of emissions

based on a cost of 92 euro per ton of carbon.5

We model the behavior of the government as one of setting optimal tax policies

in light of the constraints that it faces. We use an iso-elastic social welfare function

for this purpose. Moreover, the value of the inequality aversion index is chosen

according to the observed degree of redistribution in the existing French tax sys-

tem. Specifically, based on a recent study by Bourguignon and Spadaro (2000),

we shall use 0.1 and 1.9 to be the limiting values for the inequality aversion index.

2 The private sector

Consider an open economy which uses three factors of production to produce two

categories of consumption goods. The factors of production are labor, capital

and energy. Labor is heterogeneous with different groups of individuals having

different productivity levels. All types of workers are immobile so that labor is

neither exported nor imported. All capital and energy inputs are rented from

outside. There are two sources of emissions in the economy. On the production

side, the use of labor and capital entail no emissions but the use of energy inputs

does. On the consumption side, consuming one category of goods is non-polluting,

but consuming the other category (energy) generates emissions.
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Specifically, we assume that there are four groups of individuals with differing

productivity levels and tastes. All persons, regardless of their type, are endowed

with one unit of time. Denote a person’s type by j (j = 1, 2, 3, 4), his produc-

tivity factor by nj, and the proportion of people of type j in the economy by πj.

Normalize the population size at one, and define the Preferences of j-type person

over his labor supply, Lj, consumption of a “non-polluting” good, xj, a “polluting

good”, yj, and total level of emissions in the atmosphere, E.

2.1 Production

The production process consists of two stages. First, a constant returns to scale

production technology uses three inputs to produce a “general-purpose” output,

O. Second, a linear technology transforms the output into the two categories of

consumption goods, x and y, at constant marginal (equal to average) costs. The

inputs to the first stage of production are: labor, L, capital, K, and energy, D.

The production function F (L,K,D) is assumed to be “nested CES”. It is written

as

O = F (L,K,D) = B
h
(1− β)L

σ−1
σ + βΓ

σ−1
σ

i σ
σ−1

, (1)

with

Γ = A
h
αK

δ−1
δ + (1− α)D

δ−1
δ

i δ
δ−1

, (2)

where B and A are constants, and σ and δ are the (Allen) elasticities of substi-

tution between L and Γ, and between K and D. Substituting for Γ from (2) into
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(1), we have

O = B

"
(1− β)L

σ−1
σ + βA

σ−1
σ

h
αK

δ−1
δ + (1− α)D

δ−1
δ

i δ(σ−1)
σ(δ−1)

# σ
σ−1

. (3)

Aggregate output, O, is the numeraire and the units of x and y are chosen such

that their producer prices are equal to one.

Capital services and energy inputs are imported at constant world prices of r

and pD where the units of D is chosen such that pD = 1. Let w denotes the price

of one unit of effective labor, τD denotes the tax on energy input, and assume that

there are no producer taxes on labor and capital.6 The first-order conditions for

the firms’ input-hiring decisions are, assuming competitive markets,

OL(L,K,D) = w, (4)

OK(L,K,D) = r, (5)

OD(L,K,D) = pD(1 + τD). (6)

Equations (3)—(6) determine the equilibrium values of O,L,K and D as functions

of w, r and pD(1+ τD) [where r and pD are determined according to world prices].

2.2 Consumption

The consumer side is modeled à la Cremer et al. (2003). Consumers’ preferences

are nested CES, first in goods and labor supply and then in the two categories

of consumer goods. All consumer types have identical elasticities of substitution

between leisure and non-leisure goods, ρ, and between polluting and non-polluting
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goods, ω. Differences in tastes are captured by differences in other parameter val-

ues of the posited utility function (aj and bj in equations (8)—(9) below). Assume

further that emissions enter the utility function linearly. The preferences for a

person of type j can then be represented by

fj = U(x, y, Lj; θj)− φE, j = 1, 2, 3, 4, (7)

where θj reflects the “taste parameter” and

U(x, y, Lj, θj) =
³
bjQj

ρ−1
ρ + (1− bj)(1− Lj)

ρ−1
ρ

´ ρ
ρ−1

, (8)

Qj =
³
ajx

ω−1
ω + (1− aj)y

ω−1
ω

´ ω
ω−1

. (9)

With emissions emanating from production as well as consumption, total level of

emissions is given by

E =
4X

j=1

πjyj +D. (10)

Consumers choose their consumption bundles by maximizing (7)—(9) subject

to their budget constraints. These will be nonlinear functions when the income

tax schedule is nonlinear. However, for the purpose of uniformity in exposition, we

characterize the consumers’ choices, as the solution to an optimization problem in

which each person faces a (type-specific) linearized and possibly truncated budget

constraint. To do this, introduce a “virtual income,” Gj, into each type’s budget

constraint. Denote the j-type’s net of tax wage by wj
n. We can then write j’s

budget constraint as

pxj + qyj = Gj +M j + wj
nL

j, (11)
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where p and q are the consumer prices of x and y, Gj is the income adjustment

term (virtual income) needed for linearizing the budget constraint (or the lump-

sum rebate if the tax function is linear), and M j is the individual’s exogenous

income. The first-order conditions for a j-type’s optimization problem are

1− aj

aj
¡xj
yj
¢ 1
ω =

q

p
, (12)

(1− bj)
¡
xj/(1− Lj)

¢ 1
ρ

ajbj
h
aj + (1− aj)(xj/yj)

1−ω
ω

i ω−ρ
ρ(1−ω)

=
wj
n

p
. (13)

Equations (11)—(13) determine xj, yj and Lj as functions of p, q, wj
n and G

j +M j.

