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Abstract

This paper re-examines Sandmo’s (1975) celebrated “additive property” and the prin-

ciple of targeting in environmental taxation. It argues that, in the absence of direct

emission taxes, one cannot in general divide commodity taxes into two mutually ex-

clusive separate components of Pigouvian externality-correcting and Ramsey revenue-

raising. Externality-correcting terms appear also in the expressions for the taxes on

non-polluting goods–as well as in the expressions for taxes on the polluting goods–

unless preferences are additively quasilinear either in one of the non-polluting goods or

in the labor supply. On the other hand, in the presence of direct emission taxes, one

can use emission taxes for externality correction and leave commodity taxes for revenue

raising. Nevertheless the optimal emission tax is, in general, different from the marginal

social damage of emissions.

JEL classification: H21; H23

Keywords: second-best, emission taxes, Ramsey taxes, Pigouvian taxes, additive prop-

erty, principle of targeting.



1 Introduction

The Pigouvian prescription for correcting an externality is to levy a tax on it equal to

its marginal social damage. This is a first-best remedy which may have to be modified

in second-best environments. Sandmo (1975) made this point in a pioneering work

some twenty five years ago in the context of an economy where there are distortionary

taxes in the system and when emissions are not taxed directly. Sandmo’s main finding,

dubbed the “additivity property,” was that the presence of externality alters only the tax

formula for the externality-generating good, leaving other tax formulas unaffected. Dixit

(1985) later referred to Sandmo’s result as an instance of the more general “principle of

targeting”. The idea is that one should best counter a distortion by the tax instrument

that acts on it directly. Bovenberg and van der Ploeg (1994) also emphasize this principle

in their finding that, in addition to tax formulas for other goods, the formula for the

labor income tax must also remain unaffected. Over the years, a number of authors

have refined and extended Sandmo’s results in a number of ways.1

Two aspects of Sandmo’s result remain unresolved. One concerns the observation

that tax formulas change only in the case of polluting goods. This has invariably been

interpreted to mean that one should not tamper with the tax on non-polluting goods for

the purpose of correcting externalities. Dixit’s interpretation appears to be based on this

view. In turn, this view has lead to arguments about the externality-correcting versus

revenue raising roles of different tax instruments. Untangling this “Ramsey-plus-Pigou”

tax structure into two separate components, however, appears to be questionable. The

second aspect is that Sandmo’s analysis was limited to a setting where emissions are

not taxed directly. Rather, the policy makers combat emissions by taxing goods that

emit pollutants. Yet this question lies at the heart of tax treatment of externalities.

1See, among others, Bovenberg and van der Ploeg (1994), Bovenberg and de Mooij (1994,

1997), Bovenberg and Goulder (1996), Fullerton (1997), Schöb (1997), Cremer, Gahvari and

Ladoux (1998,2001), Cremer and Gahvari (2001), Kopczuk (2003), Boadway and Tremblay (2008), and

Micheletto (2008). See also the survey by Bovenberg and Goulder (2002) and the references therein.
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The aim of this paper is to address both of these problems. In addressing the

first question, I characterize the structure of optimal commodity taxes on polluting

and non-polluting goods in a model containing many polluting and many non-polluting

goods. I show how these taxes differ from Ramsey tax formulas in the absence of

externalities. More importantly I prove that, contrary to the generally-accepted view in

the literature, it is not just the taxes on polluting goods that have Pigouvian elements;

the taxes on non-polluting goods too contain Pigouvian features. Nor can one separate

these taxes into two mutually exclusive components, one for revenue raising and the

other for Pigouvian considerations. In this sense, the principle of targeting fails.

As a follow-up to this general finding, I will examine if there are preference structures

that allow one to separate the Pigouvian role from the Ramsey role. I show this will

be true for preferences that are additive and quasilinear either in labor supply or in

one of the non-polluting goods. With these preferences, the marginal social damage of

emissions appear only in the optimal commodity taxes on polluting goods, but not in

the optimal commodity taxes for non-polluting goods or in the optimal wage tax.

Turning to the question of emission taxes, I will show when and how the Pigouvian

prescription needs to be modified when applied to direct taxation of emissions. Specif-

ically, I will show that if preferences are separable in emissions and goods including

labor supply, no adjustment is required. The optimal emission tax must be set equal

to the marginal social damage of emissions (when the disutility of emission damage is

translated into dollars via the shadow cost of public funds rather than the private mar-

ginal utility of income). Without the separability, this equality will no longer hold. The

emission tax must be adjusted by a term that reflects the indirect effects of emissions

on commodity tax revenues when demands for goods are functions of emission levels.

Finally, I will also show that whether emissions can be taxed directly or not has

important implications for the structure and role of commodity taxes. Specifically, in

the presence of an optimal emission tax, the formulas for optimal commodity taxes
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on polluting and non-polluting goods are identical to the Ramsey tax formulas in the

absence of externalities. The principle of targeting applies in that emission taxes are

levied to correct for the externality and commodity taxes are levied for raising revenues.

2 The model

Consider an economy with  identical individuals each endowed with one unit of time.

Each person has preferences over consumer goods, labor supply and total emissions of

pollutants into the atmosphere. There are + consumer goods. The first  goods are

non-polluting or “clean” goods whose production entails no emissions. These goods are

produced by a linear technology subject to constant returns to scale by firms operating in

a competitive environment. Denote the vector of private goods by  = (1 2     ),

their consumer prices by  = (1 2     ), and the commodity taxes levied on them

by  = (1 2     ). Normalize the producer prices of these goods at one so that

 = 1 +  ;  = 1 2     .

