Who’s Voted In When the People Tune Out?

Information Effects in Congressional Elections

Scott L. Althaus

Departments of Speech Communication and Political Science,
University of Illinois at Urbana-Champaign
244 Lincoln Hall, 702 S. Wright Street
Urbana, IL 61801 USA
E-mail:salthaus@uiuc.edu

It is something of an understatement to say that most Americans pay little attention to the world of politics. Survey after survey has shown that Americans are often at a loss to relate basic facts about the players, issues, and rules of the game that structure American political life (Delli Carpini & Keeter, 1996). For instance, when asked whether the Republican or Democratic party was generally more conservative—surely an essential piece of information for connecting values with votes—only 57% of respondents in the 1992 National Election Study could correctly choose the Republican party. As the laws of probability tell us that half should have arrived at the correct answer by chance, the degree of public ignorance reflected in this finding is sobering indeed. Since democracy is, at least in theory, the form of government best suited for realizing and responding to the “will of the people,” the fact that most people know (and care) very little about politics raises the possibility that democratic institutions function less well in practice than in premise.

This chapter examines the impact of political ignorance on the basic units of democratic input: individual votes cast in free elections. Do ill-informed people, regardless of their personal political views, tend as a group to favor certain kinds of candidates? If so, we might rightly question not only the ability of citizens to accurately communicate their needs, wants, and values
through the ballot box, but also the quality of representation provided by this most basic of
democratic institutions.

Political Knowledge and the Quality of Political Judgments

The discovery by survey researchers in the 1940’s and 1950’s of widespread public
ignorance about political affairs led several early and influential studies to suggest that the
public’s views on political matters were often shallow and misguided (Almond, 1950; Berelson,
Lazarsfeld, & McPhee, 1954; Converse, 1964; Converse, 1970). While this conclusion was often
taken as axiomatic in subsequent research on public opinion and voting behavior, a number of
studies in the past decade have suggested that the mass public’s inattention to politics may have
less bearing on the quality of its political judgments than previously thought. These studies
emphasize that while most individuals tend to be ill informed about the political world, the
availability of heuristic shortcuts (e.g., Ferejohn & Kuklinski, 1990; Lupia, 1994; Mondak, 1994;
Popkin, 1991; Smith & Squire, 1990; Sniderman, Brody, & Tetlock, 1991; Zaller, 1992) and the
filtering process of statistical aggregation (e.g., Converse, 1990; Page & Shapiro, 1992) may help
compensate for this lack of knowledge in measures of collective opinion such as election results
or opinion surveys.

Yet recent work on information effects in collective preferences has demonstrated that the
low levels and uneven social distribution of political knowledge in the mass public often cause
election results and opinion surveys to misrepresent the mix of voices in a society (Althaus,
of political knowledge reveals that many collective policy preferences would look quite different
if all citizens were equally well informed about politics. The present chapter illustrates this line
of research by presenting new findings on information effects in congressional voting.
Two curiosities stand out in the modern history of congressional voting. First, Democratic candidates have tended to do better than Republicans. In the 26 sessions of Congress in the post-Second World War era, Democrats have held majorities in the House in all but four sessions and majorities in the Senate in all but seven. A second puzzle is the high retention rate for incumbents, which between 1949 and 1998 averaged 92% in the House and 78% in the Senate (Davidson & Oleszek, 1998: 66). Scholarly research has tended to explain these dual tendencies as growing out of differences in the resources and characteristics of the candidates running for office as well as features of the larger political environment. For instance, work on the Democratic advantage in Congressional elections has focused on the tendency for Republican candidates to run on issues that are popular in the national political arena—such as minimizing government interference in the economy—but uninspiring at the state or district level, the fact that because Republicans have dominated the presidency in recent decades, the performance of Republican presidents influences retrospective evaluations made by voters in a way that tends to penalize Republican congressional candidates, and the tendency for the Republican party to field less-qualified candidates in Congressional elections than the Democrats (e.g., Davidson & Oleszek, 1998; Fiorina, 1991; Jacobson, 1990). Likewise, the incumbency advantage for members of Congress has been credited to the higher public visibility of incumbents relative to challengers, the declining quality of challengers, and the inherent resources of incumbency such as the frank and the ability to provide constituency service (e.g., Davidson & Oleszek, 1998; Gaines & Rivers, 1996; Mayhew, 1974).

While the resource and environmental advantages held by candidates can explain a great deal, we might also wonder whether individual characteristics of voters might incline them to support incumbents and Democrats. Previous research has tended to address the impact of voter
characteristics by examining how aggregate differences in the partisanship, ethnicity, education level, and ideological makeup of constituencies might contribute to the advantages held by incumbents and Democrats. But little effort has yet been given to examining how individual differences in the cognitive resources used to process information about candidates might contribute to these tendencies. Political knowledge is among the most important cognitive resources for connecting our needs, wants, and values to our vote choices (Delli Carpini & Keeter, 1996). This chapter takes a fresh look at the electoral advantages of incumbency and partisanship by examining how ill-informed voters as a group, regardless of their political leanings, tend to prefer certain kinds of candidates. The findings presented below suggest that the American electorate’s low levels of knowledge about politics bias the outcomes of Congressional elections to favor Democrats running for the House, Republicans running for the Senate, and incumbents in both chambers of Congress.