Observe that our demand specification combines homothetic preferences with

heterogeneous tastes. As it will become clear below, heterogeneous tastes play an

important role in our analysis. As far as the analytical modeling is concerned,

allowing for heterogeneity provides an additional measure of generality. However,

when it comes to the calibration, our setting is restrictive. Because preferences

are homothetic, we are effectively assuming that all differences in the mix of

final goods are due to taste differences. Thus differences in consumption patterns,

particularly the observed fact that low income people consume a higher proportion

of their income on energy goods, are treated as if they have been caused by taste

differentials. Although these differences may very well be due to differences in

incomes. This has to be kept in mind in interpreting our results.

Finally, observe that w (the price of one unit of effective labor) from the pro-

duction side, and wj
n (the net of tax wage of a j-type person) from the consumption
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side, are related. Denote the productivity of a j-type worker by nj. Then, j-type’s

gross of tax wage will be wj = wnj. Denoting the j-type’s marginal income tax

rate by tj, his net of tax wage is wj
n = wj(1− tj). Determining w thus determines

the general equilibrium solution for the economy as whole [equations (4)—(13)].

This is done by equating aggregate demand for, and aggregate supply of effective

labor. Now, when j works for Lj hours, his effective labor is njLj resulting in

aggregate supply of
P4

j=1 π
jnjLj. This then should be equated with aggregate

demand, L, as given by equation (4):

L =
4X

j=1

πjnjLj. (14)

2.3 Data and the calibration

To determine the general equilibrium solution of the economy numerically, one

must know different workers’ productivity rates and their respective shares in total

labor force (nj, πj), the parameters of the production function (σ, δ, α, β,A,B),

the parameters of the utility function (ρ, ω, aj, bj, φ), world prices (r, pD), the

values of the tax parameters (p− 1, q − 1, τD, tj, Gj), and exogenous income M j.

We calibrate the values of all non-tax parameters based on the available statistics

for France. In doing this, we use the values of the tax parameters as they currently

are in France. Later, we calculate the tax values endogenously as the solution to

various optimal tax problems. All the data come from the “Institut National de

la Statistique et des Etudes Economiques” (INSEE), France. We use 1989 as our
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base year.7

On the production side, σ and δ are calculated on the basis of current estimates

in the literature.8 We set r = 0.08. This is the commonly rate used in France for

public investment decisions.9 Given r, σ, δ, and the data for L,K,D and w, we

calibrate α, β,A and B.

We identify four types of households: “managerial staff” (Type 1), “intermediate-

salaried employees” (Type 2), “white-collar workers” (Type 3) and “blue-collar

workers” (Type 4). The data also give the number of households in each type.

Their productivity rates are determined from their hourly wages in relation to the

hourly wage for all workers: hwj = njhw, (j = 1, 2, 3, 4). The marginal tax rates

faced by the four types, tj’s, and the corresponding virtual incomes, Gj’s, are

reported in the French official tax publications for 1989 (Ministere de l’Economie

et des Finances, 1989). Turning to consumption taxes, we note that the consump-

tion of non-polluting goods are taxed at an average rate of 9.6% (p − 1 = .096),

and consumption of polluting goods at 53.8% (q − 1 = .538); see INSEE Résul-

tats (1998). There does not exist a reliable estimate of τD, the energy input tax

averaged over all consumption goods. In lieu of this, we set τD = 0.

On the consumption side, the values of ρ and ω are from Cremer et al. (2003).10

We calculate aj’s and bj’s such that the observed data for households’ expenditures

and labor incomes are reconciled. This procedure is also used to calculate M j’s;

we do not have direct estimates for them.11
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Finally, given the disagreement in the literature over the size of the marginal

social damage of carbon emissions, we use a value for φ based on a 1990 rec-

ommendation of the “Groupe Interministériel sur l’effet de Serre”. This was a

French Government Commission set up to undertake an economics study of the

greenhouse effect. The recommendation called for a carbon tax of 229 euro (1,500

French Francs) per ton of carbon. This translates into approximately a 10% tax

on the cost of producing one “unit” of polluting good.12 Assuming that 229 euro

measures the social damage of a ton of carbon, and because the optimal tax on

the polluting good at the first best is its marginal social damage, we calibrate the

value of φ in such a way as it would give rise to a first-best tax of 10%.13 We then

fix the value of φ at this estimated value for all the second-best tax calculations.

The 229 euro figure translates into 62 euro per ton of CO2 emissions. Thus,

if one considers CO2 emissions only, this figure appears on the high side given

the published values for the social damage of a ton of CO2 emissions. These vary

between 1.50 to 51 dollars.14 Another argument in favor of using a lower figure for

the social damage is that the domestic damage is lower than the global damage.

It is not at all clear though that a country’s government should consider only

the domestic social damage in its welfare calculations. If all countries set their

taxes optimally and act cooperatively, the global social damage appears to be the

appropriate measure to use.15 Given these considerations, and for the purpose of

comparisons, we also consider a lower value for the social damage corresponding
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to a cost of 92 euro per ton of carbon. This, being 40% of the 229 euro figure,

necessitates the calculation and use of a second value for φ such that the first-best

tax will be 4% instead of 10%.

2.4 The French benchmark tax system

In order to compare the current French tax system with the alternative tax policies

we study, the current system must be simplified so that it satisfies the assumptions

of our model. We thus construct a simplified version of the French economy which

we call “the French benchmark tax system”. This differs from the “real” French

tax system in three key respects. First, the population is comprised of only four

types of households; second all households work; and third all capital is imported

so that labor is the only source of domestic income.16 Specifically, we solve the

model of Section 2 using the observed values for the tax rates in France previously

mentioned and the calibrated parameter values of subsection 2.3. This differs from

the specifications of the French economy in that it sets all calculated exogenous

incomes (M j’s) equal to zero. Table 2 reports the solution values whenever they

differ from the actual system. Note that the macro (type-independent) variables

are extremely close to the actual observed values given in Table 1. The solutions

for the household types differ in two important respects. First, the figures for

the four types’ labor supplies are somewhat higher than their actual observed

values. This is easy to explain. Given that the aggregate labor supply in the

benchmark system is close to its actual observed value, the benchmark attributes
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the excluded groups’ labor supplies to the included four. The second difference

appears in consumption levels. The assumption of no domestic capital income

results in expenditure levels for the benchmark system that are lower than the

observed ones.

