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Abstract

This paper studies the design of a pay-as-you-go social security system in an overlapping

generations model where fertility is in part stochastic and in part determined through

capital investment. If investments are publicly observable, pension benefits must be

linked positively to the level of investment, and payroll taxes negatively to the number

of children. The outcome is characterized by full insurance with all parents, regardless of

their number of children, enjoying identical consumption levels. Without observability,

benefits must increase, and payroll taxes decrease, with the number of children. The

second-best level of investment, and the resulting average fertility rate, are less than

their corresponding first-best levels.

JEL classification: H55; J13.

Keywords: pay-as-you-go social security, endogenous fertility, storage, moral hazard.



1 Introduction

The recent fertility decline in the West is often cited as a major impediment to the

fiscal solvency of pay-as-you-go (PAYGO) social security systems. At the same time,

the pay-as-you-go feature of the social security systems has partly been blamed for

causing the observed fertility decline. The reason for this latter linkage is that in such

systems, each person’s fertility decision, via its impact on the economy’s population

growth rate, affects everybody’s pension benefits. Specifically, an increase in the rate

of population growth increases the number of future workers who will have to support

a retired person. No individual, however, takes this impact into account leading to a

decentralized equilibrium outcome with too few children.1

The above problem is exacerbated by another externality problem associated with

the “quality” of children, and their human capital accumulation, through educational

decisions of the parents. The rate of return of a pay-as-you-go system depends not

just on the fertility rate, but also on productivity growth. The more productive the

children, the higher will be their ability to produce and to pay taxes. This reinforces

the public good nature of a family’s child-rearing activities. It is not surprising then

that some economists have recently advocated a policy of linking pension benefits (or

contributions) to individuals’ fertility choices.2

Such a policy raises a number of objections, however. What truly determines fer-

tility, and what accounts for the observed evolution in fertility behavior, are still open

questions. What is clear though is that no one can fully control fertility. The actual

number of children in a family does not necessarily coincide with the number the parents

initially intended to have. Infertility, premature death, misplanning and multiple births

are some of the reasons explaining this gap. Similarly, one cannot deterministically

determine the future earning abilities of children simply by investing in their education

and training. Making benefits independent of the number of children can then be viewed

1This argument emphasizes the “intergenerational transfer effect,” and ignores the “capital dilution
effect,” associated with an increase in fertility. See the discussion below in subsection 3.4 and particularly
footnote 13.

2Abio et al. (2004), Bental (1989), Cigno et al. (2003), Fenge and Meier (2004), Kolmar (1997), van
Groezen et al. (2000, 2003).
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as a mechanism to insure parents against these various random shocks. This raises the

question of balancing the benefits of providing insurance to the population against the

costs of their not having the “correct” number of children because of the externality

problem.

Three recent papers in this Journal address different aspects of these problems. van

Groezen et al. (2003) study the structure of pension plans and child allowances in

an overlapping generations model where fertility is endogenous but fully deterministic.

In this setting, the question of insurance does not arise. Nor will there be a moral

hazard (incentive) problem as long as the number of children are publicly observable.

All individuals can then be enticed to choose the socially optimal first-best number of

children which corrects for the externality.

Cigno et al. (2003) also consider a model in which fertility is endogenous and

fully deterministic. They nevertheless bring up the question of the trade-off between

insurance and incentive through children’s quality (“lifetime tax contributions”), which

they assume to be in part random and in part determined through costly (and possibly

unobservable) actions of the parents. The moral hazard problem surfaces in their model

also, when the parents’ actions are unobservable. In contrast to van Groezen et al., who

have an explicit two-period model, Cigno et al.’s setup is static. This aspect prevents one

from distinguishing between tax and transfer policies over the individuals’ life cycle–

An issue that lies at the heart of the design of pension plans in overlapping generations

models à la Samuelson.

The third paper is Sinn (2004) who is interested more in examining the properties

of a traditional PAYGO system rather than the design of an optimal pension plan. He

considers a model in which fertility is fully random where the parents are either fertile

(having a fixed number of children) or infertile. In this way, he introduces the idea of a

PAYGO pension plan serving as an insurance mechanism against infertility. He is also

concerned with the quality of children which he models deterministically. He discusses

moral hazard in terms of the distortion caused by contributions to the PAYGO system

which acts as a tax on the returns to investment in educating children.

The key distinguishing element between decisions on quantity and quality of children
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is one of timing. The number of children born is known quite early; the quality of

children (i.e. their future earning capacity) is determined much later. To account for

both features one needs a model with at least three periods of decision making. This

makes the design of an optimal pension system rather complicated to study.3 We thus

ignore the externality associated with education decisions and concentrate solely on

fertility. This allows us to consider a setting with two periods of decision making, as

opposed to three, which simplifies the modeling substantially. Specifically, we study

the design of pension systems, within the Samuelson’s (1958) overlapping generations

framework, when the average fertility rate in the society (the “biological interest rate”)

is determined endogenously. Moreover, we allow for the individual fertility rates to

be not only endogenous but stochastic as well. We thus postulate that a prospective

parent’s actual number of children is in part random and in part the result of some early

investment decision the parent makes at the beginning of the first period. We further

assume that the number of children is observed early and the parents can adjust both

their first and the second period consumption levels accordingly.

Given the stochastic nature of fertility, we study the design of optimal pension sys-

tems under two different informational structures. In one, we assume that the prospec-

tive parents’ investments (efforts) in having children are publicly observable. In the

second, we assume that the parents’ investment levels are private information. This

introduces a moral hazard dimension into the problem. Another underlying agency

problem that surfaces, when one is dealing with endogenous fertility, is adverse selec-

tion. It arises if individuals differ in child-rearing ability, or in taste for children. To

simplify matters, and to distinguish between the implications of adverse selection and

moral hazard, this paper focuses solely on the moral hazard issue leaving the adverse se-

lection considerations to another paper.4 This allows us to work with (ex-ante) identical

3Cigno and Luporini (2003) have a three-period model; however they do not optimize over tax
instruments.

4See, Cremer et al. (2004). The moral hazard problem has also been studied by Cremer et al. (2003).
That paper was based on two very restrictive assumptions which we drop here. First, we had ignored
all possibilities for private savings, assuming that the only mechanism for transfer of resources to the
future is (except for possible “voluntary” arrangements between parents and children whereby children
help their retired parents with the expectation that their own children would help them) a PAYGO
public pension system. Second, we had assumed that the number of children is observed late in the first
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individuals.

