The role of the pharynx and tongue in enhancement of vowel nasalization: A real-time MRI investigation of French nasal vowels

Christopher Carignan¹, Ryan Shosted², Maojing Fu³, Zhi-Pei Liang³, Bradley Sutton⁴

¹Department of French, ²Department of Linguistics, ³Department of Electrical and Computer Engineering, ⁴Department of Bioengineering, University of Illinois at Urbana-Champaign

{ccarign2, rshosted, mfu2, z-liang, bsutton}@illinois.edu

Abstract

Complexity in the acoustics of nasal vowels has long been acknowledged but complexity in their articulation has received less attention. A growing body of research suggests that velopharyngeal (VP) opening is complemented by other articulatory gestures which may enhance or counteract the acoustic outcomes of VP opening. In this paper we consider the role of pharyngeal aperture and lingual position in producing the phonemic distinction between oral and nasal vowels in Northern Metropolitan French. The results of a real-time MRI study of one female speaker confirm earlier findings related to tongue height and retraction. The results also suggest a role for the lower pharynx in centralizing the F1 of oral vowels. Consideration is also given to the effect of the lowered velum on the acoustic transfer function of the oral tract of nasal vowels. We conclude that these articulations enhance some of the well-known acoustic consequences of VP coupling associated with the production of nasal vowels. This supports and extends the hypothesis that the acoustic characteristics of nasalization can be attained by a family of speech gestures that include, but are not limited to, the opening of the VP port.

Index Terms: vowel nasalization, rt-MRI, pharynx, articulation

1. Introduction

Nasal vowels are characterized by some degree of coupling between the nasal and oral cavities. This coupling occurs by way of the velopharyngeal (VP) port and its acoustic–perceptual outcome is regarded as nasalization. Nasalization introduces an additional spectral resonant pattern associated with the nasal cavity to the spectral resonant pattern associated with the oral cavity. Apart from the so-called “velic opening hypothesis” [1, 2, 3], in much of the literature on vowel nasalization, oral and nasal/nasalized vowel congers (e.g. [r] and [F̆]) are often compared as if the only substantive physical difference between them is the presence or absence of VP coupling [4, 5, 6]. However, recent work suggests that lingual and labial configuration may differ for oral versus phonetically nasal [7, 8] and phonemically nasal [9, 10] vowels. However, this tendency does not appear universal, at least not for phonemically nasal vowels [11].

It is well known that VP coupling significantly alters the acoustic spectrum of vowels [12, 13, 14]. Aside from changes in formant amplitude and bandwidth due to the addition of acoustic poles and zeros, formant frequencies themselves may be modified. According to Fujimura and Lindqvist’s model based on sweep-tone measurements of vocal tract output, “[t]he formants of a nasalized vowel shift monotonically upwards” with increased VP aperture [15, p. 551]. However, a considerable body of subsequent evidence suggests that this may not always be the case. F1-lowering may result from the nasalization of low vowels when the degree of nasalization is sufficient to introduce a high-amplitude nasal formant [16]. Thus, heavily nasalized low vowels may manifest a lowered F1. Using a speech model based on French data from MRI and CT scans, Serrurier and Badin [17] observed the influence of velic lowering alone on the acoustic space circumscribed by [a, i, u]. They found that the F1 range of a “pure oral” vowel space (glottis to lips) was centralized, and reduced by about 68% when compared with the range of a “pure nasopharyngeal” vowel space (glottis to nostrils): the F1 range was reduced from ≈ 260–700 Hz to ≈ 370–510 Hz. F2 was lowered for both [i, a] and raised for [u], lowering F2 of the vowel space overall, and reducing the range by almost 89%: the F2 range was reduced from ≈ 600–2350 Hz to ≈ 950–1150 Hz. These results are broadly consistent with earlier analog simulations of VP coupling performed by Feng and Castelli [18], who observed both F1- and F2-lowering for nasalization of the French vowel space. Carignan [19] observed a lowered F2 in Northern Metropolitan French (NMF) [œ, ū, é] v. [a, r] (11/11 speakers) and in [œ] v. [o] (9/11 speakers). Though it has been claimed that front (high F2) vowels are more often perceived as nasalized, the effects are often weak or limited to only a few vowels [20, 21, 22]. In NMF, F2-lowering alone may help trigger the percept of nasality [23].