3 The government

The government is interested in designing an optimal tax system consisting of

a general income tax, and taxes on energy as a consumption good and as an

intermediate good. The design of an optimal tax structures must be based on

some underlying social welfare function. For this purpose, we will use an iso-

elastic social welfare function of the form

W =
1

1− η

4X
j=1

πj(fj)1−η η 6= 1 and 0 ≤ η <∞, (15)

where η is the “inequality aversion index”. The higher is η the more the society

values equality.17

In choosing a value for η (the inequality aversion index) for our optimal tax

calculations, we will be guided by the observed degree of redistribution in the ex-

isting French tax system. Bourguignon and Spadaro (2000) have recently studied

France’s social preferences as revealed through its tax system. They find that,

if the uncompensated wage elasticity of labor supply is 0.1, the marginal social

welfare falls from 110 to 90 percent of the mean as income increases from the

lowest to the highest level. The fall would be from 150 percent to 50 percent if
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the uncompensated labor elasticity is 0.5.

With the social welfare function (15), the marginal social utility of income for

a j-type person is given by

∂fj

∂M j
(fj)−η.

This implies that the ratio of the marginal social utility of the Managerial Staff’s

(type 1)income to Blue Collars’s (Type 4) income is

∂f1/∂M1

∂f4/∂M4

µ
f4

f1

¶η

.

Calculating the values for ∂fj/∂M j and fj (j = 1, 4) based on the French data

summarized in Table 1, setting the above expression equal to 9/11, we derive a

value for η equal to 0.1. This is the implied value for the inequality aversion index

in France (if the uncompensated wage elasticity of labor supply is 0.1). Similarly,

setting the above expression equal to 5/15, we derive a value for η equal to 1.9 for

the implied value of the inequality aversion index in France (if the uncompensated

wage elasticity of labor supply is 0.5).

3.1 Measuring welfare changes

A change in the government’s tax policy, environmental or otherwise, changes

the welfare different households differently. We shall measure these using the

Hicksian “equivalent variation” concept of a welfare change, EV .18 Similarly,

we can associate a measure of “aggregate welfare change” to any tax policy by

calculating how much one has to uniformly compensate each individual under the
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benchmark system, to bring social welfare under the benchmark to parity with

that under the considered tax policy.19

4 The optimal general income tax with linear
energy taxes

The standard assumption in the optimal income tax literature à la Mirrlees is

that incomes are publicly observable so that the tax administration can levy an

optimal general income tax. We adopt this, and the accompanying assumption on

the unobservability of wages and labor supplies, in order to rule out differential

lump-sum taxation. Regarding consumption taxes, we shall assume that the avail-

able information is on anonymous transactions (and not on personal consumption

levels which would be difficult to justify). This rules out nonlinear consumption

taxes. In determining the mix of optimal general income and linear consumption

taxes, we follow Cremer and Gahvari (1997)’s method and begin with the char-

acterization of Pareto-efficient allocations that are constrained not only by the

standard self-selection constraints and the resource balance, but also by the lin-

earity of commodity taxes. However, the current problem is fundamentally more

complex than Cremer and Gahvari (1997)’s (as well as the traditional optimal in-

come tax problems à la Mirrlees). The endogeneity of w adds another dimension

to the problem which is generally missing in the formulation of optimal income

tax problems.20 This requires us to extend Cremer and Gahvari’s method, as

explained below.
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We start by deriving an optimal revelation mechanism that consists of a set

of type-specific before-tax incomes, Ij’s, aggregate expenditures on private goods,

cj’s, and a fixed tax rate (same for everyone) on the polluting good, q−1. Observe

that, with one extra degree in setting the commodity tax rates, due to demand and

labor supply functions being homogeneous of degree zero in prices and income, we

have set the tax rate on the non-polluting goods equal to zero so that p = 1. This

procedure determines the polluting tax rate right from the outset. A complete

solution to the optimal tax problem per-se then requires only the design of a

general income tax function.

The mechanism assigns (Ij, cj, q) to an individual who reports type j; the

consumer then allocates cj between the produced goods, x and y.21Denote Gj +

wj
nL

j ≡ cj. One can then determine, by setting M j = 0 in equations (11) and

(12), the “conditional” demand functions for xj and yj as xj = x(p, q, cj; θj) and

yj = y(p, q, cj; θj). These functions are independent of individual j’s labor supply

because of the weak separability of his preferences.22 Substituting these equations

in the j-type’s utility function, we have

V

µ
p, q, cj,

Ij

wnj
; θj
¶
≡ U

µ
x(p, q, cj; θj),y(p, q, cj; θj),

Ij

wnj
; θj
¶
. (16)

4.1 Analytical results

The problem is solved analytically in Section A1 of the Appendix.23 A num-

ber of analytical results are obtained. First, the optimal tax on energy as a
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consumption goods is non-Pigouvian (Proposition A1). This generalizes our ear-

lier result in Cremer et al. (1998) derived for exogenously given wage rates. As

in that paper, the “Pigouvian tax” is defined as the marginal social damage of

pollution when each type’s private damage in utility terms is transformed into

“social” dollars using the government’s shadow cost of public funds, μ. It is mea-

sured, given our specification of the social welfare function and preferences, byhP
j π

j(fj)−η
i
φ/μ.24 Second, condition w −OL (L,K,D) = 0 imposes no con-

straint on the problem, i.e., the Lagrangian multiplier associated with it is zero

when w = OL(.) (Lemma A1). This tells us that production efficiency holds de-

spite the endogeneity of wages and the breakdown of Atkinson and Stiglitz (1976)

theorem (due to heterogeneity of tastes). Third, the optimal tax on the polluting

input is always equal to the Pigouvian tax (Proposition A2). This result also

extends the earlier property obtained by Cremer et al.’s (1998) to a setting with

a general production technology and endogenous wages.