If fertility were fully deterministic, as in Groezen et al. (2003), the questions of

insurance and moral hazard (incentive) would not arise. All individuals can then be

enticed to choose the socially optimal first-best number of children which corrects for

the externality. On the other hand, if fertility were fully random and independent of

the parents’ investment, there would be no externality and moral hazard (incentive)

problems–only insurance considerations. The optimal social security system then is

one that fully insures parents against the fertility uncertainty.

When fertility is determined in part through investment and in part through ran-

dom elements, there naturally arises a question as to the possible tradeoff between full

insurance and incentive considerations. In a first-best environment, when the parents’

investments in having and raising children are publicly observable, one may be able to

achieve the two objectives of internalizing the externality and full insurance. We show

that this is the case. We also show that the decentralization of the first best requires

pension benefits to be linked positively to the parents’ level of investment in children

(and not to their number), coupled with payroll taxes that vary inversely with the num-

ber of children. The design of an optimal social security system when investments are

publicly observable but individuals’ fertility rates are stochastic, is one dimension along

which we generalize van Groezen et al. (2003).

The more important problem that does not arise in van Groezen et al. (2003) is that

of moral hazard. When the parents’ investment in children is not publicly observable, a

tradeoff between insurance and incentive considerations surfaces. We prove that in this

case, the optimal (second-best) level of investment in children, and the resulting average

fertility rate, are less than their corresponding first-best values. To attain the second-

best, one must institute a pay-as-you-go pension plan under which benefits increase,

and payroll taxes decrease, with the number of children. Moreover, families with more

children should be more than compensated for the extra cost of children so that they

will enjoy a higher level of first-period consumption. Interestingly, with the exception of

the last finding, these results carry over to situations where payroll taxes cannot depend

period so that the first-period consumption could not vary with the number of children.
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on the number of children.

Finally, we examine how the endogeneity of fertility modifies Samuelson’s classic

requirement for optimality of PAYGO pension plans.5 To do this, we assume that

individuals can transfer resources to the future using a storage technology with a fixed

rate of return. We show that the possibility of investing in fertility, and thus making this

mechanism more productive, implies that PAYGO will dominate storage over a higher

range of returns. This will be the case in both first- and second-best environments;

however, this range will be smaller in the second best.

2 The basics

Consider a two-period overlapping generations model in the steady state. Each genera-

tion consists of a continuum of identical individuals. The young have fixed endowments

y and the old live on pensions. Preferences of the young depend positively on their

consumption in the first period, c, and their consumption in the second period, d. We

depart from the bulk of the literature in leaving the “love for children” out of the in-

dividuals’ preferences.6 This simplification has the advantage of putting the problem

into a sharper focus: Parents are not interested in children but the society is (in order

to have them finance pension benefits). This was an important aspect of Samuelson’s

(1958) original analysis; preserving it makes the comparisons of our results to his more

natural.

A parent can have either n1 or n2 children, with n2 > n1. The actual realization of ni

depends on an initial investment in children, k, and on some random shock.Thus when a

parent invests k, he will have n2 children with probability π (k) where 0 6 π (k) 6 1 and
π0 (k) > 0 (π00 (k) < 0 and π (0) > 0). Naturally, the probability of having n1 children

is given by 1− π (k). Whenever it makes the notation simple, we substitute π2 (k) for

5This is when the population growth rate (what Samuelson~(1958) called the “biological” rate of
interest), which is assumed exogenous, exceeds the interest rate.

6 Introducing the love for children into individuals’ preferences is an easy undertaking. This would
generally imply that parents would opt for a higher investment level in children thus lowering the
instances under which parents may decide not to invest in children. However, as long as there is no
conflict between the parents’ and the society’s love for children, this will not add to the scope of our
analysis in terms of policy design.
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π (k) and π1 (k) for 1 − π (k) . The cost of having children is not limited to the initial

investment k. There are other costs that vary proportionately (at the rate of θ ≥ 0) to
the actual number of children. These costs are also borne in the first period.

To keep the model simple, assume that preferences over (ci, di), i = 1, 2, are rep-

resented by an additive utility function. Consequently, at the beginning of the first

period, the expected utility of the young (i.e. future parents) is written as

U =
2X

i=1

πi (k) [u (ci) + v (di)] , (1)

where u (·) and v (·) are strictly concave functions.
There are two potential mechanisms for financing second-period consumptions: stor-

age or a PAYGO pension plan. Under the storage technology, part of the initial en-

dowment is invested yielding a fixed rate of return, r.7 Under a PAYGO scheme, the

government collects taxes from the current young and distributes the proceeds to the

retired. With the young having, on average,

n̄ (k) = π1 (k)n1 + π2 (k)n2

children, the PAYGO rate of return is n̄ (k) − 1. This corresponds to what Samuelson
called the biological rate of interest.

Observe that while the number of children of a particular family is random, the

fertility rate for the society is not. It is determined fully by the choice of k. This

property, and the existence of a storage technology with a fixed rate of return, imply

that it is possible for the society to transfer resources across different generations in

a deterministic fashion, and at a rate which is independent of the total savings in

the economy. These two properties also imply that the only consideration in choosing

between the storage technology and a pension plan, for transfer of resources, is to

determine which mechanism has a higher implied rate of return. In turn, this has the

strong implication that one of the two mechanisms will always dominate the other. It

will never be optimal to use storage and PAYGO simultaneously. This feature, which

was another fundamental aspect of Samuelson’s (1958) model, allows us to isolate the

7The rate of return is net of any “capital depreciation”.
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effects of making fertility endogenous and stochastic on the choice between the two

mechanisms.

2.1 Laissez faire

Absent any government intervention, each individual maximizes his expected utility

subject to two budget constraints, one of which becoming relevant ex post, depending

on the number of children. The Lagrangian expression associated with the individual’s

problem is

LL =
X
i

½
πi (k) [u (ci) + v (di)] + λi

·
y − ci − di

1 + r
− k − niθ

¸¾
.

It follows from the first-order conditions of this problem with respect to ci and di that

v0 (di)
u0 (ci)

=
1

1 + r
, i = 1, 2. (2)

This is the classic condition for optimal intertemporal consumption.

