
The Friedman rule: old and new

Firouz Gahvari∗

Department of Economics
University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA
(fgahvari@uiuc.edu)

April 2006
Revised, August 2006

Abstract

In overlapping generations models, money growth creates intergenerational wealth
effects and leads to the breakdown of the Friedman rule; the rule can be restored via
lump-sum tax and transfers that neutralize these wealth transfers. Additionally, and
in contrast to money-in-the-utility-function models, the Friedman rule is not unique in
cash-in-advance-constraint models of money: A continuum of combinations of money
growth rates and consumption taxes implement the first-best allocation. This paper
traces through the intellectual origins of the first (old) result, which was recently restated
in Bhattachrya, Haslag and Russell (2005), and formally demonstrates the second (new)
result.
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1 Introduction

In the November 2005 issue of this Journal, Bhattachrya, Haslag and Russell (henceforth

BHR) set out to explain the fundamental difference between infinitely-lived representa-

tive agent and overlapping generations models that lead to their (presumed) different

prescriptions for optimal money supply. They summarize their finding as such: “the key

difference between ILRA [infinitely-lived representative agent] and OG [overlapping gen-

erations] models is that in the latter, the standard method for constructing a monetary

regime causes transactions involving money to become intergenerational transfers. Un-

der alternative government fiscal/monetary regimes that offset these intergenerational

transfers, the Friedman rule is always optimal” (p. 1401).

The current paper has two purposes. First, I point out that the BHR result is an old

one, variants of which were demonstrated by Abel (1987) and Gahvari (1988). The basic

difference between BHR and these earlier studies is in the way they rationalize money

holdings. Whereas Abel and Gahvari utilized money-in-the-utility-function constructs,

BHR employ two different models to justify the money demand: one on the basis of

“reserve requirements” and the other “random relocation.”1

Secondly, I will identify an important difference between cash-in-advance-constraint

models of money, and the earlier money-in-the utility-function models, which result

in different characterizations for the optimal money supply. I will show that whereas

models with money-in-the-utility-function have a first-best that requires the satisfaction

of Friedman rule, this is not necessarily the case for cash-in-advance-constraint models

of money. Specifically, I will argue that while in these latter models Friedman rule is

optimal, it is not unique. There exists a wide range of combinations of money growth
1I do not contend that BHR did nothing but duplicate this result. In a private correspondence, Steve

Russell writes “The paper has eight propositions, two of which (propositions 3 and 7) are versions of
your result in somewhat different environments. Two others (4 and 8) extend your result by showing
that there is an equivalence between monetary regimes with the type of taxes and transfers you describe
and monetary regimes with intermediated money. The other four propositions are less closely related
to the contents of your paper.”
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rates and consumption taxes that achieve the same level of welfare.

The intuition behind this result must be sought in the observation that the oppor-

tunity cost of holding real balances manifests itself differently in monetary models with

money-in-the-utility-function versus those with cash-in-advance constraints. In money-

in-the-utility-function models, money growth affects the “price” (opportunity cost) of

real balances that enter the utility function explicitly as an argument (and are treated

like any other good). Changing this price does not change the relative prices of in-

tertemporal consumption goods. This is not the case with cash-in-advance-constraint

models of money. Here, the rate of money growth (positive or negative) directly affects

the relative prices of intertemporal consumption goods—much in the same way as com-

modity taxes do. Consequently, in the former models, attaining first best requires two

undistorted prices. This in turn requires that there will be no distortionary commod-

ity taxes and that the nominal interest rate is pushed down to zero (so as to equate

its opportunity cost to its marginal cost of production). On the other hand, attain-

ing first-best in cash-in-advance-constraint models requires only one undistorted price;

namely, the relative intertemporal price. With two available instruments, commodity

tax and the rate of money growth, there will be a wide range of combinations of the

two instruments that can achieve this.