Political Knowledge and the Congressional Vote

While it seems clear that political knowledge is related to voting behavior, the precise nature of that influence is surprisingly hard to pin down. The challenge of determining which candidates might be advantaged by an ill-informed electorate can be illustrated by the voting patterns for House races in 1988. The National Election Studies data reveal that, in 1988, 51.9% of the votes for House candidates went to Democrats, and that 80.1% went to incumbents. Yet, there is good reason to believe that these results have been influenced in some way by the relatively low levels of political knowledge in the American electorate because such knowledge seems to be associated with two regularities in voting behavior. To illustrate these regularities, respondents were grouped into four quartiles based on their number of correct answers to 15 factual political knowledge questions.
The first association between knowledge and voting in these data is that ill-informed citizens are relatively more likely to support Democrats and incumbents than are more knowledgeable citizens. As figure 1 shows, 66.7% of voters from the lowest knowledge quartile cast votes for Democratic candidates, compared to just 44.6% of voters from the highest knowledge quartile. In the same way, 85.7% of the least informed voters cast votes for incumbents, compared to only 75.5% of the most informed voters. If we assumed that the effect of raising levels of political knowledge would be to make ill-informed people vote in the same proportions as the most knowledgeable people (an assumption that I will challenge below), we might infer that the distribution of votes among voters in the highest knowledge quartile should be a good indicator of “fully informed” voting patterns. Since only 44.6% of these most knowledgeable citizens voted for Democrats and just 75.5% for incumbents, this comparison to the actual voting results would suggest that an electorate filled with ill-informed voters must advantage both Democrats (51.9-44.6=+7.3 percentage point bias favoring Democratic candidates in the actual distribution of votes) and incumbents (80.1-75.5=+4.6 percentage point bias favoring incumbents in the actual distribution of votes).

But there is a second relationship between knowledge and voting that must also be taken into account: ill-informed citizens are much less likely than the well informed to vote at all (Campbell, Converse, Miller, & Stokes, 1960; Delli Carpini & Keeter, 1996). Figure 1 shows that only 31.8% of the least knowledgeable citizens cast votes in House races, compared to 84.6% of the most knowledgeable citizens. What would happen if we could somehow factor in the “missing” votes from people who did not cast them? If we assumed for the sake of discussion that raising the public’s level of knowledge would (1) lead everyone to cast a vote and (2) make
abstainers vote in the exactly the same proportions as the actual voters within each knowledge quartile, then we would find 54.4% support for Democrats and 81.1% support for incumbents. In this case, it would seem that an ill-informed electorate must advantage challengers (80.1-81.1=–1.0 percentage point bias against incumbents in the actual distribution of votes) and Republicans (51.9-54.4=–2.5 percentage point bias against Democrats in the actual distribution of votes), leading us to the opposite conclusion from that reached above.

Yet it turns out that both of these provisional assumptions are riddled with problems. First, less knowledgeable citizens have different demographic characteristics than the highly knowledgeable. In 1988, for example, 22% of respondents in the lowest knowledge quartile were African-American, compared to just 5% in the highest knowledge quartile. Likewise, 37% in the lowest quartile called themselves Democrats compared to just 28% in the highest quartile, and those in the lowest knowledge quartile were much less affluent—at the 35th percentile of family income, on average—than those in the highest quartile, who have a mean family income level at the 68th percentile. Given traditional patterns of group support for the Democratic party, the observed differences in voting patterns in figure 1 could result from demographic differences among voters just as much as from differences in levels of political knowledge. Second, less knowledgeable citizens are greatly underrepresented among the ranks of voters, and it is unclear both how much this level of non-voting is due to low knowledge levels alone and how those non-voters would actually vote if they were (hypothetically) to become better informed about the issues. As Anthony Downs (Downs, 1957) demonstrated so ably, given the opportunity costs and the small expected rewards associated with voting, it makes sense that many people will find it unprofitable to cast a ballot, and that the degree of “rational abstention” should vary with the costs imposed on different kinds of voters. From this standpoint, even “fully-informed” voters
might well decide for good reason to stay home from the polls, since searching for information on which to base a vote choice is only one source of voting costs.

In the end, we can conclude from figure 1 only that political knowledge probably has some kind of relationship with the vote, without being able to specify what that relationship might be. There is no obvious way to tell whether the effect of low levels of knowledge is to skew election results to favor incumbents and Democrats, by leading ill-informed voters to disproportionately support these types of candidates, or to bias voting patterns in favor of challengers and Republicans, by demobilizing ill-informed voters who seem likely to support incumbents and Democrats.

The tendency for political knowledge to produce such confounding effects on the vote choice means that looking at actual voting patterns can tell us very little about the overall effects of political knowledge on voting behavior. We require some means of sorting out the unique influence of political knowledge from the influence of demographic differences and other characteristics that distinguish the ill informed from knowledgeable citizens. A standard sort of multiple regression analysis can tell us a bit more than crosstabular data: we can learn the unique impact of political knowledge on actual vote choices. But if we want to know how voting patterns might be different if we could somehow control for the various influences of political knowledge, the standard approach won’t get us very far. What about all those non-voters, whose preferences are missing in the actual data? And while the mere possession of knowledge or political expertise might have some sort of consistent effect on voting decisions independent of demographic or attitudinal influences, the unique effect of political knowledge in isolation is not all that telling. It is not very informative because the importance of political knowledge to the vote choice comes in large part from its association with beliefs about the world around us: the
more knowledgeable we are about politics in general, the more likely we are to have accurate beliefs about the institutions of politics, the rules of the political game, and characteristics of the various candidates that are relevant to our vote choice, like issue positions and prior experience. As a result, the more knowledgeable we are about politics in general, the more likely we are to correctly associate our needs, wants, and values with our vote choices (Delli Carpini & Keeter, 1996; Downs, 1957). Thus, the primary effect of knowledge should be to moderate the relationships between demographic or attitudinal predispositions and the vote choice, rather than merely to exert a unique effect in addition to the influences of demographic and attitudinal characteristics.