We also have

∂LL
∂k

= π0(k) [u (c2) + v (d2)− u (c1)− v (d1)]−
X
i

πi (k)u
0(ci). (3)

Observe that individuals with n1 children have higher disposable incomes, net of cost

of children, than individuals with n2 children. It follows that u (c2) + v (d2) ≤ u (c1) +

v (d1) : utility is higher with n1 children than with n2. From (3) one then obtains that

∂LL/∂k ≤ 0 and
kL = 0. (4)

That under laissez faire k = 0, should not be surprising. Children bestow no utility on

their parents so that there is no reason to invest in them (given that they are costly to

have).8

8The individual’s problem has been set up on the assumption that there are no private insurance
markets. If individuals can buy fair insurance, they will pool their resources together and thus maximize
their expected utility subject to the single budget constraintX

i

πi(k)

·
y − ci − di

1 + r
− k − θni

¸
.

In this case, one can easily show that we will continue to have k = 0, but that c1 = c2 and d1 = d2.

7



Having characterized the equilibrium under laissez faire, we next characterize the

first-best solution for this economy and then turn to the second best.

3 The utilitarian first-best

Assume first that the social planner has perfect information, particularly with respect

to the individuals’ investment levels in children k, and that he controls all the relevant

variables in the economy: k, ci, di and Si, where Si denotes the savings of the young in

state i = 1, 2. He sets these variables to maximize the expected lifetime utility in the

steady-state

W =
X
i

πi (k) [u (ci) + v (di)] , (5)

subject to the economy’s resource constraint,9X
πi (k)

·
y +

Si(1 + r)

n̄ (k)
− ci − k − θni − Si − di

n̄ (k)

¸
= 0, (6)

where n̄ (k) ≡ π1 (k)n1 + π2 (k)n2, and the young’s population size is normalized at

one so that there are 1/n̄ (k) old people. Our modeling strategy, with a fixed rate of

return on savings, r, and a non-stochastic aggregate biological rate of return, n̄, implies

that the choice of storage or PAYGO are, as in Samuelson (1958), mutually exclusive.

Expositionally, then, it will be simpler to consider the planner’s problem sequentially.

First, one finds the optimum conditional on the use of storage and PAYGO; then one

compares the levels of welfare achieved at these two conditional optima. This also allows

one to simplify the resource constraint (6) and rewrite it asX
i

πi (k)

·
y − ci − di

1 + r
− k − niθ

¸
= 0, (7)

under storage, and as X
i

πi (k)

·
y − ci − di

n̄ (k)
− k − niθ

¸
= 0, (8)

under PAYGO.
9As is well-known, one may increase the steady-state utility level through the imposition of lump-sum

taxes on the old and distributing the proceeds to the young (also in a lump-sum manner). However, such
increases in steady-state utility are made at the expense of the old generation alive when the policy
is instituted. These issues are not pertinent to the main point of this paper and are ignored in our
discussions.
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3.1 Storage

Under the storage technology, the planner maximizes (5) subject to the resource con-

straint (7). Deriving the first-order conditions of this problem, one can easily establish

that c1 = c2 = c; d1 = d2 = d. Thus, not surprisingly, consumption levels are equalized

across individuals with different number of children. The problem can then be written

as

max
c,d,k

WS = u (c) + v (d) , (9)

s.t. y − c− d

1 + r
− k − n̄ (k) θ = 0. (10)

The first-order conditions imply

v0 (d)
u0 (c)

=
1

1 + r
, (11)

and

kS = 0. (12)

Equation (11) is the optimality condition for intertemporal consumption with the rate of

return r on storage. It is also similar to the expression (2) under laissez faire. Condition

(12) obtains because ∂WS/∂k < 0 (when incorporating the budget constraint). It

is identical to condition (4) under laissez faire.10 As in there, increasing k has only

costs and no benefits.11 The values of c and d that solve this problem depend on (the

exogenous) value of r, as does the associated level of welfare,W ∗
S(r).Moreover, it follows

directly from (10) that W ∗
S is an increasing function of r.

3.2 PAYGO

The problem of the social planner under a PAYGO pension plan is to maximize (5)

subject to the resource constraint (8). In this case too, one obtains c1 = c2 = c and

d1 = d2 = d. The Lagrangian expression of the problem can then be written as

LP =
·
u (c) + v (d) + µ

µ
y − c− d

n̄ (k)
− k − n̄ (k) θ

¶¸
,

10The solution is thus identical to that under laissez faire with full private insurance.
11This extreme result holds because, as with the laissez faire solution, there are no direct benefits

associated with having children in this setting. To capture such benefits, one may include n as a separate
argument of the utility function. It would then be possible to have kS > 0.
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with c, d and k as decision variables. One obtains the following optimality conditions12

v0 (d)
u0 (c)

=
1

n̄ (k)
, (13)

and
∂LP
∂k

= µ

·
n̄0 (k) d
n̄2

− 1− n̄0 (k) θ
¸
= 0. (14)

Equation (13) is the counterpart of (11) with n̄ (k)− 1 as the net rate of return on
“savings”. The optimal level of investment in children, kP , is determined according to

the tradeoff stated in equation (14). This condition requires that the cost of increasing

k, which includes the extra cost of children n̄0 (k) θ, equals the benefits associated with

the induced increase in the return to PAYGO. The level of welfare achieved at the

PAYGO solution is denoted by W ∗
P .

3.3 PAYGO versus storage

To determine the first-best solution one must compare the levels of welfare attained

at the two conditional optima. First, observe that both conditional solutions imply

equalization of consumption levels across parents with different number of children.

The parents are thus fully insured for the uncertainty they face over the number of

children they will have. Given this common property, it is intuitively obvious that

the choice between the technologies must depend solely on their respective “rates of

return”. Specifically, when 1+ r ≥ n̄ (kp) , the storage technology dominates. Its return

is at least as high as that of PAYGO, but it does not require the initial investment kP .

Put differently, the rate of return for PAYGO must be higher than the rate of return

on storage to compensate for the investment kP . When 1 + r < n̄ (kp), the choice

between the two technologies is more involved. This is best explained using a graphical

representation in the (c, d) plane; see Figure 1.