2 Friedman rule and the “old” literature

The question of why infinitely-lived individual and overlapping generations models (with

no operative bequest motive à la Barro (1974)) lead to different prescriptions for money

growth (or, for that matter, for other policy instruments) may be answered in two

interrelated ways. Transferring resources (with the same present value) across time

are of no consequence in infinitely-lived individual models; they have no impact on the

representative agent’s budget constraint. This is not the case in overlapping generations

models; such a transfer entails intergenerational wealth transfers thus affecting the
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economy’s overall savings and capital intensity. As a consequence, any policy change

that induces intertemporal transfer of resources will have different effects in the two

settings unless the resulting intertemporal transfers in overlapping generations models

are somehow neutralized. This way of looking at the problem, when applied to money

growth rate, underlies BHR (2005) analysis. Gahvari’s (1988) message was precisely the

same. In explaining why overlapping generations models seem to reject the Friedman

rule, he writes:

The intuition behind this result is quite simple. An unexpected cut in the rate
of increase in money supply will create an unexpected capital gain in the money
holdings of those who hold money in their portfolios. In an infinitely-lived
individual framework, the question of who receives the [any] newly created
money does not arise. . . . In a life-cycle model, on the other hand, the question
of who receives the newly created money assumes a central role. Indeed, this is
the source of the sharply different results derived for life cycle models by Weiss
and others as compared to the earlier result of Sidrauski [1967] and Friedman
[1969] for infinitely-lived individual settings (p. 340).

Gahvari also demonstrated that introducing generation-specific lump-sum taxes in over-

lapping generations models can neutralize the adverse intergenerational wealth effects

and restore the optimality of Friedman rule.2 The abstract to his paper reads3

It is demonstrated that the existing result in the literature regarding a positive
relationship between money creation and the steady-state capital intensity and
welfare [in overlapping generations models] is not due to monetary policy per
se. On the contrary, this is shown to arise because of the intergenerational

2This point is a general one. Similar issues arise in contexts other than the optimality of Friedman
rule. Taxation of pure rent is another example. Feldstein (1977) demonstrated that land rent taxes
increase the economy’s accumulation of real capital. His result was subsequently challenged by Calvo
et al. (1979) on the basis of a Barro-type utility function. Later, Gahvari (1982) and Fane (1984)
pointed out that the driving force behind Feldstein’s result was not so much due to his stipulation of
“selfish” preferences. Rather, the result was due to the intergenerational wealth transfers caused by
taxation of rents. These taxes would be capitalized in the price of land (which is held by the old), leading
to redistribution from current old to all future generations. They further demonstrated how levying
appropriate generation-specific lump-sum taxes would make land rent taxes neutral in Feldstein’s model.

3There is one additional feature of Gahvari’s (1988) result which is worth emphasizing here. He shows
that the existence of the lump-sum tax and transfer policies allows the economy to move instantaneously
from one steady state to another as a result of a change in money creation.
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wealth effects embedded in the manner in which money is created. . . . any
other money supply rule is Pareto inferior to Chicago Rule [Friedman rule]
provided that the government also embarks on a policy of wealth redistribution
across generations through the imposition of appropriate lump-sum taxes and
transfers” (p. 339).

Abel (1987) did not mention intergenerational wealth effects explicitly, but his setup

allows for it to be neutralized. To understand his approach, observe that the competi-

tive equilibrium is, given the customary assumptions, Pareto efficient in infinitely-lived

individual models but not necessarily so in the overlapping generations models. In

the same vein, welfare maximization requires no government intervention in the econ-

omy in infinitely-lived individual models, but it does do—in terms of generation-specific

lump-sum taxes, or debt policy—in overlapping generations models. Thus the question

of the optimal money growth in infinitely-lived individual constructs (when one rules

out all taxes and transfers) is a study in the first-best. In an overlapping generations

framework, on the other hand, ruling all tax and transfer instruments out implies a

second-best environment. To have a first-best setting, one must allow for lump-sum

taxes and transfers.

Allowing for generation specific lump-sum tax instruments, in addition to money

creation, Abel (1987) proves that first-best optimality in overlapping generations models

requires the satisfaction of Friedman rule. The welfare criterion he uses is the weighted

average of utility of all future generations.4 He traces the difference between his result

and Weiss’s (1980)—who had used an identical overlapping generations model to show

that steady-state utility maximization requires a positive rate of money creation as

opposed to the Friedman rule—to the inclusion of lump-sum tax instruments in his

setup. He writes “In general, two independent policy instruments are required to allow

the competitive economy to reach the first-best optimum” and that “I determine first-
4This is more general than steady-state utility maximization which corresponds to the maximization

of an unweighted average of all utilities.
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best rather than second-best policy” (p. 438).5

3 The OG Model with cash-in-advance constraint

Consider a standard two-period overlapping generations model. Individuals work in the

first period supplying one unit of labor, and derive utility from consuming a composite

consumption good, c, in both periods. There is no bequest motive, and population

grows at a constant rate, n. Preferences are represented by

uy
t = u(cy

t , c
o
t+1), (1)

where superscripts y and o refer to young and old, and subscript t denotes time. The

utility function u(·) is strictly quasi-concave and twice differentiable.