It is important to note that our result on the Pigouvian taxation of polluting

inputs is due to the assumption that labor is homogeneous. Measured in efficiency

units, labor appears as a single input in production with individuals of different

types being endowed with varying efficiency units of labor. As a consequence,

while the wage level is endogenous, relative wages are given in our setup and are

not affected by emission levels. If, on the other hand, skilled and unskilled labor

inputs (high- and low-ability workers) have different degrees of complementarity
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or substitutability with the polluting input, the relative wages will change with

emission levels. This leads to redistribution among different labor types. Naito’s

(1999) has shown, in a model without externality, that manipulating relative wage

changes to increase the wage of the low-ability types can serve as a useful redis-

tributive mechanism.25 Put differently, differential taxation of labor inputs, which

violates the Diamond and Mirrlees (1971) production efficiency result, becomes

optimal. Recast in a setup with externalities, this result means that different

labor types should be taxed differently vis-a-vis energy inputs. This also implies

that energy inputs should be taxed not just for Pigouvian considerations but for

redistributive purposes as well.26

4.2 Numerical results

The numerical solutions are derived using GAUSS’s constrained optimization pro-

gram.27

4.2.1 Basic scenarios

The first row of Table 3 reports four values for the optimal tax on the polluting

good based on two values for the marginal social damage of emissions and two

values for the inequality aversion index. The second row reports the values for

the Pigouvian tax which, on the basis of the results presented in the previous

subsection, is equal to the optimal tax on the polluting input.

The interesting feature of our result is that while the optimal tax on the
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polluting input is always equal to the Pigouvian tax, the optimal tax on the

polluting good is always less than the Pigouvian tax. Indeed, in three out of four

cases, the polluting good must be subsidized rather than taxed. The reason for

this is in the roles that input and output taxes play. The tax on the polluting input

serves one purpose only: It is imposed to correct the social damage of emissions.

The tax on the polluting good, on the other hand, serves two purposes: One is,

as with the polluting inputs, externality correcting; the second is redistributive.

Whereas the externality correction calls for the taxation of the polluting good,

the redistributive objective calls for its subsidization (relative to non-polluting

goods). This is because the poor spend proportionally more of their incomes

on the polluting goods. The optimal tax on polluting goods balances these two

objectives.

In interpreting our numerical results, however, a particular shortcoming of our

calibrations must be borne in mind. Our demand specification combines homo-

thetic preferences with heterogeneous tastes. This implies that we are effectively

attributing all differences in the mix of final goods, in particular the observed fact

that low income people consume a higher proportion of their income on energy

goods, to taste differentials. Although these differences may very well be due to

differences in incomes.

Note also that the higher is the inequality aversion index, the higher will be the

deviation of the optimal tax relative to the Pigouvian tax. The intuition is found
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in the two roles that output taxes embody. The Pigouvian element of output

taxes is invariant to redistributive ends. This is obviously not the case for their

redistributive element. The more we care about the poor, the higher we want to

subsidize their consumption of polluting goods (relative to non-polluting goods).

Thus, with a low value for φ, when η increases from 0.1 to 1.9, the optimal subsidy

on energy consumption increases from 1.71% to 12.40%; but the Pigouvian tax

remains very much unchanged at 4%. Similarly, with a high value for φ, when η

increases from 0.1 to 1.9, the optimal tax on the consumption decreases from 3.90%

to an outright subsidy of 7.32%; with the Pigouvian tax remaining unchanged at

10%.28

The first row in Table 4 reports the changes in aggregate emissions. It indicates

that the optimal policy entails an increase in aggregate emissions. This occurs

for two reasons. First, the optimal policy entails a cut in taxes on energy-related

consumption goods thus boosting their demand. Secondly, the increased efficiency

of the tax system as a whole encourages production and with it energy use and

consumption. Note that the introduction of taxes on energy inputs, on the other

hand, has a dampening effect on the use of energy and thus works to mitigate the

increase in emissions.

On the redistributive front, the tax system becomes much more progressive.

The implied EV figures, and the associated social welfare changes, are reported in

Table 4. The magnitude of the changes are extremely large. When φ = 0.016 and
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η = 0.1, the loss in Type 1’s welfare amounts to as much as 6,528 euro. Type 2

loses by 379 euro and Types 3 and 4 gain by 2,458 and 2,066 euro. These translate

into a social welfare gain of 405 euro. Similar results hold when When φ = 0.040

and η = 0.1. Moreover, as one might expect, the gains to the poor and the losses

of the rich increase with η. The increase in social welfare is also more pronounced

for the higher value of η.