The second  goods are polluting or “dirty” goods whose production entails emis-

sions of certain pollutants (e.g. 2, 2, etc.) into the atmosphere. This results

in a negative consumption externality. Denote the vector of polluting goods by  =

(1 2     ), and emission per unit of output in the polluting industry  by , with

 = (1 2     ). Assume the resource cost of producing one unit of  is a function

of . Denote this by () and assume that (·) is continuously differentiable with
 00 (·)  0,  0 (·)  0 for all  up to some limit ̄, and  0(̄) = 0 ;  = 1 2    .2

2The assumption that the production cost of  is negatively correlated to its emissions captures

the fact that technologies which cut emissions are generally more expensive to employ. This must

necessarily hold if emissions are reduced through abatement. When one is concerned with the choice

between technologies, or the choice between inputs, each with its own emission characteristics, ()

may not necessarily be downward-sloping everywhere. This function is the lower frontier of a production

set where different technologies are represented by points in the  space. Now it may well be the case

that some “cleaner” technologies are also less expensive to employ. For example, it is less polluting to

use natural gas for electricity generation than coal. In recent years, it has also been less expensive to

do so. However, one can simply ignore any such possible upward-sloping parts of (). They pose no

conflict of interest between firms and the society.
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Finally, assume that the production cost of , for a given (), exhibits constant

returns to scale. Thus, () denotes the average and the marginal cost of producing

. Denote the consumer price of  by  = (1 2     ) and the commodity taxes on

 by  = (1 2     )

Preferences are represented by

 = u
¡
  

¢
 (1)

where u (·) is strictly quasi-concave, twice continuously differentiable and strictly in-
creasing in   and decreasing in  and . With industry  producing  units of

polluting good  and each unit of  entailing  units of emissions, industry  generates

  units of emissions. Aggregate emissions by all industries are then equal to

 = 

X
=1

 (2)

I study two different scenarios. In one, emissions are observable and can be taxed

directly in addition to the tax that may be levied on the polluting good. In the other,

emissions are not observable and the only way they may be taxed is indirectly via the

tax on the polluting good. I will explore the ways the structure, and the role, of taxes on

polluting goods may differ under these two different scenarios and for the application

of the principle of targeting. To give a unified presentation of the two scenarios, I

introduce the notion of the “effective” tax on a commodity and define it as the difference

between its consumer price and its marginal cost. In the case of non-polluting goods,

the effective tax is the same as the “statutory” tax levied by the government on these

goods. The same is true for polluting goods if there are no direct taxes on emissions.

When emissions are taxed directly, however, the effective tax on a polluting good differs

from its commodity tax. Denote the emission tax rate by  and the effective tax on 
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by . Then,

 =  − () (3)

=   +  (4)

The effective tax on polluting goods thus consists of two components. The first is the

commodity tax   and the second  arises because of the emission tax. Observe that

one can use the same notation for the case when emissions are not subject to a direct

tax. Under this latter circumstance,  = 0 and  reduces to   That is,

 =   (5)

2.1 Emission taxes and emission per unit of output

As with clean goods, firms producing polluting goods operate in a competitive environ-

ment. A firm producing  chooses its emission level to maximize its profit

[ − ()−  −  ]

For any   0, the firm thus chooses  to minimize

() + 

The firm’s choice of  is thus found from
3

− 0() =  (6)

Denote the solution to equation (6) by ̃ With zero profit condition in equilibrium, it

must then be the case that

 = (̃) + ̃ +   (7)

3The second-order condition for the firm’s optimization problem is satisfied from the convexity as-

sumption 00
 (·)  0
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Observe that as long as all industries face the same emission tax, one will have

− 0() = − 0() for all  and  = 1 2     (8)

That is, marginal (private) benefit of emissions is equalized across industries whether

or not this marginal benefit is equal to the marginal social damage of emissions. If

industries have different unit cost functions, (·), they will choose different per unit
emission levels  On the other hand, with identical unit cost functions, (·) − 0() =
− 0() implies that  = 

3 Optimal effective commodity taxes

The discussion in this section applies whether or not emissions are taxed. Denote the

wage rate by  the tax rate on wages by  and the lump-sum rebate, if any, by 

(Thus, if   0 we have a lump-sum tax). The representative consumer maximizes

utility subject to the budget constraint:

X
=1

 +

X
=1

 = + (9)

where  =  (1− ) is the net of tax wage. The maximization problem yields the

demand functions for  and  and the supply function for . The individual’s indirect

utility function can then be defined as

 = v
¡
 

¢
≡ u

¡
(  ) (  ) ( ) 

¢
 (10)

To determine the optimal tax rates, maximize the indirect utility function (10) with

respect to the available instruments and subject to the government’s budget constraint

X
=1

 +

X
=1

 + − =  (11)

where  is the government’s per-capita external revenue requirement. The following

Lemma simplifies the exposition of our results below.
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Lemma 1 Consider the Ramsey tax problem summarized by the Lagrangian

L = v ¡  
¢
+ 

"
X
=1

 +

X
=1

 + − −

#
 (12)

Denote the marginal utility of income by  ≡  and define

Γ ≡ 

⎧⎨⎩
P

=1 


+
P

=1

h
 + v




i


+ 




1−
P

=1 



⎫⎬⎭  (13)

where the denominator in Γ is positive; see equation (A13) in the Appendic. Regardless

of the availability of an emission tax:

(i) The first-order conditions with respect to commodity tax instruments,   , the

wage tax , and the lump-sum rebate  are given by, for all  = 1 2      and

 = 1 2    :

L


= (− ) + 

(
X
=1





+

X
=1

∙
 +

µ

v


+ Γ

¶


¸



+ 





)
= 0

(14)

L


= (− )  + 

(
X
=1





+

X
=1

∙
 +

µ

v


+ Γ

¶


¸



+ 





)
= 0

(15)

−1


L


= (− ) (−) + 

(
X
=1





+

X
=1

∙
 +

µ

v


+ Γ

¶


¸



+ 





)
= 0

(16)

L


= − (− ) + 

(
X
=1





+

X
=1

∙
 +

µ

v


+ Γ

¶


¸



+ 





)
= 0

(17)

(ii) Let the sign ~ on a demand or a supply variable denote its “compensated”

version. The first-order conditions with respect to commodity tax instruments,   , and

the wage tax  can also be written as

X
=1



µ
e


¶
+

X
=1

∙
 +

µ

v


+ Γ

¶


¸µ
 e


¶
+ 

Ã
e


!
= 

µ
1



L


¶
 (18)
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X
=1



µ
e


¶
+

X
=1

∙
 +

µ

v


+ Γ

¶


¸µ
 e


¶
+ 

Ã
e


!
= 

µ
1



L


¶


(19)

X
=1



µ
 e


¶
+

X
=1

∙
 +

µ

v


+ Γ

¶


¸µ
 e


¶
+ 

Ã
e


!
= (−)

µ
1



L


¶


(20)

Proof. See the Appendix.