The production technology exhibits constant returns to scale. Let Yt, Kt, Lt denote

aggregate output, aggregate capital, and aggregate labor (equivalent to the number

of young persons) at time t. Define per capita output and capital according to yt =

Yt/Lt, kt = Kt/Lt, and represent the production function by yt = f(kt), where f(·)

is increasing and strictly concave. Assuming a competitive setting, the real wage wt

(measured in units of composite consumption good), and the real interest rate, rt, are

determined according to

wt = yt − ktf
′(kt), (2)

rt = f ′(kt). (3)

Output of each period can be used for consumption in the same period or retained,

with no depreciation, to be used as an input (capital), Kt+1, in the next period pro-

duction process. In addition to real savings, and in order to finance their consumption
5Levhari and Patinkin (1968) had earlier discussed the difference between first- and second-best

environments in attaining the Friedman rule. They demonstrated, in the context of a Solow-Swan
growth model, that Friedman rule will be satisfied if the government has, in addition to its inflationary
policy, a “fiscal policy” tool to ensure that the economy’s steady-state capital is at the Golden Rule,
and not otherwise; see their discussion on pp 735–736.
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in retirement, the young also purchase all the stock of money, Mt, from the old (before

consumption takes place). The government policy instruments consist of generation-

specific real lump-sum taxes, T y
t , T o

t , a tax on the young’s consumption at the rate

τ , and lump-sum money transfers to the old equal to so
t per person (before they sell

their holdings of money to the young). Policy instruments can take positive or negative

values.

The current young and old individuals face the budget constraints,

pt [wt − (1 + τ)cy
t − T y

t ] = (ptKt+1 + Mt) /Lt, (4)

ptc
o
t = [ptKt(1 + rt) + Mt−1] /Lt−1 − ptT

o
t + so

t , (5)

where wt, rt, and pt are the real wage, the real interest rate (rate of return to capital),

and the price level at time t. Denote the inflation rate with πt, the monetary rate of

interest with it, and the real cash balances held by an old person with xt. Thus, define

pt+1

pt
≡ 1 + πt+1, (6)

1 + it+1 ≡ (1 + rt+1)(1 + πt+1), (7)

xt ≡ Mt/pt

Lt
. (8)

Using these variables, and combining equations (4) and (5), leads to the young’s in-

tertemporal budget constraint:

(1 + τ)cy
t +

co
t+1

1 + rt+1
+

it+1xt

1 + it+1
= wt − T

y
t −

T o
t+1

1 + rt+1
+

so
t+1/pt+1

1 + rt+1
, (9)

where it+1xt/(1 + it+1) constitutes the opportunity cost of holding cash.

The government injects money into (or retires money from) the economy via lump-

sum monetary transfers to (or monetary taxes on) the old (who hold all the stock of

money in the economy). These transfers (or taxes) are set in proportion to the old’s

money holdings,

so
t = θ(Mt−1/Lt−1), (10)
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such that

Mt = Mt−1 + Lt−1s
o
t = (1 + θ)Mt−1, (11)

where θ may be positive, zero, or negative. To rationalize the holding of money, I

consider a cash-in-advance constraint as formulated by Hahn and Solow (1995) with

Mt+1 = αLtpt+1c
o
t+1, (12)

where α < 1 denotes the proportion of future expenditures that must be financed

from cash holdings. Assuming that the cash-in-advance constraint (12) is binding, the

opportunity cost of holding cash can be rewritten, from (8), (6), (11), and (12), as

it+1

1 + it+1
xt =

it+1

1 + it+1

Mt/pt

Lt
=

it+1

1 + it+1

1 + πt+1

1 + θ

Mt+1

Ltpt+1
=

it+1

1 + rt+1

α

1 + θ
co
t+1. (13)

Substitute for it+1xt/(1+it+1) from (13) into (9) to rewrite the young’s intertemporal

budget constraint as,

(1 + τ)cy
t +

(
1 +

αit+1

1 + θ

)
co
t+1

1 + rt+1
= wt − T

y
t −

T o
t+1

1 + rt+1
+

so
t+1/pt+1

1 + rt+1
. (14)