4.2.2 Optimal system with the current energy tax

These changes come about as a result of the change in the whole structure of

the tax system, and particularly the change in the income tax structure. To

isolate the effects of environmental taxes per se, we also find the tax equilibrium

of the economy while only setting the income tax optimally keeping the energy

taxes fixed at their current values. Then we compare the resulting equilibrium

with the previously calculated optimal system. Any difference must be due solely

to the change in environmental taxes. With some adjustments, the procedure

for determining the new equilibrium is the same as that of solving the initial

unconstrained tax problem. A formal solution is presented in Section A2 of the

Appendix. It requires one to impose two additional constraints on the original

problem. They are:

q = 1.4032, (17)

OD (L,K,D) = 1, (18)
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reflecting the current 40.32% average energy consumption tax relative to other

goods and zero energy input taxes. The first constraint implies that we no longer

optimize with respect to q; the second constraint enters as an additional term in

the Lagrangian expression. The interesting implication of this latter constraint is

that it implies OK(L,K,D) should no longer be set equal to r. Put differently, it

calls for a producer tax on r. On the other hand, the condition w = OL (L,K,D)

is not affected and continues to be optimal.

With the exception of the values for polluting input and aggregate emissions,

the equilibrium of this economy looks very much the same as when the environ-

mental taxes were unrestricted. This suggests that the drastic changes to the

benchmark system are essentially due to a switch to an optimal general income

tax system. Table 5 reports the redistributive effects of environmental taxes per

se by comparing the equilibria of the general income tax structure with and with-

out emission taxes. It also reports the resulting changes in aggregate emissions.

Observe that cutting the energy consumption taxes from their current values (as

the optimum requires), and the introduction of energy input taxes, hurts the rich

(Type 1) and benefits the poor (Type 4) substantially. Types 2 and 3 also benefit,

although not by as much. Observe also that, for the same marginal social damage

of emissions φ, a higher value for the inequality aversion index η translates into

more losses for Type 1 and more gains for type 4. The implied gains to social

welfare, while not very huge, are nevertheless more than modest.
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4.2.3 Varying relative wages

Our specification allows for endogenous wages but in such a way as to keep relative

wages of different labor types constant. Specifically, we have wj = wnj, where the

nj’s are given parameters while w (the overall wages level) is endogenously deter-

mined according to (4). This is done to keep the numerical simulations tractable.

It thus leaves open the question of how different complementarity/substitutability

relationships between energy input and different types of labor inputs might affect

the output tax. The point is that when energy input interacts differently with

different labor inputs, individual types’ relative wages change as the economy goes

from one equilibrium to another. The resulting change in the relative (gross of

tax) incomes necessitates a further change in redistributive taxes, including the

output tax. A full-fledged analysis of this conjecture, in terms of numerical cal-

culations, is too complex. Thus, to get an insight into this, we run a number of

simulations that indicate how different (but exogenously determined) changes in

relative wages of the four individual types, affect the output tax.

Recall that in our setting, Type 1 agents are the high-productivity workers.

At the other end of the spectrum, Types 3 and 4 have almost identical wages (n3

and n4 are close). We thus consider two alternative scenarios. The first increases

n3 and n4 by 5%, leaves n2 unchanged, and adjusts n1 such that the average level

of n does not change. The constancy of average n is imposed so that we are able

to separate the effect of a change in relative productivities from a change in the
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overall productivity level. The second scenario is the mirror image of the first in

which we reduce n3 and n4 by 5%, again leave n2 unchanged, and adjust n1 to

keep the average level of n intact.

Table 6 presents the values of the output tax obtained under these two sce-

narios. They are very much in line with what one might expect. In all cases but

η = 0.1 and φ = 0.04, we have outright subsidies. In these cases, an increase

in the relative wage of low-productivity individuals causes the subsidy rate to

decrease (as compared to the subsidy rate under the original set of productivi-

ties). The reason is that the narrowing of the wage gap lowers the need for a

redistributive subsidy on the polluting good. Conversely, a decrease in the rel-

ative wage of low-productivity individuals causes the subsidy rate to increase.

This time, the widening of the wage gap increases the need for a redistributive

subsidy on the polluting good. The same explanation applies to the case where

η = 0.1 and φ = 0.04 in which polluting goods are taxed. When relative wages

of low-productivity individuals increase, and the wage gap narrows, the tax on

the polluting good increases. Thus the implicit subsidy relative to a Pigouvian

output tax is reduced. And when relative wages of low-productivity individuals

decrease, and the wage gap widens, the tax on the polluting good decreases. That

is, the implicit subsidy relative to a Pigouvian output tax increases. Observe also

that, as with the reference case, the higher is the inequality aversion index, the

higher is the deviation of the optimal tax relative to the Pigouvian tax. For the
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rest, the changes that occur are not dramatic.

5 Summary and conclusion

This paper has explored the design of an optimal general income tax system when

the wage rate is endogenous, labor is homogeneous, and energy is used both as

a polluting consumption good and a polluting input. The paper has shown that

the optimal tax on energy inputs is Pigouvian and equal to its marginal social

damage. The optimal tax on the consumption of energy, on the other hand, is

less than its marginal social damage. In fact, in three out of four cases, energy

consumption should be subsidized. This is in marked contrast to the current tax

system in France which taxes energy consumption over 40% relative to non-energy

related goods. The reason for this is the fact that the poor spend proportionally

more of their income on energy consumption than the rich.

To gauge the welfare implications of environmental taxes per se, we have com-

pared the optimal general income tax equilibria at the current environmental taxes

and at their optimal values. The results indicated substantial losses for the rich

(Type 1) and substantial gains for the poor (type 4). In comparison, the effects

on Types 2 and 3 were rather marginal. The redistributive aspects of such taxes,

which are quite important, are naturally masked in a one-consumer representation

of the economy. This tells us that in calculating optimal income and consump-

tion taxes, including environmental taxes, one should go beyond the traditional
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Ramsey tax framework.