Let α represent the optimal allocation between c and d under PAYGO. It corre-

sponds to a point of tangency between an indifference curve and the resource constraint

originating from y−kP − θn̄ (kp) (endowment minus total cost of children) with a slope

12The first-order condition with respect to k is for an interior solution. If we have a corner solution
k = 0, the solution is identical to a case with exogenous fertility and one is back to the original Samuelson
formulation.
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d

c

α

β

γ

1 r( )pn k

( )p py k n kθ− − (0)y nθ−

Figure 1: Optimal allocations with storage and PAYGO technologies

(in absolute value) of n̄
¡
kP
¢
. Define r̂ as the rate of return on storage at which first-best

welfare level under storage equals its PAYGO level: W ∗
S(r̂) =W ∗

P . Graphically, 1 + r̂ is

the slope of the budget line (under storage) with horizontal intercept of y − θn̄ (0) and

which is tangent to the indifference curve corresponding to W ∗
P . One attains the same

utility level under storage at point β, with more first-period and less second-period con-

sumption. Observe that r̂ < n̄ (kp)− 1. With r > r̂, society would opt for the storage

technology and the solution γ. With r < r̂, the demographic mechanism dominates

storage.13

The above discussion reveals how endogenous fertility modifies the Samuelsonian

condition for instituting a PAYGO system. As in Samuelson (1958), the storage tech-

13Observe that β is not available unless everyone is subjected to PAYGO. That is, it is not optimal to
use the two mechanisms simultaneously. Note also that the graphical representation, and the comparison
between 1 + r and n̄

¡
kP
¢
, assume no initial fixed investment costs in the storage technology.
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1 n̄(0) 1 + r̂ n̄ (kp)
1 + r

PAYGO

(welfare: W ∗
P =W ∗

S(r̂))

Storage

(welfare: W ∗
S(r))

Figure 2: The choice between storage and PAYGO.

nology should be used as long as its rate of return exceeds a threshold level and PAYGO

otherwise. However, whereas the threshold rate of return to storage in Samuelson was

the exogenous fertility rate, it now lies somewhere between the optimal and the no-

investment fertility rates. To see this, first recall that r̂ < n̄ (kp) − 1. Next, denote
the level of welfare under a PAYGO system with the rate of return n̄(0) − 1 by W0.

Clearly, W0 < W ∗
P . Now, with W ∗

S(r) being an increasing function of r, it follows that

r̂ > n̄ (0) − 1; see Figure 2.14 Thus, considering n̄ (0) as the exogenous component of

fertility, we note that the endogeneity of fertility creates more opportunities for PAYGO

to outperform storage as a means of financing future consumption.

3.4 Decentralization of the optimum

We now briefly examine how the first-best optimum can be decentralized. With the first-

best consumption levels (in both periods) being independent of the number of children,

one may think of the decentralized solution as offering individuals full insurance against

the risk (from a personal perspective) of having many children. When the storage

technology dominates PAYGO, it suffices to compensate those with n2 children for

their extra cost of raising children. This is achieved by levying a lump-sum tax equal to

π(0) (n2 − n1) θ on parents with n1 children, and giving (1− π(0)) (n2 − n1) θ to parents

who have n2 children. Such a tax and transfer policy fully insures the parents, who will

now face a net cost (inclusive of the tax and transfer) of θn̄(0) in raising their children

14This assumes an interior solution for k. With a corner solution at k = 0, n̄(0) = 1 + r̂ and the
original Samuelsonian condition remains intact.
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regardless of their number, while satisfying the government’s budget constraint.15

When PAYGO dominates storage, decentralization is somewhat more intricate.

First, in order for the payroll taxes (Ti’s) and pension benefits (Pi’s) to satisfy the

government’s budget constraint, and with n̄ (k) young individuals for every old person,

we must have n(k)
P

πi (k)Ti =
P

πi (k)Pi. Second, as with the storage technology,

the individualized payroll taxes must satisfy T1 − T2 = (n2 − n1) θ in order to equalize

first-period consumption levels. Third, to equalize second-period consumption levels,

pensions will have to be independent of the number of children: P1 = P2 = P . Finally,

we also need to induce the “correct” level of investment in children and ensure that

there are no private savings.

If there are no benefits associated with investment in children, no one will choose

a positive level of k. To ensure some investment, pensions must in part be conditioned

on k. Specifically, let kP and dP denote the (PAYGO) first-best values of k and d. Set

P = P + k n(kP ) where P is fixed and satisfies P + kP n(kP ) = dP . It is easy to show

that under this pension scheme, and with the “appropriate” choice of T1 and T2, all

individuals would choose k = kP , opt for zero private savings (negative savings are not

allowed) and choose dP and cP as well (cP is the PAYGO first-best value of c). A subsidy

on k at the rate of n(kP )−1 per unit of k (to ensure a gross return of n(kP )) is necessary
because each individual ignores the atomistic impact of his choice of k on aggregate k

and thus on n(k), the rate of return of the PAYGO system that each person enjoys.

Put differently, an individual’s investment in children creates a positive externality in

that it increases the number of future working persons who will be supporting a retired

person.16 Consequently, unless there is a (Pigouvian) subsidy, individuals will set k at

zero and there will be no investment in children.
15Recall that there are (1− π(0)) parents with n1 children, and π(0) with n2 children, so that

(1− π(0))T1 + π(0)T2 = 0.
16This is what the literature refers to as the “intergenerational transfer effect.” It is the only effect

associated with increasing fertility in our Samuelsonian setup with a storage technology. If, on the
other hand, the technology for transferring resources across generations is a neoclassical production
function as in Diamond (1965), there will also be a cost associated with investing in fertility which
results in a negative externality. This is the required expansion in capital in order to maintain the same
capital output ratio in the face of an expanding work force as the fertility increases. This is termed
in the literature “the capital dilution effect.” In the presence of this latter effect, the net externality
associated with an increase in fertility is not necessarily positive.
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Observe that the Pigouvian subsidy is set at a rate that brings the private cost of

investing in k equal to its social cost which is one. To see this, recall that in the above

scheme the subsidy on k is paid in the second period as part of one’s pension benefits.

Discounted to the first period (with a discount rate of 1/n(kP )), its value will be equal

to 1–the marginal cost of k. Observe also that, at the optimal solution, the marginal

cost of k equals the marginal (net) social benefits of k. One can see this by rewriting

(14) as

1 =
n̄0
¡
kP
¢
dP

[n̄(kP )]2
− n̄0

¡
kP
¢
θ,

where the right-hand side of this expression is the net social marginal benefit of k. Its

first terms measures the induced impact on the return of PAYGO, while the second

terms represents the extra cost of raising children.