What we need is some kind of counterfactual measure of what voting might have looked like if the uneven distribution of political knowledge was somehow taken into account or controlled for. The standard approach to this problem is to conduct experimental studies which attempt to isolate the unique impact of political knowledge on various kinds of judgments (e.g., Fiske, Lau, & Smith, 1990), inform members of a treatment group about some issue and then compare their judgments about the issue to members of a control group that was given no information (e.g., Kuklinski, Quirk, Schwieder, & Rich, 1998), or compare the opinions of group before and after being immersed in a deliberative environment that exposes respondents to relevant information about political issues (e.g., Fishkin & Luskin, 1999). While this approach has yielded a rich variety of findings and has been especially useful in developing theories about the role of knowledge in cognitive processing, the artificial nature of these experiments is typically quite unlike the “natural” settings in which people make political judgments. As a result, research in this tradition has been much more successful in identifying the various relationships that political knowledge has with voting and other kinds of political judgments than
in suggesting how actual election results might be influenced by the low levels and uneven social distribution of political knowledge.

Inferring “Fully Informed” Opinions from Actual Opinions

Where traditional approaches fall short, a new method offers promise. This new method, which has been used to study the effects of political knowledge on political opinions (Althaus, 1998; Delli Carpini & Keeter, 1996) and presidential voting (Bartels, 1996), uses multivariate regression to simulate how individual opinions might change if opinion givers were better informed about politics. In this approach, estimates of “fully informed” opinions are generated by assigning the distribution of preferences held by the more highly informed members of a given demographic group to all members of that group, simultaneously taking into account the influence of a wide range of demographic variables. For instance, if well-informed respondents who come from union families express different policy preferences than the ill-informed respondents from union families, this method assigns the mix of “fully informed” preferences to all respondents who come from union families. But instead of considering only the bivariate relationship between union membership and policy preferences, this method looks at union respondents who are women, from a certain income level, who live in eastern states, who are married, own homes, of a certain age, and so on. If relatively better-informed people sharing all these characteristics have different preferences from their less-informed counterparts, the method identifies the relationship between knowledge and each characteristic in a way that suggests what each person’s vote choice might be if they were more knowledgeable about politics.

Data for the simulations of “fully informed” voting preferences reported here come from the six National Election Studies conducted from 1988 to 1998. The self-reported voting decisions given by respondents following an election were used to analyze the effects of political
knowledge on the vote choice. Each respondent’s vote in a House or Senate election was coded into two categorical dependent variables. First, the respondent was coded as voting for the incumbent, for the challenger, or not voting at all (respondents living in states or districts with open seat or uncontested races were treated as missing in constructing these incumbency variables). Second, the respondent was coded as voting for a Democrat, for a non-Democrat (typically a Republican candidate, but also including independents and third-party candidates), or not voting at all. Respondents living in states or districts with uncontested races were excluded, as—in the case of Senate voting only—were voters living in states with no Senate race that year. These outcome variables were then analyzed using multinomial logistic regression to assess the impact of political knowledge and a variety of demographic characteristics on the vote choice. This technique estimates the probability that a particular individual would choose each of the three alternatives, for instance, the probability of voting for the incumbent instead of voting for the challenger or not voting at all. By factoring in the influence of knowledge on non-voting, the approach used here has an important advantage over previous research on information effects in presidential voting, which considered changes in support for presidential candidates only among people who actually voted (Bartels, 1996).

The simulation itself proceeds in four steps. In the first step, the vote choice variables are regressed on political knowledge, a variety of demographic characteristics, and a set of variables representing the interactions between knowledge and each of the demographic characteristics. By estimating the actual relationships between voting and each of the predictor variables, this step provides a set of regression coefficients that will be used to simulate each person’s “fully informed” vote. Step two involves changing each respondent’s score on the political knowledge scale to the highest possible value. As each of the knowledge scales used here is coded as the
proportion of correct answers (ranging from 0 to 1), in this step all respondents were assigned an knowledge score of 1. In the third step, each respondent’s predicted “fully informed” vote choice is calculated by plugging the coefficient values obtained from step one into each respondent’s actual demographic characteristics, substituting only the new values of the altered knowledge variable and interaction terms. This step produces, for each individual, a new set of probabilities for each alternative (i.e., voting one way, voting another way, or not voting at all) that simulate the vote choice each person might make if she or he were more knowledgeable about politics. The final step aggregates all of the individual “fully informed” vote choices together by taking the mean of the individual probabilities for each of the three alternatives. These average probabilities, which represent collective voting preferences controlling for individual differences in political knowledge levels, are then compared directly to the actual percentage of respondents in each category of the voting variables to reveal the impact of information effects. (For a more detailed discussion of the simulation method, see Althaus, 1998).

In short, this method takes into account the dual tendencies for less informed voters to (1) support different kinds of candidates than knowledgeable voters and (2) vote at much lower rates than their more knowledgeable counterparts. It represents a way to statistically correct for the unique impact that political knowledge has on voting behavior. Using only the observed differences between well- and ill-informed respondents, this method imputes to all respondents the knowledge, beliefs, information processing strategies and cognitive styles that influence the voting behavior of well-informed people. To be sure, the voting patterns produced by this transformation are only hypothetical. These “fully informed” preferences tell us not how people would “really” vote if they knew more about politics, but only the extent to which different outcomes are produced when slight changes are introduced into a mathematical model that
mimics (in an extremely simplistic way) how people actually vote. As there is no obvious way to
tell whether these simulated “fully informed” preferences have any relationship to the vote
choices that people would actually make if they were to become better informed about politics, I
interpret the differences between actual and “fully informed” voting as merely indicating the
relative impact of political knowledge on actual voting behavior. In other words, a large
difference between actual and “fully informed” voting suggests only that the vote decision is
heavily influenced by a voter’s level of political knowledge, while a small difference suggests
that political knowledge has little bearing on voter decision-making.