The methods of this paper can be used to compute optimal tax structures

for other countries. Better data may allow for a greater number of types. It

should also allow for a more disaggregated set of goods and better parameter

estimates. Another extension would be to consider non-homothetic preferences

directly. Most importantly, an extension that considers non-homogeneous labor,

and thus allows for energy input to be a substitute for low-skilled labor (low-

ability types) and a complement to high-skilled labor (high-ability types) will

throw light on the extent that the energy input tax should deviate from the

Pigouvian tax for redistribution. The current paper should be viewed more as a

first step contribution to this endeavor, rather than the exactness of its reported

numbers. Nevertheless the numbers are interesting even if only indicative.
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Notes

1See, e.g., Bovenberg and Goulder (1996) and the references contained therein.

2The implications of this assumption is discussed in subsection 4.1 below.

3There are two reasons for assuming capital is rented from outside. One, we

do not have data on holdings of capital by different types of workers. Second,

taxation of capital in a static setting is not an interesting question. The similar

assumption on energy inputs is for simplicity in exposition and of no relevant

consequence.

4This treats energy from all sources (fossil fuel and nuclear) symmetrically.

While not quite satisfactory, this is inevitable at the level of aggregation we are

working. The purpose of this paper is not to compute precise tax rates at a

disaggregate level; this will not be possible with two types of goods and four groups

of individuals. To be sure, there are more sophisticated “computable general

equilibrium” models at more disaggregate levels in the literature which attempt to

do this. However, unlike ours, these papers assume a linear income tax structure.

Observe also that more recently a theoretical body of literature has appeared,

under the heading of “New dynamic optimal taxation,” that applies Mirrlees’

approach to optimal taxation in dynamic settings. The focus of this literature,

however, is on the stochastic evolution of skills. See, e.g., Kocherlakota (2005a,
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2005b) and references therein. In our framework, although wages are endogenous,

types are given. Our aim is to present a relatively simple framework for the

numerical calculations of environmental taxes simultaneously with an optimal

general income tax, in a setting with two dimensions of heterogeneity particularly

when the wage is endogenous. It is these features that distinguishes our study

from the other papers in the literature.

5See our discussion on calibrations below in subsection 2.3.

6Taxation of capital in a setting like ours will serve no purpose except to violate

production efficiency.

7This is the most recent year for which there exist comprehensive consumption

surveys for eight different household types (“Budget des familles”) as well as

surveys on employment and wages classified by household types (“Enquête sur

l’emploi”). The data covers 117 consumption goods which we aggregate into:

(i) non-energy consumption representing non-polluting goods (x), and (ii) energy

consumption representing polluting goods (y).

Observe also that all published data are in French francs. We convert these

into euro using the official conversion rate of 1 euro = 6.55957 French francs.

8These are based on the estimates of elasticities of substitution between various

factors of production in Berndt and Wood (1975, 1985), Griffin and Gregory
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(1976), and Devezeaux de Lavergne, Ivaldi and Ladoux (1990).

9See, e.g., DGEMP-DIGEC, Ministère de l’Economie et des Finances, 1997.

10Cruz and Goulder (1992) and Goulder et al. (1999) use a higher value for ω

(0.85), and Bourguignon (1999) reports a range of 0.1 to 0.5 for the existing esti-

mates of wage elasticity of labor supply which translate into a range of estimates

for ρ from to 0.61 to 1.39. We thus also set ω = 0.99, ρ = 0.61 and ρ = 1.39 in

our optimal tax calculations for sensitivity analysis.

11Details of the data and calibration can be obtained from the authors directly.

12We assume that energy consists of coal, natural gas, electricity, gasoline, and

oil. We have data on the consumption levels of each of these components in their

physical units and the carbon content of each physical unit. This gives us the total

carbon content of energy consumption. We also know the euro cost of producing

each component and thus the production costs of the total energy used. (The

component shares are 0.94% coal, 8.79% natural gas, 28.01% electricity, and

62.26% gasoline and oil). Dividing the number for total carbon content of energy

consumption by the number for the production cost gives us the carbon content of

producing one euro of energy. Assuming the component shares do not change, we

can compute the cost of producing that amount of energy with a one ton carbon

content. This comes to about 2,290 euro. Consequently, a 229 euro tax on one

ton of carbon translates into a 10% tax.
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13Specifying the social welfare function as
P

j π
jW (fj), the marginal social

damage of emissions is defined as
hP

j π
jW 0j)

i
φ/μ, where μ is the shadow cost

of public funds (the Lagrange multiplier associated with the government’s budget

constraint). This is the formula for the first-best Pigouvian tax.

Observe also that we will have a different value for φ for each set of parameters

ρ, ω, aj, bj.

14See, “Marginal damage estimates for air pollutants”, U.S. Environmental Pro-

tection Agency, http://www.epa.gov/oppt/epp/guidance/top20faqexterchart.htm.

15There is also the costs associated with nitrogen oxides due to use of some

types of energy. Presumably, though, one should leave this out if one is concerned

with a carbon tax only.

16As observed earlier, these simplifications are necessitated by the limitation of

the existing data and the fact that we are interested only in labor income taxes.

Optimal taxation of capital in a static model is not an interesting question.

17As is well-known, η = 0 implies a utilitarian social welfare function and

η → ∞ a Rawlsian. When η = 1, the social welfare function is given by

W =
P4

j=1 π
j ln(fj).

18LetV(·;θj) denote a j-type’s “indirect utility” function as defined by equation

(16). The equivalent variation in the j-type’s going from the benchmark B to the
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alternative tax system i, EV j
i , is defined from

V
¡
pB, qB, w

j
n,B, G

j
B +M j

B +EV j
i ; θ

j
¢
− φ

¡ 4X
j=1

πjyjB +DB

¢
=

V
¡
pi, qi, w

j
n,i, G

j
i +M j

i ; θ
j
¢
− φ

¡ 4X
j=1

πjyji +Di

¢
.