The interesting point to note about equations (14)—(17) is the way the taxes on

non-polluting goods and polluting goods appear in them. Corresponding to  or  one

has the following expression for the tax on polluting good,

 +

µ

v


+ Γ

¶


This has two terms in addition to . The first can be written as  (v) with 

being the number of people affected by the pollutant and  the amount of emissions

per unit of output. The term v is the marginal utility of emissions to individuals

discounted by the shadow cost of public funds to the society  Put differently, −v
is how the society assesses the marginal damage of emissions in terms of public dollars.

This conception of the “social” cost accounts for both the damage of the emissions,

as perceived by the individuals themselves, as well as the fact that in the absence of

lump-sum taxes the cost of a dollar to the society  is not the same as its private cost

to the individual .4 The second term Γ captures the effect of a change in emission

on consumer demands and through them on tax revenues. This term disappears if

4Alternatively, one can go from private cost to social cost in two steps reflecting two different phenom-

ena. Write −v = (−v)  () where −v is the marginal damage of emissions discounted
by the marginal utility of income. This is how an individual assesses the marginal damage of emissions

in terms of dollars. In this way, one considers  (−v) to represent the marginal social damage of
emissions (as seen by the individuals themselves). This latter way of arriving at social cost by decom-

posing the terms into two different concepts, and labeling −v as the marginal social damage of

emissions, is behind the definition of the so-called “Pigouvian tax” by Bovenberg and van der Ploeg

(1994), Fullerton (1997), and others in the literature. The direct way of going to the social cost by

labeling −v as the marginal social damage of emissions, on the other hand, is behind the definition
adopted by Cremer et al. (1998).

The two definitions apply equally to models with heterogeneous agents. One can define the marginal

8



preferences are separable in emissions and the rest of the goods (including labor supply)

so that there is no Edgeworth complementarity or substitutability relationships between

emissions and goods.

Finally, I should note that the first-order condition with respect to  , equation

(17), holds only in the first best when lump-sum taxes are available. In the second-

best lump-sum taxes are unavailable and this equation must be deleted from the set of

first-order conditions.

3.1 Normalization and tax characterization

Observe that because demand and the labor supply functions are homogeneous of de-

gree zero in   , and  one of the consumer prices (including the wage) can be

normalized to one. Equivalently, one of the commodity or labor tax rates can be set to

zero. This also implies that the equation corresponding to the tax which is normalized

at zero must then be deleted from the set of first-order conditions.

Introduce e∆ to denote the Slutsky matrix. This is the matrix associated with the

derivatives of the compensated demands functions e e and the compensated labor
supply e with respect to consumer prices and the net wage,

e∆ ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

· · · 
1

1
1

· · · 
1


1

...
. . .

...
...

. . .
...

...
1


· · · 


1


· · · 





1
1

· · · 
1

1
1

· · · 
1


1

...
. . .

...
...

. . .
...

...
1


· · · 


1


· · · 





1


· · · 


1


· · · 





⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
 (21)

social damage of emissions as


=1 


v



or as



=1


v


, when  denotes a household

of a particular type and  the number of such household types in the economy. Observe also that,

as with all definitions, it is not always obvious which one is “better” or “more appropriate”. Each has

its own merit. In any event, the choice of the definition changes one’s choice of terminology only and

not the actual results. As long as one realizes what definition one is working with, and sticks to it

throughout one’s analysis, the terminology should not matter. Finally, note that in the first-best  = 

and the two definitions amount to the same thing.
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Let e∆ denote the matrix derived from e∆ by deleting its last rows and columns; this

corresponds to a tax system where the wage tax is normalized to zero. Similarly, let e∆1
denote the matrix derived from e∆ by deleting its first rows and columns (corresponding
to a tax system wherein the tax on the first consumption good is normalized to zero).

Finally, introduce

Ψ ≡
X
=1



µ




¶
+ 

µ




¶
+

X
=1

∙
 +

µ

v


+ Γ

¶


¸µ




¶
 (22)

=
1



L


+
− 




where the second equality follows from equation (17). Observe that Ψ reflects the impact

of income effects on tax revenues. In the absence of income effects on any particular

good,   or  this channel will be closed. Let Ψ and Ψ1 denote the expressions

obtained from Ψ by setting  = 0 and 1 = 0 Define Γ and Γ1 in a similar fashion.

The following proposition gives a characterization for the optimal effective commodity

taxes,     under the two normalization rules.

Proposition 1 Consider the Ramsey tax problem of Lemma 1. Regardless of the avail-

ability of the emission tax, the optimal effective commodity taxes are characterized by:

(i) If  is normalized to zero,Ã


 +
³
 v


+ Γ

´


!
=

µ
Ψ − − 



¶ e∆−1 µ




¶
 (23)

(ii) If 1 is normalized to zero,⎛⎜⎜⎜⎜⎜⎜⎝
2
...



 +
³
 v


+ Γ1

´




⎞⎟⎟⎟⎟⎟⎟⎠ =

µ
Ψ1 − − 



¶ e∆−11
⎛⎜⎜⎜⎜⎜⎝

2
...




−

⎞⎟⎟⎟⎟⎟⎠  (24)
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Proof. To derive (23), observe that with the normalization  = 0 one maximizes

welfare subject to  and  only. Hence equation (20) does not hold. Rewrite the

applicable equations (18)—(19) in matrix form as

e∆

Ã


 +
³
 v


+ Γ

´


!
=

µ
Ψ − − 



¶µ




¶


where Ψ is defined in the text. Pre-multiplying this equation by e∆−1 yields (23).5

To derive (24), observe that with the normalization 1 = 0 equation (18) does not

hold for  = 1; the maximization is over 2        and  These equations can then

be written in matrix form as e∆1
⎛⎜⎜⎜⎜⎜⎜⎝

2
...



 +
³
 v


+ Γ1

´




⎞⎟⎟⎟⎟⎟⎟⎠ =
³
Ψ1 − −



´
⎛⎜⎜⎜⎜⎜⎝

2
...




−

⎞⎟⎟⎟⎟⎟⎠ 

where Ψ1 is also defined in the text. Pre-multiplying this equation by e∆−11 yields (24).6

It is important to point out here that the system of equations (23) and (24) are

characterizations and not closed-form solutions for the optimal taxes. In particular,

the expressions that appear in the right-hand sides of (23) and (24) are themselves

functions of the vector of taxes,    and . I will come back to this point later on

when discussing the principle of targeting. Observe also that in these characterizations,

as with Lemma 1, corresponding to  or  one has the expression +(v+ Γ) 

and not  when it comes to the polluting goods.