Information Effects in Congressional Elections

To see what difference this statistical correction made for congressional voting in 1988,
let’s revisit the data introduced in figure 1 and include also the data for senatorial elections in
that year. The left-hand graphs in figure 2 show actual voting patterns among respondents in
each of four knowledge quartiles for House and Senate elections (figure 1 is reproduced here as
the graph for actual voting in House elections), and the right-hand graphs show “fully informed”
voting patterns among the same groups of respondents after correcting for differences in political
knowledge levels. The first thing to notice is the dramatic effect that raising everyone’s
knowledge level has on turnout, which is represented in these graphs by the heavy black line.
While a small percentage of citizens in each knowledge quartile refrain from voting even in the
“fully informed” data, imputing high knowledge levels to everyone creates voting levels that are
nearly identical across quartiles. In both Senate and House voting, the percentage of people
casting a ballot in the “fully informed” data rose among all four quartiles to between 88 and
93%. In particular, the percentage of voters in the lowest knowledge quartile rose from 32.4% to
88.3% in Senate races and from 31.8% to 91.7% in House races, a nearly threefold increase over
actual levels of turnout. If we were to combine all respondents in the actual data together, we would find that 62.5% reported voting in House elections and 64.9% in Senate elections. Controlling for information effects in the simulated data raises these levels up to 91.1% and 91.4%, respectively. Not surprisingly, we find clear evidence of the strong impact that a lack of knowledge has in depressing turnout levels.

INSERT FIGURE 2 ABOUT HERE

We might expect that a “fully informed” world would not only have more voters, but would also contain voters who arrive at different choices than those from the actual world in which we live. Looking first at changes in the levels of support for incumbents, the data show that correcting for information imbalances makes a large difference for voting patterns in House elections but hardly any difference for Senate elections. Compared to actual voting patterns in House races, “fully informed” votes are much less likely to go to incumbents, and the decline in support for incumbents is most precipitous among (what had been) the least knowledgeable voters. While support for incumbents in the actual data ran 75.5% among the most knowledgeable and 85.7% among the least knowledgeable respondents, support for incumbents in the “fully informed” data dropped seven points to 68.6% in the highest knowledge quartile and 31 points to 55.0% in the lowest quartile. The collective differences are equally striking. As discussed in figure 1, the actual vote share for incumbents in 1988 was 80.1% when all voters were aggregated together. Correcting for differences in political knowledge reduces this level of support to just 62.5% of the vote. In 1988, the incumbency bias in actual voting for House candidates was therefore nearly 18 percentage points (80.1-62.5=17.6). As modeled here, this bias was due solely to the effects of political knowledge on the vote choice; it is the advantage to House incumbents that comes from campaigning before an ill-informed electorate.
Yet in contrast to the patterns in House campaigns, figure 2 shows that there was almost no incumbency advantage for senatorial candidates in 1988. As the actual voting data contain few differences between ill- and well-informed votes in support for Senate incumbents (ranging from a low of 64.7% in the highest quartile to a high of 68.1% in the high-middle quartile), the simulated voting patterns are almost exactly the same as the actual data. Thus a total of 66.8% of the vote among actual voters went to incumbents in the Senate, compared to a 65.0% share of the vote among “fully informed” voters, for a net incumbency advantage of just 1.8 percentage points. Because political knowledge levels were not an important predictor of incumbency voting in the 1988 Senate races, correcting for imbalances in political knowledge revealed only a small information effect. While the benefits of campaigning before an ill-informed electorate were realized by Senate incumbents just as they were for incumbents in the House, the net advantage was substantially smaller in Senate races for this year.

Like incumbents, Democratic candidates in 1988 also benefited from information effects in voting behavior. As shown in figure 2, correcting for uneven levels of political knowledge greatly reduces the tendency of less knowledgeable voters to support Democratic candidates in both House and Senate races. Where actual voting patterns show Democratic support increasing as knowledge levels decline, “fully informed” voting patterns in both types of races show much more even levels of Democratic support across levels of (actual) political knowledge. As mentioned earlier, Democrats running for House seats won 66.7% of the vote among respondents in the lowest knowledge quartile, but only 44.6% of the vote among respondents in the highest quartile. In “fully informed” voting patterns, by contrast, Democrats won only 48.5% of the vote among respondents in the lowest (actual) knowledge quartile—an 18 percentage-point decline—and just 39.7% of the vote in the highest (actual) knowledge quartile. Taken together, the
aggregate pattern of partisan bias introduced by information effects is similar in this year of data for both House and Senate races. Democrats running for the House earned at total of 51.9% of the vote in the actual data and 45.1% of the vote in the “fully informed” data, yielding a net Democratic bias in actual voting of 6.8 percentage points. Democrats running for the Senate netted a 56.7% share of the actual vote but only a 49.1% share of the “fully informed” vote, for a net Democratic bias of 7.6 percentage points in actual voting.

One other point to note about the patterns in figure 2 is that correcting for information effects leaves simulated voters in each of the (actual) knowledge quartiles voting in essentially the same proportions for Democrats and incumbents in Senate races but in different proportions for House races. That is, “fully informed” support for incumbents in House races grows among the higher (actual) knowledge quartiles, while support for Democrats decreases among voters from higher (actual) knowledge quartiles. These differences in voting patterns that persist after a statistical correction is made for uneven knowledge levels are properly attributed to differences in such things as social characteristics, political attitudes, and other enduring predispositions of voters that are associated with levels of political knowledge in the actual data. Recalling that citizens in the lowest quartile tend more than those in the highest quartile to be African-American, less affluent, and more likely to identify themselves as Democrats, it makes sense that “fully informed” voters in the lowest (actual) knowledge quartile should still tend to support Democrats more than those in the highest quartile. But it is only after comparing simulated to actual data that we can isolate these core patterns of enduring support from the confounding effects of ill-informed voting.

