Chapter 2

General References

http://www.dnaftb.org/ - "DNA from the beginning" from the Dolan DNA Learning Center at Cold Spring Harbor Laboratory.  Features sections such as "Classical Genetics," "Molecules of Genetics," and "Genetic Organization and Control."

http://www.emunix.emich.edu/~rwinning/genetics/ - Genetics Online from Dr. Bob Winning at Eastern MIchigan University

http://www.mendelweb.org/MWolby.html - An online essay by Robert C. Olby (Department of the History and Philosophy of Science, University of Pittsburgh) on "Mendel, Mendelism, and Genetics."

hal.wzw.tum.de/genglos/asp/genreq.asp?list=1 - A glossary of genetic terms from Dr. Birgid Schlindwein at the Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt at the Technical University of Munich


TABLES

Table 2.1 – see http://www.ncbi.nlm.nih.gov/Class/MLACourse/Modules/MolBioReview/iupac_aa_abbreviations.html for a similar table and  http://www.bio.davidson.edu/Biology/aatable.html for more detailed information.

Table 2.2 – see http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/index.cgi?chapter=tgencodes#SG1 for this table and see http://www.sci.sdsu.edu/~smaloy/MicrobialGenetics/topics/chroms-genes-prots/temp-strand.html for a good discussion of template versus coding strands of DNA.

Table 2.3 – information from http://www.ncbi.nlm.nih.gov/nuccore/550056.


FIGURES

Figure 2.1 A – Drawing a normal karyogram – Open http://www.cydas.org/OnlineAnalysis/WebExample4.aspx in a different tab or window so that you will have access to both that site and the instructions here.  In the first box replace:

46,y,-7,+8,t(9;22)(q341;q112),i(17)(q10),+der(22)t(9;22)

with:

46<2n>,XY

The easiest way to make this replacement is to mark and copy 46<2n>,XY and then past over the selected text "46,y,-7,+8,t(9;22)(q341;q112),i(17)(q10),+der(22)t(9;22)"

In the "drawing sequence" box replace:

1,2,3,4,5,6,7,X,8,9,10,11,BR,12,13,14,15,16,17,18,19,20,21,22,Y,?

with:

1,2,3,4,5,6,7,8,BR,9,10,11,12,13,14,15,16,BR,17,18,19,20,21,22,X,Y

In the "Banding resolution" radio buttons select 800 bands.  Uncheck the "color" box if you want it in black and white.  Then click the "Draw" button.

Figure 2.1 B – Bands for the fourth chromosome, see  http://www.biologia.uniba.it/rmc/2-YAC-BAC/BAC-Chromosome/ideograms/04.html

 

Figure 2.2 – Mitosis.  This is drawn using a mix of "R" and Powerpoint ©.  To use the R scripts you will need to download the package "ellipse" to, well, draw ellipses.

 

Rel.Length= c(8.4, 8, 6.8, 6.3, 6.1, 5.9, 5.4, 4.9, 4.8, 4.6, 4.6, 4.7, 3.7, 3.6, 3.5, 3.4, 3.3, 2.9, 2.7, 2.6, 1.9, 2, 5.1, 2.2)

centromere= c(48, 39, 47, 29, 29, 39, 39, 34, 35, 34, 40, 30, 17, 19, 20, 41, 34, 31, 47, 45, 31, 30, 40, 27)

 

Figure2.2Top = function ()

{

library(ellipse)

chrom<-function(rl,ci){

rl<-rl*3

bot<-0

mid<-(1-ci)*rl

top<-rl

return(c(bot,mid,top))

}

 

draw.chrom<-function(y,xoff=0,color=0){

bot<-y[1]

mid<-y[2]

top<-y[3]

left.left=.1

width=.005

left.right=.111

lines(c(left.left+xoff+.008,left.right+xoff+width+.003),c(mid,mid))

rect(left.right+xoff,bot,left.right+width+xoff,mid,col=color)

rect(left.right+xoff,bot,left.right+width+xoff,top,col=color)

}

 

RL<-Rel.Length

CI<-centromere

 

color<-c(rep(1,23),0)

 

RL<-RL/sum(RL)