4 Optimal emission tax

The preceding material apply regardless of the availability of the emission tax. This

section studies the nature of the optimal emission tax if the government is able to levy

5Observe that ∆ is of full rank so that its inverse exists.
6Matrix ∆1 is also of full rank.
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a direct emission tax. The following Lemma simplifies the derivation of the optimal

emission tax.

Lemma 2 Consider the Ramsey tax problem of Lemma 1 and assume that emissions

can be taxed directly at the rate 

(i) The first-order conditions with respect to commodity tax instruments,   , the

wage tax , and the lump-sum rebate  , for all  = 1 2      and  = 1 2    ,

continue to be characterized by equations (14)—(17).

(ii) When L/ is set equal to zero for all  = 1 2    , the first-order condition
with respect to the emission tax  is characterized by

L


= 

µ
 +

v


+ Γ

¶ X
=1




 = 0 (25)

where Γ is defined by equation (13).

Proof. See the Appendix.

Armed with Lemma 2, I now present a proposition for the characterization of the op-

timal emission tax. This proposition and Proposition 1 form the basis for my discussion

of the principle of targeting.

Proposition 2 Consider the Ramsey tax problem of Lemma 1 and assume one can

directly tax emissions. Then:

(i) In the presence of lump-sum taxes, the Pigouvian prescription holds so that the

optimal emission tax is equal to the marginal social damage of emissions:

 = 

µ−v


¶
= 

µ−v


¶
 (26)

Commodity taxes are set equal to zero and all tax revenues are raised from the lump-sum

tax.
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(ii) In the absence of lump-sum taxes, the Pigouvian prescription is modified. The

optimal emission tax is characterized by

 = 

µ−v


¶
− Γ (27)

= 

µ−v


¶
−

Ã
X
=1





+

X
=1

 



+ 





!
 (28)

where Γ is defined by equation (13). Consequently, the optimal emission tax differs from

the marginal social damage of emissions,  (−v) 
(iii) In the absence of lump-sum taxes, the Pigouvian prescription holds if preferences

are separable in emissions and goods including labor supply. The optimal emission tax

is equal to the social marginal damage of emissions,  (−v). However, unlike the
first best,  (−v) 6=  (−v) 

Proof. To prove result (i), one can easily check that a value of zero for all commodity

taxes,  =  =  =0, coupled with  =  (−v) for the emission tax, and − = 

for the lump-sum tax, constitute a solution to the first-order conditions (14)—(17) and

(25) of Lemma 2. Observe also that in this case Γ = 0 and  = 

To prove (ii), set the expression for L/ in (25) equal to zero:



µ
 +

v


+ Γ

¶ X
=1




 = 0

Now recall from equation (6) that  = − 0 ()  Differentiating this relationship with
respect to  and rearranging the terms,




= − 1

 00 ()
 0

where the sign follows from the assumption that  00 ()  0 Result (27) follows im-

mediately. To derive (28), substitute for Γ from (13) into (27), multiply through by

13



1−
P

=1  (), and rearrange the terms to get

 −

µ−v


¶
= −

"
X
=1





+

X
=1

µ
 +

v




¶



+ 





#
+

µ
 −

−v


¶ X
=1







= −
(

X
=1





+

X
=1

∙
 +

v


 − 

µ
 −

−v


¶¸



+ 





)


= −
"

X
=1





+

X
=1

( − )



+ 





#


where, from (4),  −  =  

Finally, to prove (iii), observe that with separability, demand and labor supply

functions are independent of emissions. This results in Γ = 0 so that  =  (−v) 

The result for the first-best is obvious; it forms the basis for the concept of principle

of targeting which I will discuss in the next section. Result (ii) shows how the Pigouvian

prescription is modified when there are distortionary taxes in the economy. To see its

implication, observe that when faced with an emission tax  a firm in industry  sets

its emissions such that − 0() = With the socially optimal emission tax being given

by  =  (−v) − Γ this implies that the marginal (private) benefit of emissions
to the firm must be set equal to the marginal social damage,  (−v)  plus an
adjustment term, −Γ. Thus marginal (private) benefit and marginal social damage
of emissions differ (unless preferences are separable in emissions and other goods so

that Γ = 0) This seems, at first blush, rather counter-intuitive. Further reflection,

however, makes sense of it. The crucial point to note is that, with distortionary taxes, a

change in emissions affects welfare not only through the private benefit to firms and the

social damage caused by emissions, but also through its impact on tax revenues. The

adjustment term consists precisely of these additional effects. They will appear as long

as there exist complementarity or substitutability relationships between emissions and

private goods (clean as well as dirty). If increased emissions lead to increased demand for
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private goods, the tax revenues that government collects increase. In turn, this would

imply a reduction in resources to be collected from the emission tax. Thus revenue

increases from commodity taxes constitute a “benefit” to increased emissions and works

to countervail its negative effect (of increased social damage). This would translate, in

terms of equation (27), into an increase in Γ and a reduction in the right-hand side of

(27).

Observe also that in the absence of any complementarity and substitutability rela-

tionships between emissions and goods, a change in emissions leaves the demand and

labor supply functions intact. Consequently, there will be no effect on tax revenues

either. Under this circumstance, the benefit and cost of a change in marginal emissions

will be confined to its private benefit to firms and damages imposed on the society.

Hence the optimum will be characterized by the equality between the two. This ex-

plains (iii).

5 The principle of targeting

The nature of first-best taxes serves as the starting point for distinguishing the role

of emission and commodity taxes and understanding the concept of the “principle of

targeting.” It is clear that in the first best, when lump-sum taxation is feasible and

emissions are publicly observable, the emission tax is levied to correct for the externality;

that is without this tax, the emission level will not be optimal. The lump-sum tax, on the

other hand, is used to cover the rest of the government’s external revenue requirement.

It is also the case that the lump-sum tax is the only instrument used in the absence of

emissions. When these properties–namely, (i) using the emission tax for correcting the

externalities and (ii) identical structure for the other tax instruments in the presence

and absence of externalities–hold, one can think of the tax instruments to have different

and distinct roles.