Wewill then measure the “welfare change” in going from policy i to k for individual

j by EV j
k −EV j

i .

19The aggregate welfare measure associated with going from the benchmark B

to the alternative tax system i, EV S
i , is formally defined by

4X
j=1

πj
h
V
¡
pB, qB, w

j
n,B, G

j
B +M j

B +EV S
i ; θ

j
¢
− φ

¡ 4X
j=1

πjyjB +DB

¢i1−η
=

4X
j=1

πj
h
V
¡
pi, qi, w

j
n,i, G

j
i +M j

i ; θ
j
¢
− φ

¡ 4X
j=1

πjyji +Di

¢i1−η
.

20Naito (1999) is an exception.

21Strictly speaking, this procedure does not characterize “allocations” as such;

the optimization is over a mix of quantities and prices. However, given the com-

modity prices, utility maximizing individuals would choose the quantities them-

selves. We can thus think of the procedure as indirectly determining the final

allocations.

22The functions, and the corresponding indirect utility function V (·; θj), are

conditional on cj; they differ from the customary Marshallian demand and indirect

utility functions.
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23The appendix is available through JEEM’s online archive of supplementary

material, which can be accessed through a link at http://www.aere.org/journals/.

24This is Cremer et al. (1998) definition of the Pigouvian tax. Bovenberg and

van der Ploeg (1994), Bovenberg and de Mooij (1994) and others use the Samuel-

son’s rule for optimal provision of public goods to define the “Pigouvian tax”.

They term a tax Pigouvian if it is equal to the sum of the private dollar costs of

the environmental damage per unit of the polluting good across all households. In

our notation, their Pigouvian tax is
P

j π
jφ/αj, where αj is the j-type’s private

marginal utility of income.

25Intuitively, the reason that one may do better with an input tax in Naito is

that pushing the wage of the unskilled workers up weakens an already binding

incentive compatibility constraint.

26We are grateful to a careful referee who brought this point to our attention.

27This program, with a number of different iterative algorithms, is particu-

larly suitable for optimization of nonlinear functions subject to nonlinear inequal-

ity constraints. One such routine, which we have used, is the Boyden-Fletcher-

Goldfarb-Shanno (BFGS) method known for its excellent convergence properties

even for ill-behaved problems.

28The alternative definition of the Pigouvian tax yields the following values
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for φ
P

j π
j/αj: 3.88% (φ = 0.016, η = 0.1), 3.68% (φ = 0.016, η = 1.9), 9.68%

(φ = 0.40, η = 0.1), and 9.19% (φ = 0.040, η = 1.9). Note that these values also

exceed the values for the optimal polluting good taxes. However, they are smaller

than the optimal input taxes.
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Table 1. Data Summary:1989
(monetary figures in euro)

Managerial Staff Intermediary Level White Collars Blue Collars
(Type 1) ((Type 2) (Type 3) (Type 4)

π 15.41 % 24.77 % 20.00 % 39.82 %
I 32,753 18,071 11,795 11,650
px 38,739 26,558 19,510 19,571
qy 2,378 2,056 1,495 1,796
n 1.18735 0.72134 0.49174 0.45180
L 0.51750 0.47000 0.45000 0.48375
t 28.8 % 19.2 % 14.4 % 9.6 %
G 3,468 1,617 977 702
M 14,329 12,394 9,931 10,134
a 0.99999 0.99997 0.99997 0.99994
b 0.81206 0.75740 0.71987 0.74749

Type-independent figuresP
j π

jnjLj = 0.30996 K = 220,664 D = 2,388 O = 42,055
pO = 1.0 w = 53,304 r = 8.0 % pD = 1.0

p = 1.00000 q = 1.40322 σ = 0.8 δ = 0.32345
ρ = 0.66490 ω = 0.26892 α = 0.99999 β = 0.68955
A = 1.07130 B = 0.82647

* Aggregate labor includes labor supplied by the four types and other residual
groups.

Table 2. The benchmark system
(monetary figures in euro)

Managerial Staff Intermediary Level White Collars Blue Collars
(Type 1) (Type 2) (Type 3) (Type 4)

I 39,714 23,674 16,089 15,514
px 29,908 19,256 13,700 13,488
qy 1,836 1,490 1,050 1,238
L 0.62749 0.61572 0.61380 0.64419
M 0.0 0.0 0.0 0.0

Type-independent figuresP
j π

jnjLj = 0.40110 K = 214,688 D = 2,290 O = 40,845
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Table 3. Optimal linear environmental and “Pigouvian” taxes

φ = 0.016 φ = 0.040
η = 0.1 η = 1.9 η = 0.1 η = 1.9

Optimal polluting good tax -1.79 % -12.40 % 3.90 % -7.32 %
Pigouvian tax 4.00 % 4.01 % 10.00 % 10.03 %

Table 4. Emission and welfare changes in going to an optimal
environmental-cum-general-income-tax system

(monetary figures in euro)

φ = 0.016 φ = 0.040
η = 0.1 η = 1.9 η = 0.1 η = 1.9

E 5.48 % 3.34 % 2.93 % 0.82 %
EV 1 -6,528 -8,068 -6,585 -8,120
EV 2 -379 -547 -399 -566
EV 3 2,458 2,715 2,469 2,725
EV 4 2,066 2,405 2,072 2,409
EV S 405 1,202 398 1,202

Table 5. Effects due to changes in environmental taxes per se
(monetary figures in euro)

φ = 0.016 φ = 0.040
η = 0.1 η = 1.9 η = 0.1 η = 1.9

E 1.87 % 2.87 % 0.09 % 1.05 %
EV 1 -129 -148 -109 -132
EV 2 6 3 5 2
EV 3 11 3 10 3
EV 4 78 91 68 81
EV S 19 32 17 28
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Table 6. Optimal polluting good taxes when relative, but not average,
productivities change