CI<-CI/100

plot(c(0.05,.25),c(-.25,2.25),type='n',axes=F,xlab='',ylab='')

sto=ellipse(x=0,scale=c(.02,.45),centre=c(.115,1))

lines(sto)

y<-chrom(RL[24],CI[24])

oldtop=y[3]

draw.chrom(y,xoff=0,color=1)

y<-chrom(RL[23],CI[23])+oldtop+.03

 

oldtop=y[3]

draw.chrom(y)

to.draw=c(19,16,13,4,1)

for(k in 1:5){

i=to.draw[k]

y<-chrom(RL[i],CI[i])+oldtop+.03

oldtop<-y[3]

draw.chrom(y,xoff=0,color[i])

y<-chrom(RL[i],CI[i])+oldtop+.03

oldtop<-y[3]

draw.chrom(y,xoff=0,abs(color[i]-1))

}

 

}

 

Figure2.2Top()

 

Figure2.2Mid=function()

{

library(ellipse)

chrom<-function(rl,ci){

rl<-rl*3

bot<-0

mid<-(1-ci)*rl

top<-rl

return(c(bot,mid,top))

}

 

draw.chrom<-function(y,xoff=0,color=0){

bot<-y[1]

mid<-y[2]

top<-y[3]

left.left=.1

width=.005

left.right=.111

lines(c(left.left+xoff,left.right+xoff+width),c(mid,mid))

rect(left.left+xoff,bot,left.left+width+xoff,mid,col=color)

rect(left.right+xoff,bot,left.right+width+xoff,mid,col=color)

rect(left.left+xoff,bot,left.left+width+xoff,top,col=color)

rect(left.right+xoff,bot,left.right+width+xoff,top,col=color)

}

 

RL<-Rel.Length

CI<-centromere

 

color<-c(rep(1,23),0)

 

RL<-RL/sum(RL)

CI<-CI/100

plot(c(0.05,.25),c(-.25,2.25),type='n',axes=F,xlab='',ylab='')

sto=ellipse(x=0,scale=c(.02,.5),centre=c(.11,1))

lines(sto)

y<-chrom(RL[24],CI[24])

oldtop=y[3]

draw.chrom(y,xoff=0,color=1)

y<-chrom(RL[23],CI[23])+oldtop+.03

 

oldtop=y[3]

draw.chrom(y)

to.draw=c(19,16,13,4,1)

for(k in 1:5){

i=to.draw[k]

y<-chrom(RL[i],CI[i])+oldtop+.03

oldtop<-y[3]

draw.chrom(y,xoff=0,color[i])

y<-chrom(RL[i],CI[i])+oldtop+.03

oldtop<-y[3]

draw.chrom(y,xoff=0,abs(color[i]-1))

 

}

}

 

Figure2.2Mid()


Figure 2.3 – Meiosis.  This is drawn using a mix of "R" and Powerpoint ©.  To use the R scripts you will need to download the package "ellipse" to, well, draw ellipses.

 

Rel.Length= c(8.4, 8, 6.8, 6.3, 6.1, 5.9, 5.4, 4.9, 4.8, 4.6, 4.6, 4.7, 3.7, 3.6, 3.5, 3.4, 3.3, 2.9, 2.7, 2.6, 1.9, 2, 5.1, 2.2)

centromere= c(48, 39, 47, 29, 29, 39, 39, 34, 35, 34, 40, 30, 17, 19, 20, 41, 34, 31, 47, 45, 31, 30, 40, 27)

 

Figure2.3 =function ()
{
library(ellipse)
chrom<-function(rl,ci){
rl<-rl*7
bot<-0
mid<-(1-ci)*rl
top<-rl
return(c(bot,mid,top))
}

draw.chrom<-function(y,xoff=0,color=0){
bot<-y[1]
mid<-y[2]
top<-y[3]
left.left=.1
width=.005
left.right=.111
# points(.1079+xoff,mid,pch=19)
lines(c(left.left+xoff,left.right+xoff+width),c(mid,mid))
rect(left.left+xoff,bot,left.left+width+xoff,mid,col=color)
rect(left.right+xoff,bot,left.right+width+xoff,mid,col=color)
rect(left.left+xoff,bot,left.left+width+xoff,top,col=color)
rect(left.right+xoff,bot,left.right+width+xoff,top,col=color)
}

RL<-Rel.Length
CI<-centromere

#color<-rbinom(22,1,.5)
color<-c(1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,0,1,1,0,1,0,0,0)