Each young person maximizes the utility function (1) subject to the budget constraint

(14), treating T y
t , T o

t+1, s
o
t+1 as lump sum. This results in the first-order condition,

∂u/∂co
t+1

∂u/∂cy
t

=
1 + αit+1/ (1 + θ)
(1 + τ)(1 + rt+1)

. (15)

Equations (14)–(15) determine the young’s demand functions for c
y
t and co

t+1 as func-

tions of wt, it+1, rt+1, pt+1, and the policy variables T
y
t , T o

t+1, s
o
t+1, τ, θ. The value of wt

is determined through the marginal productivity condition (2). Assuming perfect fore-

sight, the values of rt+1, πt+1, and thus from (7) it+1, will be determined. Equations

(6), (8), and (13) will then determine pt and pt+1 (along with xt).

Finally, observe that the tax instruments τ , T y
t and T o

t cannot all be set indepen-

dently of one another. They are related through the government’s budget constraint

(1 + n) (τc
y
t + T

y
t ) + T o

t = 0, (16)
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so that the government has only two independent tax instruments. One can then use

equation (16) to simplify the young’s intertemporal budget constraint (14). The result-

ing equation can further be simplified by substitution from

so
t+1

pt+1
=

θMt/Lt

pt+1
=

θMt+1

(1 + θ)Ltpt+1
=

θα

1 + θ
co
t+1,

which is derived from equations (10)–(12). One arrives at

cy
t +

[
1 +

α(it+1 − θ)
1 + θ

]
co
t+1

1 + rt+1
= wt +

T o
t

1 + n
−

T o
t+1

1 + rt+1
, (17)

in which neither T y
t nor so

t+1 appear. Similarly, and for future reference, use equations

(8), (13), and the government’s budget constraint (16), to rewrite equation (4) as

(1 + n)kt+1 = wt − cy
t −

α

1 + n
co
t +

T o
t

1 + n
. (18)

4 The Steady state

In the steady state, per-capita values are time invariant and equations (12)–(13), (15),

(17)–(18) yield

1 + i =
(1 + r)(1 + θ)

1 + n
, (19)

∂u/∂co

∂u/∂cy
=

1 + α i/(1 + θ)
(1 + τ)(1 + r)

, (20)

cy +
[
1 +

α(r − n)
1 + n

]
co

1 + r
= w +

(r − n)T o

(1 + n)(1 + r)
, (21)

(1 + n)k =
(1− α)co + T o

1 + r
. (22)

With r = f ′(k) and w = f(k) − kf ′(k), equations (19)–(22) determine cy , co, k and i

as functions of T o, θ, and τ . More specifically, substitute for i from (19) into (20), and

simplify the resulting equation to arrive at

∂u/∂co

∂u/∂cy
=

1
(1 + τ)(1 + r)

[
1 + α

( 1 + r

1 + n
− 1

1 + θ

)]
. (23)
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Equations (21)–(23) determine the steady-state values of cy, co, k, as well as r, w—the

real variables of the economy.

The interesting point to note about equations (21)–(23) is that the parameters τ

and θ appear only in (23). Consequently, for all combinations of τ and θ that leave the

values of the other variables in (23) unchanged, the system of equations (21)–(23) yield

the same solution for cy, co, k. Put differently, there exists one extra degree of freedom

in setting the policy instruments that determine the equilibrium values of the real sector

of the economy.

Thus set τ = 0 and θ = θ0. These, in conjunction with the given values for n, α, and

T o, determine the equilibrium values of k, cy, co through equations (21)–(23). Denote

the resulting equilibrium values of the real sector variables with the subscript 0. Then,

consider a different pair of policy parameters: (τ̂ , θ̂), with the property that τ̂ > −1 is

an arbitrary tax rate and θ̂ is related to τ̂ according to

1

1 + θ̂
=

1
α

+
1 + r0

1 + n
+ (1 + τ̂)

[
1
α

+
(1 + r0

1 + n
− 1

1 + θ0

)]
. (24)

One can easily establish, by substitution from (24) into (21)–(23), that (τ̂ , θ̂) supports

the initial equilibrium (k0, w0, r0, c
y
0, c

o
0) under (τ = 0, θ = θ0).