Observe also that although the lump sum tax is the instrument used with and
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without externality to raise revenues, this does not mean that the value of the lump-

sum remains the same in the two cases. If the government is to raise  with and without

the emission tax, the fact some revenues are raised from emission taxes implies that less

revenues will have to be raised from the lump-sum tax. Consequently, in stating that

the tax instruments have different roles, one does not mean that the values of the tax

instruments remain the same (with and without the externality).

A similar attempt for carving out different roles for different tax instruments in

second-best environments was first attempted by Sandmo (1975). He found that, in a

Ramsey tax model without the emission tax, the presence of externality alters only the

tax formula for the externality generating good, leaving other tax formulas unaffected.

He dubbed this the “additivity property.” Dixit (1985) later referred to Sandmo’s result

as an instance of the more general “principle of targeting”. Other studies discussing

this property and expounding over it include, among others, Bovenberg and van der

Ploeg (1994), Cremer et al. (1998, 2001), and Cremer and Gahvari (2001).

In this section, I investigate what Sandmo’s result actually tells us, whether the tax

formulas actually remain the same, and whether or not one can meaningfully talk about

separation of tax roles.

5.1 With emission taxes

Consider first the case where emissions can be taxed directly and their tax is set op-

timally. With the optimal emission tax being given by (27), the effective tax on the

polluting good  is equal to

 =   + 

=   +

∙


µ−v


¶
− Γ

¸


Substituting this in the optimal commodity tax characterizations (23) and (24), yieldsµ




¶
=

µ
Ψ − − 



¶ e∆−1 µ




¶
 (29)
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if  is normalized to zero, and⎛⎜⎜⎜⎜⎜⎝
2
...






⎞⎟⎟⎟⎟⎟⎠ =

µ
Ψ1 − − 



¶ e∆−11
⎛⎜⎜⎜⎜⎜⎝

2
...




−

⎞⎟⎟⎟⎟⎟⎠  (30)

if 1 is normalized to zero. Observe also that from (22) the expression for Ψ will be

simplified to

Ψ ≡
X
=1



µ




¶
+ 

µ




¶
+

X
=1

 

µ




¶
 (31)

Equations (29) and (30) are precisely the expressions one gets for the characteriza-

tions of optimal commodity taxes in the absence of emissions. In this sense, one can say

that there is a separation in roles for emission and commodity taxes. While commodity

taxes do affect the level of emissions, they cannot ensure that emission levels are opti-

mal. It is the emission tax that is levied for the attainment of optimal emissions. Even

though they also raise revenues, this is not their primary role. That role is assigned to

commodity taxes. The principle of targeting applies.

It is also interesting to note that, unlike in the first-best, the emission tax now

differs from the marginal social damage of emissions. The difference is captured by

the expression Γ As argued earlier, in the presence of distortionary taxes, a change

in emissions, caused by the emission tax, affects welfare not only through the private

benefit to firms and the social damage caused by emissions, but also through its impact

on tax revenues. This feedback changes the amount of resources to be collected from

the emission tax and must be taken into account when setting the optimal emission tax.

There will be no such feedbacks in the absence of a complementarity or substitutability

relationship between emissions and goods. Under this circumstance, Γ = 0 and the

optimal emission tax is equal to the marginal social damage of emissions.
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5.2 Without emission taxes

I now turn to the case where emissions are not observable and cannot be taxed directly.

Commodity taxes are the only available tax instruments. This is the case Sandmo

(1975) studied. Clearly, in the absence of emission taxes, emissions can be controlled

only indirectly through the available commodity taxes. The interesting question is:

Which commodity taxes? In particular, should the government adjust only the tax on

polluting goods or on the tax on non-polluting goods as well? To change emissions

one needs to change the consumption of polluting goods. It is plain that changing

the consumption of any particular good can most directly be achieved by changing the

price of that commodity itself. Put differently, by levying a tax on that commodity.

However, this alone does not mean that one should not tamper with the tax on the

non-polluting goods as a way to affect emissions. If a non-polluting good happens to be

a close complement of a polluting good, taxing the complementary good too will reduce

the consumption of the polluting good and with it the level of aggregate emissions.

Ever since the appearance of Sandmo (1975), however, many writers appear to have

interpreted his exposition of the additivity property as an argument for adjusting the

tax on the polluting goods only. To show that this interpretation is incorrect, I turn

to the optimal effective commodity tax characterizations (23) and (24) of Section 3.

Observe that with  = 0, the effective tax on good  is the same as the statutory

commodity tax on it,   The optimal commodity tax characterizations (23) and (24)

can then be rewritten in terms of  rather than  asÃ


 +
³
 v


+ Γ

´


!
=

µ
Ψ − − 



¶ e∆−1 µ




¶
 (32)
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if  is normalized to zero, and⎛⎜⎜⎜⎜⎜⎜⎝
2
...



 +
³
 v


+ Γ1

´




⎞⎟⎟⎟⎟⎟⎟⎠ =

µ
Ψ1 − − 



¶ e∆−11
⎛⎜⎜⎜⎜⎜⎝

2
...




−

⎞⎟⎟⎟⎟⎟⎠  (33)

if 1 is normalized to zero. Observe also that one can also rewrite the expression for Ψ

on which Ψ and Ψ1 in (32)—(33) are based, as

Ψ ≡
X
=1



µ




¶
+ 

µ




¶
+

X
=1

∙
  +

µ

v


+ Γ

¶


¸µ




¶
 (34)

with Ψ and Ψ1 denoting the expressions obtained from Ψ by setting  = 0 and 1 = 0

Comparing tax characterizations (32)—(33) with the ones one gets in the absence

of externalities, one finds that the tax on non-polluting goods have stayed put while

the tax on polluting goods have acquired an additional term (v+ Γ) 
7 This is

the finding of Sandmo (1975) and what he called “additive property”. As stated, this

comparison of “tax formulas” is correct; however, it is also misleading. In particular,

this comparison and the statement that the tax formulas for non-polluting goods as

written above remain the same, does not tell us that the presence of emissions requires an

adjustment in the polluting goods taxes only. The point is that the tax characterizations

(32)—(33) are not closed-form solutions for    and  Given that the right-hand side

of these equations are themselves functions of    and , no such deductions are

warranted. Put differently, if one could derive a closed form solution for    and  it

will not be the case that the terms reflecting the marginal social damage of emissions

appear only in   To make the point absolutely clear, I resort to a specific example.