RL<-RL/sum(RL)
CI<-CI/100
plot(c(0.05,.25),c(-.25,2.25),type='n',axes=F,xlab='',ylab='')
sto=ellipse(x=0,scale=c(.035,.5),centre=c(.133,1))
lines(sto)
y<-chrom(RL[23],CI[23])
oldtop=y[3]
draw.chrom(y)
to.draw=c(19,16,13,4,1)
for(k in 1:5){
i=to.draw[k]
y<-chrom(RL[i],CI[i])+oldtop+.03
oldtop<-y[3]
draw.chrom(y,xoff=0,color[i])
}

y<-chrom(RL[24],CI[24])
oldtop=0
draw.chrom(y,xoff=.05,color=1)
y<-chrom(RL[23],CI[23])
oldtop=y[3]

for(k in 1:5){
i=to.draw[k]
y<-chrom(RL[i],CI[i])+oldtop+.03
oldtop<-y[3]
draw.chrom(y,xoff=.05,abs(color[i]-1))
}
}

 

Figure2.3()

 

Figure2.3L=function ()
{
library(ellipse)
chrom<-function(rl,ci){
rl<-rl*7
bot<-0
mid<-(1-ci)*rl
top<-rl
return(c(bot,mid,top))
}

draw.chrom<-function(y,xoff=0,color=0){
bot<-y[1]
mid<-y[2]
top<-y[3]
left.left=.1
width=.005
left.right=.111
# points(.1079+xoff,mid,pch=19)
lines(c(left.left+xoff,left.right+xoff+width),c(mid,mid))
rect(left.left+xoff,bot,left.left+width+xoff,mid,col=color)
rect(left.right+xoff,bot,left.right+width+xoff,mid,col=color)
rect(left.left+xoff,bot,left.left+width+xoff,top,col=color)
rect(left.right+xoff,bot,left.right+width+xoff,top,col=color)
}

RL<-Rel.Length
CI<-centromere

#color<-rbinom(22,1,.5)
color<-c(1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,0,1,1,0,1,0,0,0)

RL<-RL/sum(RL)
CI<-CI/100
plot(c(0.05,.25),c(-.25,2.25),type='n',axes=F,xlab='',ylab='')
sto=ellipse(x=0,scale=c(.02,.5),centre=c(.11,1))
lines(sto)
y<-chrom(RL[23],CI[23])
oldtop=y[3]
draw.chrom(y)
to.draw=c(19,16,13,4,1)
for(k in 1:5){
i=to.draw[k]
y<-chrom(RL[i],CI[i])+oldtop+.03
oldtop<-y[3]
draw.chrom(y,xoff=0,color[i])
}

y<-chrom(RL[24],CI[24])
oldtop=0
# draw.chrom(y,xoff=.05,color=1)
y<-chrom(RL[23],CI[23])
oldtop=y[3]
}

Figure2.3L()


Figure2.3R=function ()
{
library(ellipse)
chrom<-function(rl,ci){
rl<-rl*7
bot<-0
mid<-(1-ci)*rl
top<-rl
return(c(bot,mid,top))
}

draw.chrom<-function(y,xoff=0,color=0){
bot<-y[1]
mid<-y[2]
top<-y[3]
left.left=.1
width=.005
left.right=.111
lines(c(left.left+xoff,left.right+xoff+width),c(mid,mid))
rect(left.left+xoff,bot,left.left+width+xoff,mid,col=color)
rect(left.right+xoff,bot,left.right+width+xoff,mid,col=color)
rect(left.left+xoff,bot,left.left+width+xoff,top,col=color)
rect(left.right+xoff,bot,left.right+width+xoff,top,col=color)
}

RL<-Rel.Length
CI<-centromere

#color<-rbinom(22,1,.5)
color<-c(1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,0,1,1,0,1,0,0,0)

RL<-RL/sum(RL)
CI<-CI/100
plot(c(0.05,.25),c(-.25,2.25),type='n',axes=F,xlab='',ylab='')
sto=ellipse(x=0,scale=c(.02,.5),centre=c(.158,1))
lines(sto)

to.draw=c(19,16,13,4,1)


y<-chrom(RL[24],CI[24])
oldtop=0
draw.chrom(y,xoff=.05,color=1)
y<-chrom(RL[23],CI[23])
oldtop=y[3]

for(k in 1:5){
i=to.draw[k]
y<-chrom(RL[i],CI[i])+oldtop+.03
oldtop<-y[3]
draw.chrom(y,xoff=.05,abs(color[i]-1))
}
}
Figure2.3R()


Figure2.3LL=function ()
{
library(ellipse)
chrom<-function(rl,ci){
rl<-rl*7
bot<-0
mid<-(1-ci)*rl
top<-rl
return(c(bot,mid,top))
}

draw.chrom<-function(y,xoff=0,color=0){
bot<-y[1]
mid<-y[2]
top<-y[3]
left.left=.11-0.005/2
width=.005
left.right=.111
lines(c(.11-1.5*width,.11+1.5*width),c(mid,mid))
#lines(c(left.left+xoff,left.right+xoff+width),c(mid,mid))
rect(left.left+xoff,bot,left.left+width+xoff,mid,col=color)
rect(left.left+xoff,bot,left.left+width+xoff,top,col=color)
}