It is instructive to ponder why there is an extra degree of freedom in setting τ

and θ in cash-in-advance-constraint models of money, but not in models with money-

in-the-utility-function. Consider again equation (23) where τ and θ make their only

appearance. This equation determines the relative price of intertemporal consumption

goods. There is thus two policy instruments to determine one variable. The money-in-

the-utility-function models, on the other hand, require the determination of two relative

prices (as opposed to one here). There is the relative intertemporal price, and the

(relative) price of real balances. To control them, one needs two instruments: τ and

θ. Note also that, in both types of models, the third instrument T o “controls” capital

accumulation.6
6Crettez et al. (2002) and Bhattacharya et al. (2003) also discuss instrument indeterminacy. Crettez
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4.1 Optimal steady state and the Friedman rule

In overlapping-generations models of the sort I have used here, maximization of steady-

state utility requires T o to be set in such a way as to ensure the economy is on its golden

rule path satisfying the r = n condition. It also requires that the Friedman rule (i = 0)

is satisfied when τ = 0. Setting r = n and i = 0 in equation (19) implies θ = 0. In turn,

setting r = n and θ = 0 in (24) yields θ̂ = τ̂ /(α− τ̂ ). The upshot is that the steady-state

utility attains its maximal value at r = n and the continuum of combinations of τ and

θ that satisfy,7

θ =
τ

α − τ
. (25)

As long as there are no commodity taxes (τ = 0), the Friedman rule satisfies (25).

However, if τ 6= 0, the optimal monetary policy requires a rule different from Friedman’s.

It requires, specifically, that i = θ = τ/(α − τ). Of course, this does not mean that

one can do better than the Friedman rule; only that the optimal monetary rule is

indeterminate. There are infinitely many values of τ and θ (or τ and i) that satisfy

(25). The Friedman rule is only one special case. Observe also that (25) is not a

second-best rule; it does not characterize the optimal monetary growth rate in the

presence of distortionary taxes. The rule is first-best.

To gain more intuition for this result, observe that in cash-in-advance-constraint

models the opportunity cost of holding real balances—as indicated by equations (15) or

(20)—works like a tax on consumption when old, much in the same way as τ is a tax on

consumption when young. In the first-best, one wants to set these tax rates equally so

that the relative prices are undistorted. This is precisely what setting i = θ = τ/(α−τ)

achieves, as it then results in
∂u/∂co

∂u/∂cy
=

1
1 + r

. (26)

et al.’s discussion centers around the choice of labor and capital income taxes versus debt and monetary
policy, with its implication for Friedman rule; Bhattacharya et al.’s discussion is in terms of reserve
requirements versus proportional taxes on savings.

7Gahvari (2006) contains a direct and formal demonstration of this result.
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This is the relative intertemporal price in the absence of the commodity tax, τ = 0, and

when there is no cash-in-advance constraint, α = 0.

Proposition 1 summarizes the main results of this section.

Proposition 1 Introduce money in a standard two-period overlapping generations model

and rationalize its demand on the basis of a cash-in-advance constraint of the form (12).

Then:

(i) A continuum of combinations of intertemporal commodity taxes, τ , and money

growth rates, θ, in conjunction with generation-specific lump-sum taxes, T o, support the

same steady-state equilibrium (for the real variables).

(ii) If lump-sum taxes are set such that the economy is on its Golden Rule path,

the steady-state welfare is maximal for a continuum values of τ and θ such that θ =

τ/(α− τ). The Friedman rule is only one special case.

5 Concluding remarks

The questions of the optimal money supply in general, and the validity of Friedman rule

in particular, have been studied in monetary economics literature for more than four

decades now, albeit in different guises. A particular question from the 1980s centered

around the reasons for the presumed failure of Friedman’s prescription in overlapping

generations model as had been shown by Weiss (1980). Subsequently, Abel (1987)

implied and Gahvari (1988) pointed out that this was due to the intergenerational

wealth effects embedded in money creation, and the second-best nature of equilibrium in

these models, in the absence of generation-specific lump-sum taxes. These authors also

demonstrated that neutralizing the wealth effects through lump-sum taxation restores

the optimality of Friedman rule. One aspect of this literature was its reliance on money-

in-the-utility-function constructs to rationalize money holdings. The recent paper of

Bhattachrya (2005) et al. re-affirms this result for monetary models with different

justifications for money demand.
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Leaving the intergenerational wealth effects aside, this paper has pointed out, using

a cash-in-advance-constraint model, that a continuum of combinations of intertemporal

commodity taxes and money growth rates support the same steady-state equilibrium (for

the real variables). This pinpoints a crucial difference between (overlapping generations)

models with money-in-the-utility-function and those with cash-in-advance constraint.