We summarize the results of this section as

Proposition 1 (i) The first-best allocation under storage requires that parents do not

invest in fertility, have equal consumption levels regardless of their number of children

in both periods of their lives, and that their first- and second-period consumption levels

satisfy the classic condition for intertemporal consumption at a rate of return determined

by the storage technology. The allocation can be decentralized by levying a lump-sum tax

equal to π(0) (n2 − n1) θ on parents with n1 children, and giving (1− π(0)) (n2 − n1) θ

to each parent who has n2 children.

(ii) The first-best allocation under PAYGO requires that parents make an investment

in fertility equal to kp, the solution to equation (14), have equal consumption levels

regardless of the number of their children in both periods of their lives, and that their first

and second period consumption levels satisfy the condition for intertemporal consumption

at the rate of n(kP ). The allocation can be decentralized by linking pension benefits, P,

to investment in children according to P = P + k n(kP ) where P is fixed and satisfies

P + kP n(kP ) = dP (the superscript P denotes a PAYGO first-best value), coupled with

individualized payroll taxes that satisfy T1 − T2 = (n2 − n1) θ > 0 and the government’s

per period budget constraint,
P

πi (k)Ti =
P

πi (k)Pi/n(k).

(iii) Let r̂ denote the rate of return on storage at which first-best welfare level under
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storage equals its PAYGO level. Then, n̄ (0)− 1 < r̂ < n̄ (kp)− 1. And, for all r < r̂,

PAYGO dominates storage and for all r > r̂, storage dominates PAYGO.

4 Second-best solution

The first-best characterization rests on the assumption that the government can control

k fully, either directly or through a subsidy. This will be the case if k (and thus c) are

publicly observable. When the observability assumption is not satisfied, one will be in

a second-best environment. Under this circumstance, the full insurance prescriptions of

a first-best world may not hold. We shall examine this question below.

Assume that k and c are not publicly observable but ni’s (i = 1, 2) are. Public policy

consists of either a tax system while letting the young save for their own retirement;17

or a pension plan through which the government collects taxes from the current young

and distributes the proceeds to the retired. With ni’s being publicly observable, taxes

Ti’s and transfers Pi’s may be conditioned on the number of children. Whether or not

this should be the case is an interesting policy question which this section attempts to

shed light on. Next section studies the setting where contributions are required by law

to be uniform.

4.1 Storage

Under the storage technology, the resource constraint is given byX
i

πi (k)

·
y − ci − di

1 + r
− k − niθ

¸
= 0. (15)

This is identical to the first-best constraint. Most significantly, the unobservability

of k is of no relevance here. In particular, there is no reason why individuals should

be induced to choose a different level of k than they would do otherwise. Indeed,

the (conditional) first-best allocation of subsection 3.4 (which requires equalization of

consumptions levels for parents with different number of children) is attainable as long

as tax payments are not restricted to be uniform. As in the first-best, this is done

17Alternatively, the government may institute a fully-funded pension plan, taxing away all savings,
investing (storing) the proceeds and distributing the investments and the returns as pensions.
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through levying a lump-sum tax equal to π(0) (n2 − n1) θ on parents with n1 children,

and giving (1− π(0)) (n2 − n1) θ to parents who have n2 children. The investment level

k is set at zero which is in line with individual incentives. Summing up, with storage

and state-dependant contributions, the (conditional) first- and second-best solutions

coincide.

4.2 PAYGO

Recall that the first-best outcome entailed two properties: full insurance plus an optimal

choice of k such that, given an exogenous rate of return on storage equal to r, n(kp) >

1 + r̂ > 1 + r. With k being directly “under control,” the planner could set it at its

optimal level without one having to forgo the full insurance property. In a second

best environment, k can no longer be directly controlled and keeping the full insurance

property is consistent with k = 0 only. Second-best optimality may then require trading

off the full insurance property for a positive choice of k (although not at its first-best

value). We will see below this is precisely the outcome when one can control k only

indirectly, through the incentives that the pension scheme provides.

The young’s problem, when facing the policy instruments T1, T2, P1 and P2, is

maxc1,c2,k U =
¡
1− π(k)

¢
[u(c1) + v(d1)] + π(k)[u(c2) + v(d2)], (16)

s.t. ci = y − k − Ti − θni i = 1, 2, (17)

di = Pi i = 1, 2. (18)

This yields the following first-order condition for an interior solution for k,

π0(k)
n
u(c2) + v(d2)−

£
u(c1) + v(d1)

¤o− ¡1− π(k)
¢
u0(c1)− π(k)u0(c2) = 0. (19)

Naturally, the second-order condition ∆ ≡ (d2U/dk2)|
k=ek < 0 must also be satisfied; we

shall assume throughout the paper that this is the case.18

18We have

∆ =
π00(k)
π0(k)

X
i

πi(k)u
0(ci) + 2π

0(k)
£
u0(c1)− u0(c2)

¤
+
X
i

πi(k)u
00(ci).

The first and the last expressions in the right-hand side of above are negative due to concavity of u(.)
and π(.) Consequently, as long as c2 does not exceed c1 by “much”, ∆ will be negative.
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The first term on the left-hand side of (19) measures the benefit (for the individual)

of increasing k, while the second term measures the cost. Not surprisingly, an interior

solution requires marginal benefits to equal marginal costs. Observe that when the

left-hand side of (19) is non-positive at k = 0, we have a corner solution and the

individual does not invest in k. This occurs for instance when c1 = c2 (i.e., when

T1 − T2 = θ(n2 − n1)) and d1 = d2. The solution to the individual’s problem, denoted

by ek(T1, T2, P1, P2), describes all possible values of k that the government can induce
through its choice of T1, T2, P1 and P2. The following lemma establishes the comparative

static properties of ek(T1, T2, P1, P2), which will prove useful in studying the government’s
problem.

Lemma 1 If ek(T1, T2, P1, P2) is given by an interior solution,
∂ek
∂T1

=
π0(k)u0(c1) + [1− π(k)]u00(c1)

(−∆) ≶ 0 (20)

∂ek
∂T2

=
−π0(k)u0(c2) + π(k)u00(c2)

(−∆) < 0 (21)

∂ek
∂P1

=
−π0(k)v0(d1)

(−∆) < 0 (22)

∂ek
∂P2

=
π0(k)v0(d2)
(−∆) > 0. (23)

At a corner solution, k = 0 and all partial derivatives of ek are also equal to zero.19
The inequality signs are as expected. The ambiguity of the first derivative is due

to the conflicting income and incentive effects of increasing T1. For simplicity we shall

concentrate on the “normal” case which occurs if ∂ek /∂T1 > 0.