With this insight into the dynamics of congressional voting in the 1988 elections, we can now move on to examine whether these patterns of information effects reflect general tendencies
among voters or rather the specific dynamics of that particular election year. Looking first at the impact of information effects on turnout, figure 1 shows self-reported voting levels for House elections in National Election Studies data from 1988 to 1998 (the pattern for Senate elections is essentially identical, and so is not reported here). We can see that turnout increases dramatically in the simulated voting data, averaging 84.9% across the six election years compared to the 57.1% average reported turnout in the actual data. But while statistically correcting for uneven knowledge levels raises overall turnout levels dramatically, it does little to reduce the regular ebb and flow of voters in and out of the active electorate. Even among “fully informed” voters we find the familiar sawtooth pattern of higher levels of turnout in presidential election years (the “on years” of 1988, 1992, and 1996) and lower levels of turnout in midterm election years (the “off years” of 1990, 1994, and 1998). In the simulated data, on-year turnout averages 90.3%, compared to 79.6% among “fully informed” voters in off years. The size of the percentage-point difference between actual and simulated turnout in off-years (averaging a 29.9 percentage point increase over actual turnout levels) is somewhat higher than that for the same difference in levels of on-year turnout (averaging a 25.7 point increase over actual levels), which is consistent with the expectation that uniformly high levels of political knowledge should have a greater influence on voting behavior in the years that turnout is typically lower. Yet the small size of the difference between these average increases suggests that the dynamic of “surge and decline” in Congressional turnout (Campbell, 1960) remains largely intact even after correcting for information effects on voting behavior.

INSET FIGURE 3 ABOUT HERE

In addition to suggesting that surge and decline in turnout is not primarily a function of the greater attention brought to congressional campaigns in presidential election years, these data
from a full decade of congressional elections clarify the more general relationship between political knowledge and candidate choice. The findings reported in tables 1 and 2 suggest that there are some regularities in the effects of political knowledge on voter support for incumbents and Democrats running for Congress.

INSERT TABLES 1 AND 2 ABOUT HERE

Turning first to the question of incumbency bias among ill-informed voters, table 1 confirms that the typical result of information effects is to advantage incumbents in the eyes of ill-informed voters. In House elections, the incumbency bias ran from a high of nearly 18 percentage points in 1988 to a low of almost zero in 1998, while in Senate elections the incumbency bias ran from a high of 15 points in 1992 to a low in the following election of minus nine points against incumbents (that is, a net disadvantage). With the single exception of the Senate elections in 1994, the simulations suggest that “fully informed” voters in all of the other years reported here would have registered higher levels of support for challengers than was the case in actual voting. The typical result of ill-informed voting is to advantage incumbents, but table 1 shows that the size of this advantage varies greatly over time. Moreover, the size of the incumbency bias does not move in parallel between House and Senate races. For instance, in 1988 the incumbency bias for House candidates was nearly 18 points, compared to just under two points for Senate candidates. But in 1992 it was Senatorial candidates who benefited from the incumbency bias, which granted them a 15 point advantage, rather than House candidates, who were advantaged by only five points. This tendency illustrates that the incumbency bias is not solely a function of the general historical context in which these different elections were taking place.
Having said this, it also seems clear from table 1 that the larger historical context plays some role in shaping the incumbency bias among ill-informed voters. For instance, the 1994 congressional elections propelled the Republican party to majority status in both the House and the Senate for the first time since the Eisenhower years. As a result of those elections, Democrats lost 52 seats in the House and eight in the Senate. Table 1 shows that the actual vote share for House incumbents reported by NES respondents was 68.5%, tying with 1998 as the lowest level of incumbent support for House candidates in these data. Yet the simulated data suggest that this low level of support would have been nearly 11 percentage points lower if a “fully informed” electorate had come to the polls. In this case, it seems that the voting behavior of an ill-informed electorate cushioned what could have been a much greater blow to the majority party in the House. At the same time, the net bias against senatorial incumbents in 1994 suggests that a “fully informed” electorate might have retained a Democratic majority in the upper chamber. It is possible that these patterns represent some sort of spillover effect from the House elections that penalized Senate incumbents in the same manner as House incumbents. Notice also the case of 1998, where both chambers of Congress had equally small incumbency advantages, the only such case in the six election years considered here. This pattern may well be due to the ongoing impeachment drama that defined the Congressional elections that year, with heightened national attention to Congress’s role in the impeachment leading to a smaller incumbency advantage. These possibilities are, of course, only speculations. Without a broader range of cases to study, it is impossible to identify the unique influence of election-year factors on the size of information effects. Yet the patterns in table 1 do suggest that the historical context in which Congressional elections are contested may have some bearing on the size of the incumbency bias in actual voting.
The patterns of partisan bias brought about by information effects in actual voting are displayed in table 2. One pattern that stands out in this table is the tendency for ill-informed voting to advantage Democratic candidates running for the House but Republican candidates running for the Senate. For instance, the 1990 elections saw a net Democratic advantage of eight percentage points to House candidates and a net Democratic disadvantage of nearly 12 points for Senate candidates. Information effects advantaged Democrats in four out of six House elections, and advantaged Republicans in four out of six Senate elections. A second pattern to note in table 2 is that, if we set aside results from the 1988 elections, the consistent partisan biases brought about by information effects in congressional voting have tended to decline in magnitude over time. For instance, the net advantage given to Republican senatorial candidates by an ill-informed electorate shrank from nearly 12 points in 1990 to just over a point in 1998, and the net advantage to Democratic House candidates shrank from eight points in 1990 to become a slight disadvantage in the 1996 and 1998 elections. Since table 1 reveals no parallel pattern in incumbency voting, it is unclear what might account for this trend. The last thing to point out in table 2 is that information effects in the elections of 1996 and 1998 advantaged Republicans in both chambers. This may reflect nothing more than the consistent incumbency advantages enjoyed by Republicans during years when the GOP held majority status in both the House and Senate. Yet the finding that information effects can consistently advantage Republicans in both houses of Congress is an important finding for this study. In summary, tables 1 and 2 suggest that while incumbents tend to be favored over challengers in the eyes of ill-informed voters, information effects do not always bias these voters to favor Democrats over Republicans.