RL<-Rel.Length
CI<-centromere

#color<-rbinom(22,1,.5)
color<-c(1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,0,1,1,0,1,0,0,0)

RL<-RL/sum(RL)
CI<-CI/100
plot(c(0.05,.25),c(-.25,2.25),type='n',axes=F,xlab='',ylab='')
sto=ellipse(x=0,scale=c(.02,.5),centre=c(.11,1))
lines(sto)
y<-chrom(RL[23],CI[23])
oldtop=y[3]
draw.chrom(y)
to.draw=c(19,16,13,4,1)
for(k in 1:5){
i=to.draw[k]
y<-chrom(RL[i],CI[i])+oldtop+.03
oldtop<-y[3]
draw.chrom(y,xoff=0,color[i])
}

y<-chrom(RL[24],CI[24])
oldtop=0
# draw.chrom(y,xoff=.05,color=1)
y<-chrom(RL[23],CI[23])
oldtop=y[3]

}


Figure2.3LL()


Figure2.3RR=function ()
{
library(ellipse)
chrom<-function(rl,ci){
rl<-rl*7
bot<-0
mid<-(1-ci)*rl
top<-rl
return(c(bot,mid,top))
}

draw.chrom<-function(y,xoff=0,color=0){
bot<-y[1]
mid<-y[2]
top<-y[3]
left.left=.11-0.005/2
width=.005
left.right=.111
lines(c(.11-1.5*width,.11+1.5*width),c(mid,mid))
rect(left.left+xoff,bot,left.left+width+xoff,mid,col=color)
rect(left.left+xoff,bot,left.left+width+xoff,top,col=color)
}

RL<-Rel.Length
CI<-centromere

color<-c(1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,0,1,1,0,1,0,0,0)

RL<-RL/sum(RL)
CI<-CI/100
plot(c(0.05,.25),c(-.25,2.25),type='n',axes=F,xlab='',ylab='')
sto=ellipse(x=0,scale=c(.02,.5),centre=c(.11,1))
lines(sto)
y<-chrom(RL[24],CI[24])
draw.chrom(y,color=1)
y<-chrom(RL[23],CI[23])
oldtop=y[3]
to.draw=c(19,16,13,4,1)

for(k in 1:5){
i=to.draw[k]
y<-chrom(RL[i],CI[i])+oldtop+.03
oldtop<-y[3]
draw.chrom(y,xoff=0,abs(color[i]-1))
}

}


Figure2.3RR()

 


Figure 2.5 – Drawing a "cartoon" of a B-DNA dodecamer (CGCGAATTCGCG)

First get the data file from the "protein data bank" (http://www.rcsb.org/pdb) - http://www.rcsb.org/pdb/download/downloadFile.do?fileFormat=pdb&compression=NO&structureId=1BNA

Download Jmol and install from http://jmol.sourceforge.net/download/

Start Jmol, go to File/Open/ and open 1BNA.pdb.  Right click in the chemical structure drawing and go through the menu /Style/Structures/Cartoon.  Do this two more times for /Color/Background/White and /Color/Structures/White, then use the mouse to rotate the structure as you see fit.

 

 

 

Figure 2.8 – Drawing a Robertsonian translocation karyogram – Open http://www.cydas.org/OnlineAnalysis/WebExample4.aspx in a different tab or window so that you will have access to both that site and the instructions here.  In the first box replace:

46,y,-7,+8,t(9;22)(q341;q112),i(17)(q10),+der(22)t(9;22)

with:

45<2n>,XY,der(14;21)(q10;q10)

The easiest way to make this replacement is to mark and copy 46<2n>,XY and then past over the selected text "46,y,-7,+8,t(9;22)(q341;q112),i(17)(q10),+der(22)t(9;22)"

In the "drawing sequence" box replace:

1,2,3,4,5,6,7,X,8,9,10,11,BR,12,13,14,15,16,17,18,19,20,21,22,Y,?

with:

1,2,3,4,5,6,7,8,BR,9,10,11,12,13,14,15,16,BR,17,18,19,20,21,22,X,Y

In the "Banding resolution" radio buttons select 800 bands.  Uncheck the "color" box if you want it in black and white.  Then click the "Draw" button.