Consider now the government problem. A first ingredient is the resource constraint.

With n̄ (k) young individuals for every old person, this is given by

n(k)
£¡
1− π(k)

¢
T1 + π(k)T2

¤
=
¡
1− π(k)

¢
P1 + π(k)P2. (24)

Equation (24) is a rewriting of (8) in terms of the second-best policy instruments. It

requires that total contributions equal total pension benefits. A second element is the

19At the transition between these two regimes ek may not be differentiable (even though it is continuous
as long as the second-order condition holds). We ignore this technical difficulty for the sake of simplicity.

17



constraint that k = ek(T1, T2, P1, P2) which reflects the government’s indirect control of
the level of investment in children. The conditional second-best problem for the PAYGO

case is then summarized by the Lagrangian

ΓS =
¡
1− π(k)

¢
[u(c1) + v(d1)] + π(k)[u(c2) + v(d2)]

+ µ
©¡
1− π(k)

¢
(n(k)T1 − P1) + π(k)(n(k)T2 − P2)

ª
+ η

£ek(T1, T2, P1, P2)− k
¤
,

where di = Pi and ci = y − k − Ti − θni (i = 1, 2). The first-order conditions are20

∂ΓS

∂T1
= [1− π(k)][µn(k)− u0(c1)] + η

∂ek
∂T1

= 0, (25)

∂ΓS

∂T2
= π(k)[µn(k)− u0(c2)] + η

∂ek
∂T2

= 0, (26)

∂ΓS

∂P1
= (1− π(k))[v0(d1)− µ] + η

∂ek
∂P1

= 0, (27)

∂ΓS

∂P2
= π(k)[v0(d2)− µ] + η

∂ek
∂P2

= 0, (28)

∂ΓS

∂k
= µ

©− π0(k)(n(k)T1 − d1) +
¡
1− π(k)

¢
T1(n2 − n1)π

0(k)

+ π0(k)(n(k)T2 − d2) + π(k)T2(n2 − n1)π
0(k)

ª− η = 0. (29)

Recall that the definition of ek(T1, T2, P1, P2) encompasses both interior as well as
corner solutions (of the individuals’ problem). We start by considering the case in which

the optimal policy induces an interior solution for ek. The case of k = 0 will be discussed
later.

4.2.1 Interior solution for ek
The first-order conditions (25)—(29) indicate that the properties of the second-best solu-

tion depend crucially on the sign of η. To the extent that k entails a positive externality

so that the individuals tend to choose a level of k that is “too low”, one would expect

η > 0. The following lemma shows that this is effectively the case, as long as ∂ek/∂T1 ≥ 0
holds.
20 In calculating ∂ΓS/∂k, we have utilized the individual’s first-order condition (19).
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Lemma 2 If ∂ek/∂T1 ≥ 0, then η > 0.

Proof. The proof is by contradiction. Assume η ≤ 0. Then the first-order conditions
(27)—(28), together with the concavity of v(·), imply d2 ≤ d1. Similarly, (25)—(26), the

assumption that ∂ek/∂T1 ≥ 0 and the concavity of u(·) result in c2 ≤ c1. Given these

two inequalities, it follows directly from (19) that one cannot have an interior solution

for ek, and we have a contradiction.
We are now in a position to study the properties of the second-best solution. We are

particularly interested in the relationship between payroll taxes and pension benefits

on the one hand, and the number of children on the other. Consider the benefits first.

With η > 0, it follows from (22) and (27) that v0(d1)− µ > 0, and from (23) and (28)

that v0(d2) − µ < 0. The concavity of v(.) then implies d2 > d1. Regarding payroll

taxes, with ∂ek/∂T1 ≥ 0, expression (21) and equations (25)—(26) yield µn ≤ u0(c1) and

µn > u0(c2). Concavity of u(.) then implies c2 > c1, so that T1 − T2 > θ(n2 − n1) > 0.

The following proposition summarizes the second-best results under storage and

PAYGO.

Proposition 2 (a) Under storage the (conditional) first- and second-best solutions co-

incide.

(b) Assume an increase in payroll taxes on parents with small number of children

increases (or leaves unchanged) their investment in children (∂ek/∂T1 ≥ 0). Then in the
second-best allocation under a PAYGO pension system: Benefits should increase with the

number of children (P2 > P1); payroll taxes must decrease with the number of children;

families with a higher number of children are more than compensated for the extra cost

of children (T1−T2 > θ(n2−n1) > 0, and c2 > c1); the investment in children, and the

resulting average fertility rate, are less than their corresponding first-best levels.

To interpret these results, recall that the first-best solution requires full insurance:

consumption levels of the young and the retired are independent of the number of

children. In a first-best setting, this is provided without preventing k to also be set at

its optimal level. As shown earlier, one could induce an optimal level of k, a publicly
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observable variable, by linking pension benefits to it. When k is not observable, this

procedure is no longer feasible. Instead, pension benefits, and contributions, may be

linked to the number of children which are observable, and whose realization can be

influenced by k.

Specifically, if contributions and benefits entail full insurance, individuals will have

no incentive to invest in children and k = 0. To induce a positive k, contributions and/or

benefits must be linked to the number of children. In consequence, one loses the full

insurance property. The optimal policy then strikes a balance between insurance and

incentive considerations. Roughly speaking, if one were to think of k as effort, we have

a moral hazard problem which calls for less-than-full insurance. It is thus not surprising

that d2 > d1 and c2 > c1. The higher consumption levels for parents with a greater

number of children, works as an incentive mechanism to induce positive investment in

children. Observe that c2 > c1 does not just require T1 > T2, it calls for the stronger

condition T1 − T2 > θ(n2 − n1). In words, parents with a higher number of children

should see their taxes reduced by an amount that exceeds the extra costs they incur as

a result of having more children. This may appear surprising at first, but it is easily

understood by realizing that when T1 − T2 ≤ θ(n2 − n1), one can gain on both the

insurance and incentive fronts by widening the gap between T1 and T2.