7A similar type of argument is made with respect to the “difference” between how  and  appear

in equations (32)—(33) (as opposed to how these equations compare with the corresponding ones in the

absence of emissions). Again, the two sets of tax instruments  and  differ by (v+ Γ)  indicating

an adjustment in the latter to reflect marginal social damage of emissions.
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5.3 CES preferences

Assume that preferences are of the CES variety given by

 =
−1


¡
− + − + −

¢−  () 

where  = 1−  is leisure and  =  (where I have normalized emissions per unit of

output  to one so that producing one unit of  results in one of emissions.) One can

then easily determine the demand functions for   and  as follows,

 =
1 + 

³



´1−
+
³




´1−
+ 1

 (35)

 =

³
1 + 



´
³




´1−
+
³




´1−
+ 1

µ




¶−
 (36)

 =

³
1 + 



´
³




´1−
+
³




´1−
+ 1

µ




¶−
 (37)

where  ≡ 1 (1 + ) denotes the elasticity of substitution.

To calculate second-best taxes, I set  = 0 and normalize the wage tax  to zero

and  to one. Consequently,µ


 + v


¶
=

µ
Ψ − − 



¶ e∆−1 µ




¶

=

−


¡
1 + 1− + 1−

¢− h− + ³ + v


´
−

i
+ 2 (1− + 1−)

µ




¶
(38)

Rearranging and manipulation yield,

 + v



=




=

− 



1

3 + −3
1+1−+1−
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which one can rewrite as

 − − 





3 + −3
1+1−+1−

= 1 +
−v


 (39)

− − 





3 + −3
1+1−+1−

= 1 (40)

It follows from these two equations that  (−v) appears not only in the expression
for  but also in the expression for  and thus  (unless  = 1 or  = 3) That is, the

structure of the tax on non-polluting good is also affected by the emissions.

It is only in the special cases of  = 1 which corresponds to Cobb-Douglas prefer-

ences, and  = 3 that  (−v) appears only in  and  but not in  and  With

 = 1 it follows from equations (39)—(40) that8

 =
3 (− )

4+ 3
+
7 (−v)
4+ 3



 =
3 (− )

4+ 3


With  = 39

 =
− 

2+ 
+
3 (−v)

2+ 


 =
− 

2+ 


The main results of this section are summarized as

8Observe also that in this simple case with Cobb-Douglas preferences, the “tax differential” between

 and  is
7

4 + 3
 (−v) = 7

3 + 4
 (−v) 

This is different from either  (−v) or  (−v)  the two different measures of the marginal social
damage of emissions. With    in the presence of distortionary taxation, this tax differential exceeds

 (−v) and falls short of  (−v)  There is a small literature that attempts to compare the
optimal tax differential with the “Pigouvian tax” (defined by one or the other measure of the marginal

social damage of emissions). See, among others, Bovenberg and de Mooij (1994, 1997), Fullerton (1997),

Schöb (1997), Cremer et al. (2001).
9The tax differential is now

3

2 + 
 (−v) = 3

1 + 2
 (−v) 

Again, with    this exceeds  (−v) and falls short of  (−v) 
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Proposition 3 Consider the Ramsey tax problem of Lemma 1.

(i) In the presence of an optimal emission tax, the formulas for optimal commodity

taxes on polluting and non-polluting goods are identical to the Ramsey tax formulas in

the absence of externalities. The principle of targeting applies in that emission taxes are

levied to correct for the externality and commodity taxes are levied for raising revenues.

(ii) In the absence of direct emission taxes, the structure of optimal commodity

taxes on polluting and non-polluting goods in general differ from Ramsey tax formulas.

The tax on non-polluting goods have Pigouvian elements. One cannot identify separate

components for revenue raising and Pigouvian considerations in the tax formulas. In

this sense, the principle of targeting fails.

6 Separating Ramsey and Pigouvian considerations

In the previous section, I showed that if preferences are Cobb-Douglas (unitary elasticity

of substitution), or CES with an elasticity of substitution equal to three, the tax on

the non-polluting good will be levied independently of the marginal social damage of

emissions so that there is a separation of roles for the tax instruments and the principle

of targeting holds. In this section, I investigate what preference structures lead to such

separability of roles when there are no emission taxes.

6.1 Quasilinear preferences in labor

Assume preferences that are additive and quasi-linear in labor supply, so that (1) is

written as

 =

X
=1

 () +

X
=1

 ()− −  ()  (41)

Maximizing (41) with respect to   and  subject to the individual’s budget constraint

(9) yields the following first-order conditions

 0 () =   = 1 2     
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0 () =   = 1 2    

1 = 

In this case, demand for all non-leisure goods have two desirable properties. First, they

are independent of income so that demands and compensated demands are the same.

Second, each demand curve is a function of its own price and . Thus when labor is

the numeraire, i.e.  ≡ 0 and  ≡ 1, demands are functions of their own price only.
I will thus follow this normalization.

Given the above two properties, it follows from equation (21) for e∆ and the definition
of e∆ that in this case e∆ is a diagonal matrix given by

e∆ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

· · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · 


0 · · · 0

0 · · · 0 1
1

· · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 


⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
 (42)

Moreover, the additivity of preferences in emissions imply that   and  are indepen-

dent of  It then follows from the expression for Γ in (13) that Γ = 0 Similarly, with

preferences being quasilinear in labor supply,  and  are independent of lump-sum in-

come ; all the income effects show up in labor supply  Consequently, the expression

for Ψ simplifies, from (22), to Ψ =  ()  However, with the normalization of

 = 0 Ψ will also be equal to zero: Ψ = 0 Thus, from equation (32), the optimal tax

rates  and  are given by

Ã


 +
³
 v



´


!
=

µ
−− 



¶ e∆−1 µ




¶
 (43)

where e∆ is the diagonal matrix in (42).
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It now follows from (43) that one can write the optimal tax rates as

 =

µ
1− 



¶


(−)   = 1 2     

  =

µ
1− 



¶


(−) +
−v


  = 1 2    

Alternatively, one can rewrite the above equations in elasticity terms. Thus define

 ≡ (−) ()   ≡ (−) () and rewrite the equation for  and
, after a bit of algebraic manipulations, as

 =

³
1− 



´
 −

³
1− 



´   = 1 2      (44)

  =

³
1− 



´


 −

³
1− 



´ + 





 −

³
1− 



´ µ−v




¶
  = 1 2     (45)

With demand for goods being functions of their own prices only, the elasticities are

functions of their own prices only. Consequently, the emission terms appear only in the

tax formulas for taxes on polluting goods, equation (45) but not in the tax formulas for

taxes on non-polluting goods, equation (44).