Krakow et al. [24, p. 1146] observed that the F1 variation inherent in nasalization is similar to acoustic changes associated with tongue height and jaw position. For example, a relative increase in F1 may be attributed to either a lowered tongue/jaw position or an increase in nasal coupling (especially for high vowels), and a decrease in F1 may be attributed to either a raised tongue/jaw position or an increase in nasal coupling (for low vowels). Lingual height centralization is also well-documented typologically for phonemic nasal vowels: in a variety of languages, under the influence of nasalization, high vowels are transcribed as lower and low vowels are transcribed as higher [25, 1, 26]. It is possible that this articulatory centralization of the vowel space—an enhancement of the acoustic centralization associated with nasalization—is goal-driven. Given the perceptual confusion between F1 change due to VP coupling with F1 change due to lingual configuration, there is likely a tendency for the acoustic centralization of the vowel quality (due to nasalization) to be misperceived as articulatory centralization. Following Ohala [27], this misperception may lead to consistent, systematic changes in tongue height as a concomitant of nasal vowel phonologization.

The predicted effects of VP coupling on the frequency of F1 and F2 can thus be generalized as follows: F1 is centralized...
(i.e., raised for high vowels and lowered for low vowels), and F2 is lowered. However, F1 and F2 are most typically modulated independently of VP coupling. F1 is determined mostly by the vertical position of the tongue in the oral cavity, and can also be modulated by expansion or constriction of the lower pharynx [28, 29, inter alia]. According to the principles of Perturbation Theory [30], if a constriction is formed near a velocity antinode of a standing wave, then the frequency of that wave will decrease. Conversely, a constriction is formed near a velocity node of a standing wave, then the frequency of that wave will increase. Given its proximity to a node in the velocity wave of F1, a constriction in the lower pharynx is predicted to raise F1 [29]. F2 frequency is most typically modulated by forward–backward movement of the tongue body [29, p. 205], but both F1 and F2 frequency can be lowered by a constriction and/or protrusion of the lips.

This raises the question: since multiple articulations may give rise to a change in F1 and F2 frequency, given an observed change in F1 or F2 during the production of a nasal vowel, how can the articulatory cause of that change be determined from the acoustic signal alone? We believe it is unlikely that this can be done, at least using current methods of acoustic analysis. In the acoustic signal, VP coupling and the activity of other oropharyngeal articulators are confounded, both giving rise to β. VP coupling and lip protrusion are predicted to raise F1, either, since lip protrusion and/or smaller labial aperture are predicted to lower F1 and F2 frequency can be lowered by a constriction and/or protrusion of the lips.

3. Methodology

The subject is a 27-year-old native female speaker of the NMF dialect, born in Paris. The current study is part of a larger research project which will include two more NMF speakers. A word list consisting of six French lexical items was used, with the target vowel occurring in an open syllable preceded by [p], in order to minimize lingual coarticulation during the target vowel. The word list includes: paix /pɛ̃/ ‘peace’, pain /pɛ̃/ ‘bread’, papa /papa/ ‘daddy’, pion /pœ̃/ ‘peacock’, pôt /põ/ ‘pot’, and pont /põ/ ‘bridge’. The target words were placed in the carrier phrase Il retaie X parfois ‘He retypes X sometimes’. With the order randomized, phrases were presented to the speaker in the 3T Siemens Trio MRI scanner at the Beckman Institute for Advanced Science and Technology, at the University of Illinois. The speaker was instructed to repeat the carrier phrase at a normal rate, until the noise of the scanner ceased (about 5 minutes). Due to variation in speaking rate and the start of speech after scanner initialization, an unequal number of tokens was collected for each lexical item: papa (101), paon (123), paix (104), pain (101), pôt (105), and pont (101).