As a final observation, manipulate the first-order conditions (25)—(28) to arrive at¡
1− π(k)

¢
v0(d1) + π(k)v0(d2)¡

1− π(k)
¢
u0(c1) + π(k)u0(c2)

=
1− η

µ

¡
∂ek
∂P1

+ ∂ek
∂P2

¢
n(k) + η

µ

¡
∂ek
∂T1

+ ∂ek
∂T2

¢ . (30)

The left-hand side of equation (30) denotes the marginal rate of substitution between

di’s and ci’s. This was set equal to equal to 1/n(k), their relative “marginal costs”, under

first best; see equation (13). Consequently, the second best implies that the individuals’

life-cycle consumption patterns are distorted. One can show that if the difference in the

young’s consumption levels is “close” to the difference in the old’s consumption levels

(between people with different number of children), the right-hand side of (30) is greater

than 1/n(k). This means that the marginal rate of substitution between di’s and ci’s

increases as one goes from first best to second best. Put differently, less resources are

transferred to the future for consumption in the second best relative to first best.
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4.2.2 Corner solution at ek = 0
In describing an individual’s behavior facing the policy instruments T1, T2, P1 and P2

under PAYGO, we pointed out that if the individual is induced to choose c1 = c2 and

P1 = P2, then he will opt for k = 0. Similarly, one can deduce from the first-order

conditions (25)—(28) of the second-best problem, that if k = 0 is the second-best choice

of k, optimality requires c1 = c2 and P1 = P2. Consequently, one faces the possibility

of having c1 = c2, d1 = d2 and k = 0 as the second-best solution. To investigate this

possibility, evaluate ∂ΓS/∂k at c1 = c2 = c, d1 = d2 = d, k = 0 and simplify.21 We have

∂ΓS

∂k
= −u0(c) + µπ0(0)(n2 − n1)

·
d

n(0)
− θn(0)

¸
.

One can see from this expression that ∂ΓS/∂k may take a negative value at k = 0. Thus

we cannot a priori rule out a solution with d1 = d2, c1 = c2 and k = 0. This would be

the case if π is not very responsive to k (so that π0(0) is close to zero), if θ is “large”, or

if individuals have a very large degree of risk aversion.22 If this happens, the tradeoff

between c and d will again be at its first-best value of 1/n(k), albeit at k = 0. [See

equation (30) which would then simplify to (13)]. The solution is effectively the same

as the first-best outcome under storage, with a rate of return equal to (1 + r) = n(0).

4.3 PAYGO versus storage in the second best

Denote the welfare achieved at the second-best solution by WSB
P (for PAYGO) and

WSB
S (r) (for storage). As in the first best, the choice between the two mechanisms

hinges on the exogenous level of r. The results obtained in subsections 4.2 and 4.1

imply that WSB
P ≤W ∗

P ,
23 while WSB

S (r) =W ∗
S(r) holds for any level of r. Thus, under

PAYGO, the unobservability of k results in a welfare loss. Under storage, on the other

hand, the first-best outcome is achieved even if k is unobservable. Let rSB denote the

critical level of return satisfying WSB
S (rSB) =WSB

P < W ∗
P . It then immediately follows

21The expression for ∂ΓS/∂k differs from that given by (29) because the latter was derived assuming
an interior solution for k̃.
22With a large degree of risk aversion, individuals would want to set c1 = c2 and d1 = d2. It then

follows from the young’s optimization problem (16)—(18) that they will set k = 0.
23The equality sign applies if the first- and second-best outcomes under PAYGO are given by the

corner solution k = 0, and c1 = c2, d1 = d2.
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P =W ∗

S(r
SB))

Storage

(welfare: W ∗
S(r))

Figure 3: PAYGO versus storage in the second best.

that rSB < br, where br is the critical level in the first best. In other words, whenever
storage is optimal in the first best, it is also optimal in the second best. On the other

hand, when PAYGO is optimal in the first best, it may or may not be optimal in the

second best. Put differently, the range of values of r for which PAYGO dominates

storage is smaller in the second best than in the first best; see Figure 3.24 This range

continues to be larger than if fertility were purely exogenous.

We end this section with another proposition.

Proposition 3 Let rSB denote the rate of return on storage at which second-best welfare

level under storage equals its PAYGO level [WSB
S (rSB) = WSB

P ]. We have: rSB < r̂,

WSB
S (rSB) = W ∗

S(r
SB), and WSB

P < W ∗
P [r̂ is the welfare-equalizing rate under first

best, and ∗ indicates first-best values.]

5 Second best PAYGOwith state-independent first-period
taxes

The discussion thus far has allowed for tax and benefit schemes that are both state

dependent. As a policy prescription, however, one may want to restrict pension contri-

butions to be independent of the number of children. Indeed, depending on the timing

of the decision process, there are circumstances under which differentiation of T1 from

T2 may not even be possible.25 With this in mind, we shall now discuss a special case

24Observe also that a simple graphical representation as in Figure 1 can no longer be provided because,
in the second best under PAYGO, c1 6= c2 and d1 6= d2. The exception is when the PAYGO second best
implies a corner solution for k = 0. We would then have, for both mechanisms, budget lines starting
from y and it will be sufficient to compare r with n(0).
25This will be the case, for example, if taxes are levied before n is realized.
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of our model where the tax payments do not vary with the number of children. This

setting too constitutes a departure from the traditional PAYGO pension plans under

which it is not just the taxes on the young, but also the pension benefits of the old, that

are invariant to the number of children.

Formally, observe first that the equality of first-period tax payments implies, from

(17),

c1 − c2 = θ(n2 − n1) > 0.

Thus, individuals who end up with more children would also have to pay in full the

corresponding additional costs (this is in addition to k paid by everyone). Now, as far

as the individuals are concerned, they face the same optimization problem as before

which would then yield a first-order condition identical to (19).26 The solution for k

will depend on P1, P2 and T (= T1 = T2), with the expressions for ∂ek/∂P1 and ∂ek/∂P2
remaining unchanged from (22)—(23). One can also easily show that, with c1 > c2,

∂ek/∂T = ∂ek/∂T1+ ∂ek/∂T2 < 0.
Regarding the government’s optimization, one must now impose an additional con-

straint (T1 = T2 = T ) on the second-best problem. This is summarized by the La-

grangian

ΓC =
¡
1− π(k)

¢
[u(c1) + v(d1)] + π(k)[u(c2) + v(d2)]

+ µ
©¡
1− π(k)

¢
(n(k)T1 − P1) + π(k)(n(k)T2 − P2)

ª
+ η

£ek(T1, T2, P1, P2)− k
¤
+ λ(T1 − T2),

with d1 = P1 and d2 = P2. The first-order conditions with respect to P1, P2 and k, are

as in the unconstrained case. As in that case, we will again have, as long as the solution

for ek is interior, η > 0 and d2 > d1. Interestingly, these results now hold regardless of

the sign of ∂ek/∂T1.27 Of course, the levels of d1, d2 and k will be different as c1 now

exceeds c2 rather than the other way around.