Whereas the Friedman rule is the only first-best policy in the former, this is not the

case in the latter. There exists, in cash-in-advance-constraint models, a continuum of

combinations of money growth rates and consumption taxes that yield the same level of

welfare as Friedman rule does. The reason is that, in these models, the rate of money

growth (positive or negative) affects the relative prices of intertemporal consumption

goods much in the same way as commodity taxes do. Consequently, any combination

of the two policy instruments that result in an undistorted intertemporal price will be

as good as any other.
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Appendix

Solve equations (21) and (23) for cy and co, as functions of w, r, T o, τ, θ. With r =

f ′(k) and w = f(k) − kf ′(k), one may then write cy and co simply as functions of

k, T o, τ, and θ. Of course, k itself is endogenously determined through equation (22).

This allows us to write the steady state utility as

u = u
(
cy
(
k(T o, τ, θ), T o, τ, θ

)
, co
(
k(T o, τ , θ), T o, τ, θ

))
. (A1)

The optimal values of the policy instruments T o, τ, and θ are then determined through

the maximization of (A1) with respect to these variables. The first-order conditions for

this problem are,

∂u

∂T o
=

∂u

∂cy

[(
∂cy

∂k
+

∂u/∂co

∂u/∂cy

∂co

∂k

)
dk

dT o
+
(

∂cy

∂T o
+

∂u/∂co

∂u/∂cy

∂co

∂T o

)]
= 0, (A2)

∂u

∂τ
=

∂u

∂cy

[(
∂cy

∂k
+

∂u/∂co

∂u/∂cy

∂co

∂k

)
dk

dτ
+
(

∂cy

∂τ
+

∂u/∂co

∂u/∂cy

∂co

∂τ

)]
= 0, (A3)

∂u

∂θ
=

∂u

∂cy

[(
∂cy

∂k
+

∂u/∂co

∂u/∂cy

∂co

∂k

)
dk

dθ
+
(

∂cy

∂θ
+

∂u/∂co

∂u/∂cy

∂co

∂θ

)]
= 0. (A4)

To evaluate (A2)–(A4), I next derive the expressions for ∂cy/∂k, ∂co/∂k, ∂cy/∂T o, ∂co/∂T o,

∂cy/∂τ, ∂co/∂τ, ∂cy/∂θ, ∂co/∂θ , and dk/dT o, dk/dτ, dk/dθ.

Let, for ease in notation, subscripts 1 and 2 denote the partial derivatives of u(cy, co)

with respect to cy and co. It is a simple algebraic exercise to show, through partial

differentiation of (20)–(21) with respect to k, T o, τ, and θ, while making use of equation

(19) and noting dr/dk = f ′′(k), dw/dk = −kf ′′(k), that

A

(
∂cy

∂k
∂co

∂k

)
=

−f ′′(k)
1 + r

(
(r − n)k
(1+θ−α)u1

(1+τ)(1+θ)(1+r)

)
, (A5)

A

(
∂cy

∂T o

∂co

∂T o

)
=

( r−n
(1+n)(1+r)

0

)
, (A6)
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A

(
∂cy

∂τ
∂co

∂τ

)
=

(
0

−u2
(1+τ)

)
, (A7)

A

(
∂cy

∂θ
∂co

∂θ

)
=

(
0

αu1
(1+τ)(1+θ)2(1+r)

)
, (A8)

where,

A =

(
1

(
1 + α(r−n)

1+n

)
1

1+r

u21 − 1+θ+αi
(1+τ)(1+θ)(1+r)u11 u22 − 1+θ+αi

(1+τ)(1+θ)(1+r)u12

)
. (A9)

Then, premultiply (A5)–(A7) by A−1 to get

(
∂cy

∂k
∂co

∂k

)
=

−f ′′(k)
1 + r

A−1

(
(r − n)k
(1+θ−α)u1

(1+τ)(1+θ)(1+r)