rt-MRI images were obtained using partially separable functions [33, 34], allowing for a relatively high frame rate during multi-slice imaging. Specifically, we achieve around 25 fps for each of four simultaneous slices with this method. A slice was placed at each of the following four locations in the vocal tract; the position and orientation of each slice was selected during restful breathing:

1. Oral cavity (OC): A coronal slice placed at the horizontal midpoint of the tongue body, located ≈ 2.6 cm from the tongue tip.
2. Velopharynx (VP): An oblique slice, rotated ≈ 45° from the transverse plane, running through the VP port.
3. Mediopharynx (MP): A transverse slice placed in the mediopharynx, located ≈ 5.2 cm above the glottis.
4. Lower pharynx (LP): A transverse slice placed in the lower pharynx, located at the epiglottis, ≈ 2.6 cm above the glottis.

The placement and orientation of these slices is illustrated in the left image in Figure 1, with an example of a resulting LP slice in the right image. Image resolution of each slice is 128 x 128...
Vocal tract apertures were calculated by further developing methods used in Shosted et al. [35]. Several OC slices were examined in GIMP 2.8.2 as cavity references: the edges of the air/tissue boundary were manually selected and confirmed by the first and second authors. The average intensity of the voxels in the selected cavity was measured in 8 bpp (bits per pixel) space (values 0–255), and the upper-end of the range of these values was logged as a threshold. \(\tau \). \(\tau \) was used to convert each MR image in Matlab 2012a\(^2\) to a two-value image space, with each voxel having the intensity \(i \): for any voxel with \(i \leq \tau \), the voxel was changed to black; for any voxel with \(i > \tau \), the voxel was converted to white. An example of applying this technique is shown in Figure 2. A region of interest (ROI) surrounding the hypopharyngeal aperture was selected after examination of various images. For each MR image, the number of black pixels in the ROI was summed and multiplied by 4.84, the squared in-plane voxel resolution. The result is a time-varying function in the ROI was summed and multiplied by 4.84, the squared in-

Table 1: \(\text{AAA results. In each cell, the average AAA of the oral vowel is on the left and that of its nasal congener is on the right. Light grey cells contain measures where the average AAA of the nasal vowel is smaller than that of its oral congener, and dark grey cells contain measures where the average AAA of the nasal vowel is greater than that of its oral congener.} \)

<table>
<thead>
<tr>
<th>Slice</th>
<th>([\text{a}] – [\text{b}])</th>
<th>([\text{a}] – [\text{f}])</th>
<th>([\text{a}] – [\text{o}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC</td>
<td>287.51 – 268.88</td>
<td>72.17 – 202.58</td>
<td>182.94 – 119.72</td>
</tr>
<tr>
<td>VP</td>
<td>13.64 – 94.47</td>
<td>9.61 – 65.27</td>
<td>0.67 – 69.81</td>
</tr>
<tr>
<td>MP</td>
<td>115.76 – 76.48</td>
<td>191.19 – 104.24</td>
<td>120.57 – 89.6</td>
</tr>
<tr>
<td>LP</td>
<td>162.93 – 176.93</td>
<td>171.7 – 165.62</td>
<td>176.14 – 173.95</td>
</tr>
</tbody>
</table>

With regard to the OC slice, the AAA of [\(\text{b}\)] is smaller than that of [\(\text{a}\)], suggesting a smaller oral cavity due to a higher lingual position for [\(\text{b}\)]. The OC AAA of [\(\text{f}\)] is greater than that of [\(\text{a}\)], suggesting a larger oral cavity due to a lower lingual position for [\(\text{f}\)]. The OC AAA of [\(\text{e}\)] is smaller than that of [\(\text{o}\)], suggesting a smaller oral cavity due to a higher lingual position for [\(\text{e}\)]. These results are consistent with the counter-clockwise chain shift in the acoustic realization of nasal vowels previously

\(^1\)http://www.gimp.org
\(^2\)http://www.mathworks.com/products/matlab
\(^3\)http://www.r-project.org
described for NMF [36, 37, 38, 39]. Carignan has confirmed the articulatory nature of this chain shift with EMA data [19].