6.2 Quasilinear preferences in goods

Assume now that preferences are additive and quasi-linear in one of the non-polluting

goods, say good one. Hence write (1) as

 = 1 +

X
=2

 () +

X
=1

 ()− ()−  ()  (46)

Maximizing (46) with respect to   and  subject to the individual’s budget constraint

(9) yields the following first-order conditions

1 = 1
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 0 () =   = 2 3     

0 () =   = 1 2    

0() = 

Now, it is the labor supply and all the demand functions, except for good one, that are

independent of income and are equal to their corresponding compensated labor supply

and compensated demand functions. Secondly, each is a function of its own price and

1. In this case, I use good one as the numeraire and follow the normalization 1 ≡ 0
and 1 ≡ 1. Consequently, with the exception of good one, all demands are functions of
their own price only and the labor supply is a function of  only.

Given these properties, it is now e∆1 which is a diagonal matrix. From its definition

and equation (21) for e∆ one has

e∆1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
2

· · · 0 0 · · · 0 0
...

. . .
...

...
. . .

...
...

0 · · · 


0 · · · 0 0

0 · · · 0 1
1

· · · 0 0
...

. . .
...

...
. . .

...
...

0 · · · 0 0 · · · 


0

0 · · · 0 0 · · · 0 


⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
 (47)

Again, the additivity of preferences in emissions imply that   and  are independent

of  so that Γ = 0 Additionally, in this case, all the income effects show up in good

one. Consequently, the expression for Ψ simplifies, from (22), to Ψ = 1 (1) 

Thus, with the normalization of 1 = 0 Ψ = 0 It now follows from equation (33) that⎛⎜⎜⎜⎜⎜⎜⎝
2
...



 +
³
 v



´




⎞⎟⎟⎟⎟⎟⎟⎠ =

µ
−− 



¶ e∆−11
⎛⎜⎜⎜⎜⎜⎝

2
...




−

⎞⎟⎟⎟⎟⎟⎠  (48)

where e∆1 is the diagonal matrix in (47).
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Equation (48) leads to the following expressions for the optimal tax rates

 =

µ
1− 



¶


(−)   = 2 3     

  =

µ
1− 



¶


(−) −
v


  = 1 2    

 =

µ
1− 



¶


()


Defining elasticity for goods, as previously, and the elasticity of labor supply by  ≡
() ()  one can and rewrite the equation for    and , after a bit of

algebraic manipulations, as

 =
1− 



 −
³
1− 



´   = 2 3      (49)

  =

³
1− 



´


 −

³
1− 



´ + 





 −

³
1− 



´ µ−v




¶
  = 1 2     (50)

 =
1− 



 +
³
1− 



´  (51)

With demands for goods (other than the untaxed good one) and labor supply being

functions of their own prices only, the corresponding elasticities are functions of their

own prices only. Consequently, the emission terms appear only in the tax formulas for

taxes on polluting goods, equation (50) but not in the formulas for non-polluting goods

or labor supply, equations (49) and (51).

The results of this section are summarized as

Proposition 4 Consider the Ramsey tax problem of Lemma 1 and assume there are

no direct emission taxes. A sufficient condition for the terms containing the marginal

social damage of emissions to appear in the optimal commodity tax on polluting goods,

but not in the optimal commodity tax for non-polluting goods and labor supply, is for

preferences to be additive and quasilinear in labor supply, as in (41), or in one of the
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non-polluting goods, as in (46). The optimal tax rates are given by (44)—(45) in the

former case and (49)—(51) in the latter case.

7 Concluding remarks

This paper has revisited the question of the principle of targeting in environmental

taxation. One dimension of this question that the paper has studied concerns the widely-

accepted interpretation of Sandmo’s (1975) additivity result (derived in a Ramsey tax

model where only goods can be taxed). According to this view, Pigouvian considerations

affect only the tax treatment of polluting goods but not non-polluting goods, with the

former reflecting both externality-correcting and revenue-raising functions and the latter

only a revenue-raising function. The paper has challenged this view and argued that

such separation is in general not possible. Pigouvian elements also enter in the taxes on

non-polluting goods. To be able to separate these functions, one needs to impose severe

restrictions on the structure of preferences. Additively quasilinear preferences, either in

one of the non-pollting goods or in labor supply, allow this.

The second dimension of this question that has been studied concerns direct taxation

of emissions. The paper has shown that when emissions are taxed directly, and opti-

mally, they are levied for Pigouvian reasons leaving revenue raising to commodity taxes

(on polluting as well as non-polluting goods). In this case, the formulas for optimal

commodity taxes on polluting and non-polluting goods are identical to the Ramsey tax

formulas in the absence of externalities. The principle of targeting thus applies. Nev-

ertheless, the emission tax differs from the Pigouvian prescription and is not equal to

the marginal social damage of emissions. A modification is necessary to account for the

indirect effects of emissions on commodity tax revenues when some kind of complemen-

tarity or substitutability relationship exists between demands for goods and emissions.

Only in the absence of such relationships the emission tax is equal to the marginal social

damage of emissions.
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As a suggestion for future research, note that this paper is based on a representative

consumer model. This approach was chosen deliberately to match Sandmo’s original

formulation and the bulk of literature on this subject. However, a richer and more

satisfactory approach to these issues should be based on the more modern optimal tax

theory à la Mirrlees (1971). This theory allows for individuals to be heterogeneous and

justifies the absence of first-best taxes by the existence of informational asymmetries

between tax authorities and taxpayers (rather than through an ad-hoc restriction as

is done in the Ramsey tax model). This approach also allows income to be taxed

nonlinearly, as well as linearly, rather than proportionally as in the Ramsey tax model.10

These aspects lead to a better understanding of the role and the properties of the various

feasible tax instruments the government can employ to achieve its goals of externality

correction, efficiency and redistribution.