)
, (A10)

(
∂cy

∂T o

∂co

∂T o

)
= A−1

( r−n
(1+n)(1+r)

0

)
, (A11)

(
∂cy

∂τ
∂co

∂τ

)
= A−1

(
0

−u2
(1+τ)

)
, (A12)

(
∂cy

∂θ
∂co

∂θ

)
= A−1

(
0

αu1
(1+τ)(1+θ)2(1+r)

)
, (A13)

where

A−1 =
1
∆

(
1+θ+αi

(1+τ)(1+θ)(1+r)
u12 − u22

(
1 + α(r−n)

1+n

)
1

1+r

u21 − 1+θ+αi
(1+τ)(1+θ)(1+r)u11 −1

)
, (A14)

and

∆ ≡
[
1 +

α(r − n)
1 + n

+
1 + θ + αi

(1 + τ)(1 + θ)

]
u12

1 + r

−
(

1 +
α(r − n)

1 + n

)
1 + θ + αi

(1 + τ)(1 + θ)(1 + r)
u11

1 + r
− u22. (A15)

Next, differentiate equation (22) partially with respect to T o, τ, θ, while allowing for

ii



the changes in co and r with respect to k. This yields, upon simplification,

dk

dT o
=

1 + (1− α) (∂co/∂T o)
(1 + n) [1 + r + kf ′′(k)]− (1 − α) (∂co/∂k)

, (A16)

dk

dτ
=

(1 − α) (∂co/∂τ)
(1 + n) [1 + r + kf ′′(k)]− (1 − α) (∂co/∂k)

, (A17)

dk

dθ
=

(1 − α) (∂co/∂θ)
(1 + n) [1 + r + kf ′′(k)]− (1 − α) (∂co/∂k)

. (A18)

Finally, substitute from (A10)–(A18) into the first-order conditions (A2)–(A4) and

simplify to get

∂u

∂T o
= (r − n) G +

[
τ

1 + τ
− αi

(1 + τ) (1 + θ)

]
H = 0, (A19)

∂u

∂τ
= (r − n) E +

[
τ

1 + τ
− αi

(1 + τ) (1 + θ)

]
F = 0, (A20)

∂u

∂θ
= (r − n) C +

[
τ

1 + τ
− αi

(1 + τ) (1 + θ)

]
D = 0, (A21)

where the expressions for G, H, E,F, C,D are,

G ≡ Γ
dk

dT o
+

u1

∆ (1 + r) (1 + n)

[
−
(

1 + θ + αi

(1 + τ)(1 + θ)(1 + r)

)2

u11

− u22 +
2 (1 + θ + αi)u12

(1 + τ)(1 + θ)(1 + r)
] , (A22)

H ≡ −(1 + θ − α)u2
1f

′′(k)
(1 + τ)(1 + θ)(1 + r)3∆

dk

dT o
, (A23)

E ≡ Γ
dk

dτ
− α (1 + θ + αi)u2

1

∆(1 + τ)2(1 + θ) (1 + r)2 (1 + n)
, (A24)

F ≡ (1 + θ − α)u2
1

∆(1 + τ)(1 + θ) (1 + r)2

[
−1

1 + τ
− f ′′(k)

1 + r

dk

dτ

]
, (A25)

C ≡ Γ
dk

dθ
+

α2u2
1

∆(1 + τ)(1 + θ)2 (1 + r)2 (1 + n)
, (A26)

D ≡ u2
1

∆(1 + τ)(1 + θ) (1 + r)2

[
α

1 + θ
− (1 + θ − α)f ′′(k)

1 + r

dk

dθ

]
, (A27)
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with

Γ ≡ −u1kf ′′(k)
∆ (1 + r)

[
−
(

1 + θ + αi

(1 + τ)(1 + θ)(1 + r)

)2

u11 − u22

+
2 (1 + θ + αi)u12

(1 + τ)(1 + θ)(1 + r)
+

α(1 + θ − α)u1

(1 + τ)(1 + θ)(1 + r)2 (1 + n)k
] . (A28)

It follows from (A19)–(A21) that the steady-state utility attains its maximum value at

r = n, (A29)

i =
τ (1 + θ)

α
. (A30)

Setting r = n in equation (19) yields i = θ. Substituting θ for i in (A30) and simplifying

results in

θ =
τ

α − τ
. (A31)
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