(n2 is unchanged and n1 is adjusted)

φ = 0.016 φ = 0.040
η = 0.1 η = 1.9 η = 0.1 η = 1.9

Reference productivities -1.79% -12.40% 3.90% -7.32%
n3 and n4 ↑ by 5% -0.61% -11.17% 5.17% -6.00%
n3 and n4 ↓ by 5% -2.96% -13.50% 2.65% -8.51%
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Appendix

A1 General income plus linear commodity taxes

The Lagrangian for the second-best problem is (where  is set equal to 1),

$ =
1

1− 

4X
=1



"
V

µ
 




; 
¶
− 

4X
=1

y
¡
 ; 

¢
− 

#1−
+



(
O ()−

4X
=1


£
x
¡
 ; 

¢
+ y

¡
 ; 

¢¤
−  − −

)
+

X


X
 6=


∙
V

µ
 




; 
¶
−V

µ
 




; 
¶¸
+  [ −O ()] 

(A1)

where   and  are the multipliers associated respectively with the resource

constraints, the incentive constraint and the endogenous wage condition. The

1



first-order conditions are, for  = 1 2 3 4,
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We now show that whereas the optimal tax on the polluting good is non-

Pigouvian, the optimal tax on polluting input is Pigouvian. Consider first the

polluting good tax. We have:

Proposition A1 The optimal tax on the polluting good is non-Pigouvian.

Proof. Multiply equation (A3) by y
¡
 ; 

¢
 sum over , and add the
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resulting equation to (A2). Simplifying, using Roy’s identity, results in

−
4X

=1


£
y
¡
 ; 

¢
+ y

¡
 ; 

¢
y
¡
 ; 

¢¤
×⎧⎨⎩+ 

4X
=1



"
V

µ
 




; 
¶
− 

4X
=1

y
¡
 ; 

¢
− 

#−⎫⎬⎭
−

4X
=1


£
x
¡
 ; 

¢
+ y

¡
 ; 

¢
x
¡
 ; 

¢¤
−

4X
=1

X
 6=

∙
V

µ
 




; 
¶
y
¡
 ; 

¢
+ V

µ
 




; 
¶¸

= 0 (A8)

To simplify equation (A8), partially differentiate the -type individual’s budget

constraint, x
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Multiply equation (A9) by y
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Next, rewrite the last term on the left-hand side of equation (A8) as
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where in going from the second to the last expression, we have made use of Roy’s

identity. Now substituting from (A11)—(A12) into (A8) and simplifying results in
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Denote the compensated demand function for  by ey ¡ ; ¢  Substituting
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equation, dividing the resulting equation by 
4P

=1

ey ¡ ; ¢ and rearranging,
we have

 − 1 =




4X
=1



"
V

µ
 




; 
¶
− 

4X
=1

y
¡
 ; 

¢
− 

#−
+

4P
=1

P
 6=

V

³
  


; 
´ £
y
¡
 ; 

¢
− y

¡
 ; 

¢¤


4P
=1

ey ¡ ; ¢  (A13)

This proves that −1 is non-Pigouvian unless the polluting good demand depends

only on one’s income but not on his taste so that the second expression on the

right-hand side of (A13) will be zero.

Second, we prove that the input tax is Pigouvian regardless of individuals’

tastes. The proof is facilitated through the following lemma.

Lemma A1 In the optimal income tax problem (A1), and characterized by the
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first-order conditions (A2)—(A7), the Lagrange multiplier associated with the con-

straint  =  (),  is equal to zero.

Proof. Multiply equation (A4) through by , sum over  and simplify to

get
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Substituting (A14) into (A7) and simplifying, we get
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Then rewrite the left-hand side of (A15) as
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Substituting from (A16) into (A15) implies

 = 0

Observe that Lemma A1 is in fact an application of the production efficiency

result as it tells us that  = O () imposes no constraint on our second-

best problem. Using this lemma, we can easily show:
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Proposition A2 The optimal tax on energy input is Pigouvian.

Proof. Using the result that  = 0 in the first-order conditions (A4)—(A7),

simplifies them to
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That the input tax is Pigouvian follows immediately from equation (A18).

A2 General income tax problem when  = 14032

and O() = 1

The implications of these constraints for the optimization problem of the govern-

ment are twofold. First, we no longer optimize with respect to . Consequently,
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the first-order conditions do not include equation (A2). Second, denote the La-

grange multiplier associated with the constraint 1−O() = 0 by . This

brings about the following changes in the first-order conditions (A3)—(A7): The

expression for $ remain unaffected; the expression for $ now includes

an additional term −O(
); the expression for $ now includes an

additional term −O; the expression for $ now includes an additional

term −O ; and the expression for $ now includes an additional term

−O(
P

2).

Using the same method as previously, one can again show that the Lagrange

multiplier associated with the constraint O() =  continues to be zero

so that this condition imposes no restriction on the problem even in the pres-

ence of the additional constraint on O(). On the other hand, setting

O() = 1 in (A5)—(A6), these will change to

−
4X

=1



"
V

µ
 




; 
¶
− 

4X
=1

y
¡
 ; 

¢
− 

#−
− O() = 0(A21)

 (O()− )− O() = 0 (A22)

Conditions (A21)—(A22) then imply that

O() =  − O()

O()
×


4X

=1



"
V

µ
 




; 
¶
− 

4X
=1

y
¡
 ; 

¢
− 

#−
 (A23)

Thus, the constraint O() = 1 implies that O() should no longer

be set equal to . Put differently, a producer tax on  is now optimal.
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