To provide a clearer picture of these general tendencies, table 3 presents the average incumbency and Democratic biases in ill-informed voting for different types of election years.
Averaging the incumbency bias scores from the three off-years and the three on-years reveal that the incumbency advantage in ill-informed voting is much larger during presidential election years than midterm election years. Among House races, the size of the incumbency advantage nearly doubles in presidential-year elections, and among Senate races the percentage point advantage given to incumbents shows a fivefold increase. These patterns are consistent with the notion, set forth by the “surge and decline” hypothesis (Campbell, 1960), that on-year elections attract more ill-informed or inattentive voters than off-year elections, leading to greater support for incumbent politicians in on-year elections. Aside from differences between types of election years, table 3 also shows that the average size of the incumbent bias for members of Congress is comparable to that for incumbent presidents. Using a somewhat different simulation model, Larry Bartels (1996) estimated that incumbent presidents typically gain five percentage points more of the vote than they might if all voters were “fully informed” about politics. Averaging across all six years of congressional voting, it appears that incumbent senators draw on average five percentage points more support and incumbent representatives nearly eight points more support than they might if all voters were as informed about politics as the most knowledgeable citizens.

INSERT TABLE 3 ABOUT HERE

The comparable data on partisan bias shows that such effects tend to be smaller in presidential-election years than in midterm election years. Republicans running for the Senate tend to do three points better in midterm elections but only a half point better in on-year elections than they might if all voters were “fully informed”. In a similar way, Democratic candidates for the House tend to do more than four points better in off-year elections and three points better in presidential-year elections because of the effects of ill-informed voting. Across all six years,
however, the degree of partisan bias introduced by information effects tends to be fairly small. The average effect is less than a four point bias favoring Democrats running for the House and less than a two point bias favoring Republicans running for the Senate. As Democratic contenders for the presidency also appear to gain just around two percentage points more support from ill-informed voting (Bartels, 1996), it would appear that a small degree of partisan bias brought about by ill-informed voting is the norm in federal elections. The important finding in this study is that such information effects do not uniformly advantage Democratic candidates.

A New Agenda for Research on Information Effects

In examining the communication systems connecting governments with their citizens, political communication research has tended to focus on the “top-down” transmission of information from political actors to ordinary citizens. This chapter approaches the processes of political communication from a different direction: the “bottom-up” flow of information from ordinary citizens to political actors. By conceiving of political activity like voting as a channel for mass political communication, we can begin to clarify the reciprocal influences of media messages and public opinion on the quality of political representation in democratic societies. The growing body of work on information effects in collective preferences suggests that the low levels and uneven social distribution of political knowledge can have a profound impact on perceptions of the “will of the people,” and ultimately on the responsiveness of governments to their citizens.

The ability to construct a new kind of dependent variable—counterfactual estimates of “fully informed” preferences based on the distribution of actual preferences in a population—allows researchers to reach beyond the traditional limitations of experimental methods to more fully identify the unique impact of political knowledge on the political judgments of individuals.
as well as on the collective preferences of groups. The standard ways of using experimental methods and multivariate analysis of survey data cannot reveal the substantive impact of ill-informed voting on actual election outcomes. The new approach used in this chapter illustrates one way, however limited, to begin assessing whether a population’s low levels of knowledge might impair its ability to exercise popular sovereignty in democratic politics. In conjunction with the findings of experimental and cross-sectional studies, as well as with the findings of other methods for estimating “fully informed” opinions such as deliberative polls, the simulation approach described here can give us new insights into the ways that political knowledge affects actual voting behavior as well as the distribution of preferences expressed in opinion surveys. Yet the applications of this approach are not limited to assessing the effects of political knowledge. Constructed from actual survey data, hypothetical “fully informed” samples could be used to assess the effects of campaign activity, news exposure, partisanship, trust, efficacy, and any number of other variables on the real-world outcomes of democratic processes.

In this concluding section, I discuss three areas that encompass what I see as especially fruitful avenues for future research on information effects: identifying the environmental factors that generate or moderate these effects, identifying the kinds of judgmental or perceptual effects that are produced by low levels of political knowledge, and identifying the cognitive mechanisms by which these effects are produced.

When Do Information Effects Occur?

In order to properly understand the psychological mechanisms giving rise to information effects, future research must examine how different environmental and social influences mitigate or exaggerate the importance of political knowledge to political behaviors and opinions. Are the typical effects of ill-informed voting reduced in open seat races, which tend to be more
competitive and tightly contested? Are large information effects more likely to be associated with a strong national economy or the absence of military conflict, either of which might leave potential voters with fewer reasons to pay close attention to politics? The potential impact of the larger political environmental on the voting behavior of ill-informed citizens also raises important questions about institutional design. For instance, imposing term limits on legislative bodies might counterbalance the tendency of less knowledgeable voters to support incumbents, but at the same time heighten the tendency of ill-informed voters to support candidates from one party or another.

What Kinds of Effects Occur?