26With T1 = T2, c1 − c2 = θ(n2 − n1) > 0 so that u0(c1) < u0(c2). It then follows from the expression
for ∆ in footnote 18 that ∆ < 0 and the second-order condition is now necessarily satisfied.
27This follows because in this case c1 > c2 holds without one having to assume that ∂ek/∂T1 ≥ 0. The

proofs of η > 0 and d2 > d1 are as in the unrestricted case.
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To see another implication of the T1 = T2 constraint, assume again that ∂ek/∂T1 ≥ 0.
Under this circumstance, one can show that λ < 0. Thus reducing T2 and increasing T1

from their current equal value are welfare improving. Finally, corresponding to equation

(30) under the unconstrained second best, we now have¡
1− π(k)

¢
v0(d1) + π(k)v0(d2)¡

1− π(k)
¢
u0(c1) + π(k)u0(c2)

=
1− η

µ

¡
∂ek
∂P1

+ ∂ek
∂P2

¢
n(k) + η

µ

¡
∂ek
∂T

¢ >
1

n(k)
, (31)

where the inequality sign follows from the fact that ∂ek/∂T = ∂ek/∂T1+∂ek/∂T2 < 0, and
∂ek/∂P1+ ∂ek/∂P2 < 0.28 This duplicates the result under the unrestricted second best.
However, there, we had to assume that the differences in consumption levels between

people with different number of children were “close” for when they are young and when

they are old. We can now state, unambiguously, that as long as taxes are independent

of the number of children, less resources are transferred to the future relative to the

first best.

We summarize these results as

Proposition 4 Assume T1 = T2 = T :

(i) The constraint implies c1 > c2 thus reversing the corresponding (unconstrained)

second-best finding on first-period consumption levels. The other second-best results

continue to hold. That is, pension benefits increase with the number of children so that

d2 > d1; and that investment in children and the average fertility rate are less than their

corresponding first-best levels.

(ii) Reducing T2 and increasing T1 from T are welfare improving (if ∂ek/∂T1 ≥ 0).
(iv) Less resources are transferred to the future relative to the first best.

6 Two polar cases

Finally, it will be instructive to contrast the lessons of our model with those obtained

in two polar cases: one where fertility is controlled in a deterministic way, and the
28We have

∂ek
∂P1

+
∂ek
∂P2

=
π0(k)

£
v0(d2)− v0(d1)

¤
(−∆) .

With d2 > d1, the concavity of v(·) implies v0(d2)− v0(d1) < 0, and the above expression is negative.
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other where fertility is random and purely exogenous. Consider first the case where

fertility is perfectly controllable. Clearly, in a deterministic environment, there is no

need to provide insurance. One only needs to worry about incentives and ensure the

“correct” choice of k. A simple formalization of this idea within our model is to assume

that k takes only two values k ∈ {k1, k2}, and that k1 leads to n1 and k2 > k1 to n2.

Assume further that the rate of return to storage is low enough that a PAYGO with k1

is preferable to storage. Then, with children having no intrinsic benefits, parents will

always choose k1 even when k2 happens to be optimal if contributions and pensions

are independent of the number of children. However, with ni being observable, ki

will also be observable. One should then be able to fully circumvent the potential

moral hazard problem and ensure that the first-best outcome is attained. To align the

individuals’ and the society’s preferences, the government should impose the ex-ante

contribution/benefit package of (T1, P1) or (T2, P2), depending on the number of their

number children, on all individuals. The contributions and benefits tax are set such

that the optimal intertemporal allocation rule u0(y − ki − Ti − θni) = niv
0(Pi), and the

government’s budget constraint Pi = niTi, are satisfied. The individuals would then

choose k ∈ {k1, k2} such that Ui = u(y − ki − Ti − θni) + v(niTi) is maximal; precisely

as the society would want to.

Consider next the other extreme setting in which there is no control over fertility.

There is no moral hazard (incentive) problem here and the optimal policy (whether k

is observable or not) requires k = 0 and full insurance. This is precisely the outcome

under the structure of our model when π0 (k) = 0, where the optimal social security

system fully insures parents against the fertility uncertainty. The government chooses

its pension benefits P and lump-sum tax payments T1 and T2 to ensure that its budget

constraint is satisfied, c1 = c2(= c), d1 = d2(= d), and u0(c) = n̄(0)v0(d). These values

implement the optimum as the individuals would choose k = 0, c and d. (we are again

assuming that the rate of return on storage is low enough that it is dominated by the

PAYGO scheme). The first- and second-best solutions derived in this paper offer a

compromise between these two extreme cases.

25



7 Conclusion

The PAYGO social security has traditionally been studied as if the rate of fertility were

given or at least not controllable. More recently, a series of papers have focused on the

endogeneity of fertility and the need to make parents responsible when their behavior

have social externalities. In the case of PAYGO pension plans, social externalities tend

to be positive implying that the laissez-faire generates a suboptimal population growth.

In other cases, such as the “Tragedy of the Commons,” social externalities are negative

and population growth is excessive. Making people responsible for their fertility raises

problems when the control is only partial because fertility involves some randomness.

It is then important to insure parents against fertility shocks they are not responsible

for.

We have shown that, with positive externalities, one should grant parents who have

more children larger pension benefits. At the same time, the parents’ contributions

must be linked negatively to their investment in children if the investments are publicly

observable, and to the number of children if investments are not observable. With

observability, the outcome is characterized by full insurance with all parents enjoying

identical consumption levels regardless of their number of children, when they work as

well as when they are retired. In the absence of observability, families with more children

should be more than compensated for the extra cost of children so that they can enjoy

a higher level of first-period consumption. Moreover, the optimal level of investment in

children, and the resulting average fertility rate, will be less than their corresponding

first-best levels. Finally, we have shown that, except for the extra compensation result,

all other second-best results carry over to situations where payroll taxes cannot depend

on the number of children.
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