10See Cremer and Gahvari (2001) for some steps in this direction.
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Appendix

Proof of Lemma 1: Part (i). Differentiate the Lagrangian expression (12) with respect

to   ,, and  to get,
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Next, recall that
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Differentiating this equation with respect to   ,, and  yields
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Manipulate equation (A5):
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“Solving” this equation for  yields
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Manipulating equations (A6), (A7), and (A8) in a similar fashion results in
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Observe that  would change with  in the same direction as the aggregate polluting

goods change with  so that

1−

X
=1





 0 (A13)

The next step consists of substituting the expressions for    

and  from (A9)—(A12) into the first-order conditions (A1)—(A4) and simplifying.

Start with substituting  in (A9), using Roy’s identity. This yields
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Substituting for the last expression on the right-hand side of (A14) in terms of Γ as
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defined by (13), one gets
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Rearranging equation (A15) results in (14).

To prove (15), (16), and (17), one can use the same procedure as for the proof of

(14). Thus substitute the expressions for   and  from (A10)—

(A12) into the first-order conditions (A2)—(A4) and simplify, using Roy’s identity, and

following the same steps.

Part (ii) Decompose the various partial derivatives of goods demands and labor

supply function in equations (14)—(16) via the Slutsky equation. Rearranging the terms

yields
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∙
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µ
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µ
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¶
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Ã
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!
+
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µ
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¸µ
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∙
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µ
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Using (17) in above yields equations (18)—(20).

Proof of Lemma 2: To derive (25), substitute ( +  ) for  in the Lagrangian
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expression (12) and differentiate it with respect to  to get,

L


=

X
=1

v






+ 

"
X
=1



X
=1








+

X
=1

( +  )

X
=1








+ 

X
=1









#

+ 

X
=1

µ
 + 





¶
 +

(
v + 

"
X
=1





+

X
=1

( +  )



+ 





#)





(A16)

Next, recall that

 =  () +  +  (A17)

Differentiating this equation with respect to  yields




=  0 ()




+  + 




=  (A18)

Substitute from (A18) into (A16) to get
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=

X
=1

v


 + 

"
X
=1



X
=1




 +

X
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( +  )

X
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 + 

X
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#

+ 
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=1

µ
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¶
 +

(
v + 

"
X
=1





+

X
=1

( +  )



+ 





#)





(A19)

To derive an expression for  differentiating equation (2) with respect to  and

make use of (A18). This yields,




= 

X
=1

"



 + 

Ã
X
=1








+









!#
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X
=1

"



 + 

X
=1






#
+





X
=1







Solving for  then results in,




=


P

=1

³



 + 
P

=1





´
1−

P
=1 




 (A20)
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Now substitute for  from (A20) into (A19) to get
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= (− )

X
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 + 

"
X
=1



X
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 + 

X
=1






#
+ 

X
=1

 

X
=1




+

(A21)⎧⎨⎩
h
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³P
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+
P

=1  
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+ 
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P
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⎫⎬⎭
X
=1

Ã



 + 

X
=1






!

But the bracketed expression on the right-hand side can be simplified as


h
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³P
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+
P
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1−
P
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hP
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+
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h
  +

³
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i
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−

³
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+  + v
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³
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+
³
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´
1−

P
=1 




=

Γ+ 

µ
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¶ −P
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=



µ
 +
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+ Γ
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Substituting in (A21) yields,
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¶ X
=1




+



(
X
=1



X
=1




 + 

X
=1




 +

X
=1

X
=1

∙µ
 +

v


+ Γ

¶
 +  

¸





)

= (− )

X
=1

 + 

µ
 +

v


+ Γ

¶ X
=1




+

X
=1



(
X
=1





+ 




+

X
=1

∙
  +

µ
 +

v


+ Γ

¶


¸
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 (A22)

Finally, recall from the first-order condition with respect  that



(
X
=1





+ 




+

X
=1

∙
  +

µ
 +

v


+ Γ

¶


¸




)
= − (− ) 

Substituting this expression in (A22) then simplifies it to,

L


= − (− )

X
=1

 + (− )

X
=1

 + 

µ
 +

v


+ Γ

¶ X
=1






which simplifies to the expression given in (25).

Proof of (38): Differentiate equations (36)—(37) with respect to  and  to get,

when  and  are set equal to zero,




=

−

1 + 1− + 1−





= −−1−

¡
1 + 1−

¢
+ 1−

(1 + 1− + 1−)2





= − (1− )

−−

(1 + 1− + 1−)2





=

−
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¡
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¢
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Based on these equations and using the Slutsky equation, derive the derivatives of the

compensated demand functions e and e with respect to prices  and . Consequently,

one can write the Slutsky matrix as

e∆ =

Ã












!

=

⎛⎝ −−1− (1+1−)+21−(1+1−+1−)2
(− 2) −−

(1+1−+1−)2

(− 2) −−

(1+1−+1−)2
−−1− (1+

1−)+21−

(1+1−+1−)2

⎞⎠ 

Simplifying yields

e∆−1 =
1 + 1− + 1−

 [+ 2 (1− + 1−)] ()−1−
×µ −−1− £ ¡1 + 1−

¢
+ 21−

¤ − (− 2) −−
− (− 2) −− −−1− £ ¡1 + 1−

¢
+ 21−

¤ ¶ 

Now setting  = 1 and  = 0 in equations (36)—(37) results in,

 =
−

1 + 1− + 1−


 =
−

1 + 1− + 1−


It follows from the above expressions for e∆−1     and  that, after a

bit of algebraic manipulation,

e∆−1 µ
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µ
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∙
 +

µ

v



¶
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¶

=
− +

³
 + v



´
−

1 + 1− + 1−


where  is set equal to one. Substituting these values in formula (32) leads to (38).

Proof of (44)— (45): With the introduction of elasticities, one can rewrite the
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equations for  and   as
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µ
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¶
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=
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¶
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+
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  = 1 2    

Substituting 1 +  for  and 1 +   for  and rearranging the terms,
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³
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´
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Equations (44)— (45) follow immediately from these.

Proof of (49)— (51): The equations for    and  in terms of elasticities are




=

µ
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¶
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  = 2 3     

 


=

µ
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µ
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Substituting 1 +  for  and 1 +   for  and rearranging the terms
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Or
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³
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´
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Equations (49)—(51) follow immediately from these.
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