This chapter examined the effects of political knowledge on turnout and the vote choice in congressional elections. Yet this preliminary exploration raises more questions than it puts to rest. The limited number of cases studied here makes it difficult to sort out the impact of candidate partisanship from that of incumbency status on ill-informed voting. It is possible that the patterns observed in tables 1 and 2 might result primarily from the incumbency status of officeholders, with partisan advantage largely an outgrowth of the majority status of a party in Congress, but the National Election Studies data used here include too few voters in each state and congressional district to make reliable comparisons across different races. As is the case with information effects in presidential voting (Bartels, 1996), there is yet no clear sense of the unique impact made by incumbency status, party affiliation, and type of office sought by a candidate on patterns of ill-informed voting.

Besides clarifying the influences of political knowledge on voting behavior, we still have much to learn about the relationship between political knowledge and other kinds of behaviors, judgments, preferences, and perceptions. For instance, recent work has shown that the public
opinion as revealed in surveys tends to be more isolationist, hawkish, fiscally liberal, and socially conservative relative to the simulated opinions of a “fully informed” public (Althaus, 1998; Delli Carpini & Keeter, 1996). Yet, as researchers have only recently begun to explore these associations in depth, our understanding of the kinds of effects produced by deficiencies in political knowledge is still quite limited.

How Do These Effects Occur?

It may well turn out that the term “information effects” is an inappropriate label to describe regularities in ill-informed opinions or behavior, since the term suggests a unidirectional causal relationship that has yet to be established theoretically. We are still in the earliest stages of research on (what we might provisionally call) information effects, and thus far the small amount of work on this topic has not clarified how much these “effects” stem (1) directly from a lack of political knowledge itself, (2) from a lack (or abundance) of something else that is associated with political knowledge, or (3) from the interactions between knowledge and other elements that shape the processes of human cognition.

There are any number of relevant variables associated with political knowledge that might be contributing to the appearance of information effects. For example, highly knowledgeable people perceive a greater number of policy issues as important or salient than less knowledgeable people (Althaus, 1996b), and it may be the perceived salience of an issue or campaign rather than knowledge itself that encourages well-informed people to engage in a more thorough and thoughtful analysis of a candidate’s policy positions than people who lack such knowledge. Other “likely suspects” include the tendency of well-informed people to be more attentive to the news, to be attentive to different cues in the information environment than ill-informed people, and to rely on different heuristics or information shortcuts for arriving at judgments (for a
discussion of these and related factors, see Delli Carpini & Keeter, 1996; Luskin, 1990; Sniderman et al., 1991).

It also seems likely that the important contribution of political knowledge lies in its indirect effects on opinions and behaviors as a variable that interacts with or moderates the effects of other variables. As political knowledge (or expertise, as it is often called) has long been a topic of interest to political psychologists (Krosnick, 1990), a great deal of research has confirmed important interactions between political knowledge and such things as the choice of information processing strategies (Fiske et al., 1990; Krosnick & Milburn, 1990; McGraw & Pinney, 1990; Sniderman et al., 1991) as well as the ability to store and retrieve information in long-term memory (Delli Carpini & Keeter, 1996; Krosnick & Milburn, 1990; Zaller, 1992). Much more work is needed to connect these types of interactions to the appearance of information effects in individual and collective preferences.

1 The information measures used in this study are based on those originally constructed and tested by Delli Carpini and Keeter (Delli Carpini & Keeter, 1993; Delli Carpini & Keeter, 1996). These scales are primarily additive measures of correct answers to factual knowledge questions, where a correct answer is assigned a value of 1 and an incorrect response or no answer is given a value of 0. They also incorporate a subjective assessment of respondent knowledge level made by the survey interviewer at the conclusion of the interview. Three kinds of factual knowledge items were used to construct these scales: relative location tests in which correct answers are constructed by comparing responses to two different questions, open-ended questions asking respondents to identify the job or political office held by a public figure, and closed-ended questions testing knowledge of which party held majority status in both houses of Congress. An
example of a correct answer to a relative location test is placing the Republican party as relatively more conservative than the Democratic party on a seven-point ideology scale, regardless of where on the ideology scale a respondent actually placed the two parties.

Besides the interviewer rating score (v555, reverse coded), the questions for the 1988 ANES information scale included identifying the offices held by Ted Kennedy (v871), George Shultz (v872), Margaret Thatcher (v875), Yasser Arafat (v876), William Rehnquist (v873), Michail Gorbachev (v874), and Jim Wright (v877); naming the majority party in the House (v878) and Senate (v879); correctly saying that the federal budget deficit had grown larger over the past eight years (v1036); identifying the relative ideological locations of the Republican and Democratic parties (v234, v235), and locating the relative positions of the Republican and Democratic parties on national health insurance (v321, v322), government services (v307, v308), defense spending (v315, v316), and job assurances (v328, v329).

Data on incumbency voting excludes voters in districts with open-seat or uncontested races. This results in slightly smaller numbers of voters in the incumbency data. For the incumbency data in figure 1, there are 337 people in the lowest knowledge quartile, 335 in the low middle quartile, 362 in the high middle quartile, and 349 in the highest quartile. The percentage voting in figure 1 is the percentage voting in all contested elections.

The simulations reported here account for the impact of political knowledge, years of formal education, family income (in percentiles), age (in years), as well as the following categorical variables: Republican party affiliation and Democratic party affiliation (excluding “leaners”), ethnicity (blacks=1, all others=0), gender, union membership, region of the country
(dummy variables for South, Midwest, and East), and urbanity (dummy variables for urban and rural residents).