With regard to the VP slice, not surprisingly, all of the nasal vowels have a larger AAA than their oral vowel congeners. This is to be expected, since the primary difference between nasal vowels and their oral congeners is the relative presence or relative absence of VP coupling.

With regard to the MP slice, all of the nasal vowels have a smaller mediopharyngeal aperture than their oral vowel congeners, suggesting more retracted tongue position for the nasal vowels across the board.

With regard to the LP slice, the AAA of [ø] is larger than that of [a], suggesting a larger hypopharyngeal cavity for [ø]. The LP AAA of [ɛ] is smaller than that of [r], suggesting a smaller hypopharyngeal cavity for [ɛ]. The LP AAA of [ɔ] is smaller than that of [o], but this difference did not reach significance.

Of great interest to the current research is the inverse relationship between the AAA of OC and LP slices for most of the vowel pairs. Specifically, [ø] has a smaller OC AAA but a larger LP AAA when compared with [a]. Conversely, [ɛ] has a larger OC AAA but a smaller LP AAA when compared with [r]. Although this inverse relationship is not observed for [o]–[ɔ] (i.e. both the OC and LP values are smaller for [ɔ] than for [o]), the LP AAA difference is slight (=2.18 mm2) and did not reach significance.

5. Discussion

The results of this study suggest that pharyngeal articulation plays a secondary role in the articulatory configuration of the nasal vowels of the NMF dialect. There are (at least) four articulatory variables which are predicted to change the F1 frequency of nasal and nasalized vowels: VP coupling, tongue backness, and labial aperture. VP coupling is predicted to lower F2 frequency for all vowels. Tongue backness lowers F2 frequency, as well. Finally, labial constriction also lowers formant frequencies, as mentioned earlier.

We posit an additional articulatory mechanism which is predicted to change the F2 frequency of nasal vowels. The lowering of the soft palate creates a ‘velic’ constriction (with the velum lowering towards the tongue dorsum rather than the tongue dorsum rising towards the velum [40, p. 52]). Shosted et al. argue that this articulation also lowers F2 [10, p. 462]. We regard this as a secondary but significant acoustic effect of nasalization, one that has perhaps been overlooked in the literature until recently. The acoustic–perceptual outcome of VP opening is most often considered in terms of the contributions of the nasal cavity and sinuses. However, the lowered velum itself creates a constriction in the oropharyngeal tube that also affects the acoustics. Moreover, the ubiquitously lower MP AAA values for the nasal vowels compared to their oral congeners suggest that tongue retraction is also used to enhance the acoustic effects of nasalization for the nasal vowels of NMF.

Based on the findings of Serrurier and Badin [17] and Feng and Castelli [18], it is hypothesized that F2 lowers for all of the nasal vowels studied here. Additionally, all nasal vowels were observed to manifest a smaller MP AAA (interpreted as a more retracted tongue position) than their oral congeners, an articulation which is also predicted to result in a lower F2 for the nasal vowels. Moreover, the lowering of the velum during VP coupling creates a velic constriction and is also predicted to result in a lower F2 for the nasal vowels. Therefore, there are at least two oral articulatory configurations which are predicted to enhance the VP-induced lowering of F2 that is increasingly observed in the literature [17, 23].

6. Conclusion

We present real-time MRI evidence suggesting that both lingual and pharyngeal configurations may be systematically employed to enhance the acoustic effect of VP coupling in the production of NMF nasal vowels. This supports and extends the hypothesis that the acoustic characteristics of nasalization can be attained by a family of speech gestures that include, but are not limited to, the opening of the VP port.

7. Acknowledgements

We gratefully acknowledge Holly Tracey for her help in collecting the rt-MRI images and Li-Hsin Ning for her help post-processing the audio and image files. This research was supported by NSF Grant #1121780 to the first and second authors.

\[^{4}\text{In fact, [r] manifests the lowest OC AAA (interpreted as the highest tongue position) among the vowels studied here.}\]
8. References