As is well known, these self-reported turnout percentages are much higher than those found in the historical record. For instance, over this same time period, the *Statistical Abstract of the United States* shows that only between a third and a half of the voting-age population actually participated in elections for the House of Representatives. The tendency for certain kinds of respondents to misreport that they voted has been shown to overstate the apparent effects of independent variables such as education level on voting behavior, leading many scholars to recommend using validated vote measures instead of self-reported vote measures (Presser & Traugott, 1992; Silver, Anderson, & Abramson, 1986). Since the National Election Studies no longer constructs a validated voting record for each respondent, it is unclear how much the self-reported voting patterns of respondents are skewed by social desirability effects, demand effects (in presidential election years) of being included in the pre-election sample, or other factors that could plausibly lead to actual increases in turnout as well as to overstating actual voting behavior (for a discussion of these issues, see Abelson, Loftus, & Greenwald, 1992). As previous research has shown that politically knowledgeable respondents are especially prone to say they voted when in fact they did not (Presser & Traugott, 1992), the likely impact of such misreporting in the present analysis would be to exaggerate the apparent importance of political knowledge to voter turnout. Since there is no way to check whether misreporters tended to support similar kinds of candidates over the time series analyzed here, it is unclear how much such misreporting might influence the estimates of information effects in levels of support for different types of candidates.
Works Cited

Compared to knowledgeable citizens, ill-informed citizens in 1988 were more likely to vote for democrats and incumbents, but less likely to vote at all.
Figure 2: 1988 Actual and Simulated Voting Patterns for Congressional Candidates, by Political Knowledge Quartile

a. House

Actual Voting

- Incumbent Share
- Democratic Share

% Voting

```
Lowest  Low  High  Highest
```

“Fully Informed” Voting

- Incumbent Share
- Democratic Share

% Voting

```
Lowest  Low  High  Highest
```

b. Senate

Actual Voting

- Incumbent Share
- Democratic Share

% Voting

```
Lowest  Low  High  Highest
```

“Fully Informed” Voting

- Incumbent Share
- Democratic Share

% Voting

```
Lowest  Low  High  Highest
```
Figure 3: Percentage of Respondents Saying They Voted in House Elections, by Year
Table 1: The Incumbency Bias in Congressional Voting

<table>
<thead>
<tr>
<th>Year</th>
<th>Senate Actual Vote Share</th>
<th>Senate “Fully Informed” Vote Share</th>
<th>Incumbency Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>66.8</td>
<td>65.0</td>
<td>+1.8</td>
</tr>
<tr>
<td>1990</td>
<td>66.8</td>
<td>55.3</td>
<td>+11.5</td>
</tr>
<tr>
<td>1992</td>
<td>61.4</td>
<td>46.4</td>
<td>+15.0</td>
</tr>
<tr>
<td>1994</td>
<td>57.8</td>
<td>66.7</td>
<td>–8.9</td>
</tr>
<tr>
<td>1996</td>
<td>52.9</td>
<td>48.0</td>
<td>+4.9</td>
</tr>
<tr>
<td>1998</td>
<td>62.5</td>
<td>61.1</td>
<td>+1.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>House Actual Vote Share</th>
<th>House “Fully Informed” Vote Share</th>
<th>Incumbency Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>80.1</td>
<td>62.5</td>
<td>+17.6</td>
</tr>
<tr>
<td>1990</td>
<td>78.7</td>
<td>73.5</td>
<td>+5.2</td>
</tr>
<tr>
<td>1992</td>
<td>73.5</td>
<td>68.4</td>
<td>+5.1</td>
</tr>
<tr>
<td>1994</td>
<td>68.5</td>
<td>57.8</td>
<td>+10.7</td>
</tr>
<tr>
<td>1996</td>
<td>72.3</td>
<td>64.7</td>
<td>+7.6</td>
</tr>
<tr>
<td>1998</td>
<td>68.5</td>
<td>68.3</td>
<td>+0.2</td>
</tr>
</tbody>
</table>

Table 2: Partisan Bias in Congressional Voting

<table>
<thead>
<tr>
<th>Year</th>
<th>Senate Actual Vote Share</th>
<th>Senate “Fully Informed” Vote Share</th>
<th>Democratic Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>56.7</td>
<td>49.1</td>
<td>+7.6</td>
</tr>
<tr>
<td>1990</td>
<td>56.1</td>
<td>67.8</td>
<td>–11.7</td>
</tr>
<tr>
<td>1992</td>
<td>54.2</td>
<td>59.4</td>
<td>–5.2</td>
</tr>
<tr>
<td>1994</td>
<td>42.7</td>
<td>39.2</td>
<td>+3.5</td>
</tr>
<tr>
<td>1996</td>
<td>52.3</td>
<td>56.2</td>
<td>–3.9</td>
</tr>
<tr>
<td>1998</td>
<td>55.2</td>
<td>56.4</td>
<td>–1.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>House Actual Vote Share</th>
<th>House “Fully Informed” Vote Share</th>
<th>Democratic Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>51.9</td>
<td>45.1</td>
<td>+6.8</td>
</tr>
<tr>
<td>1990</td>
<td>61.2</td>
<td>53.1</td>
<td>+8.1</td>
</tr>
<tr>
<td>1992</td>
<td>57.9</td>
<td>54.6</td>
<td>+3.3</td>
</tr>
<tr>
<td>1994</td>
<td>48.0</td>
<td>42.3</td>
<td>+5.7</td>
</tr>
<tr>
<td>1996</td>
<td>47.8</td>
<td>49.1</td>
<td>–1.3</td>
</tr>
<tr>
<td>1998</td>
<td>50.7</td>
<td>51.4</td>
<td>–0.7</td>
</tr>
</tbody>
</table>
Table 3: Average Percentage Point Biases for Incumbents and Democrats, by Type of Election Year

<table>
<thead>
<tr>
<th></th>
<th>Average Incumbency Bias</th>
<th>Average Democratic Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Off-Years</td>
<td>On-Years</td>
</tr>
<tr>
<td>Senate Voting</td>
<td>1.35</td>
<td>7.22</td>
</tr>
<tr>
<td>House Voting</td>
<td>5.36</td>
<td>10.06</td>
</tr>
</tbody>
</table>