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An Application in Industrial Organization

One form of collusive behavior among firms is to restrict output in order to keep the price of the product high.

This is a goal of the OPEC oil cartel, for instance: member countries have output quotas that are mutually

negotiated within the cartel with an eye toward keeping the price of oil at a desired level. Economists

have often claimed that cartels and collusive behavior are fundamentally unstable and hence unlikely to

endure for the long-term. The argument essentially is that collusive agreements are not Nash equilibria and

member firms or countries have the incentive to cheat on the common agreement in pursuit of their own

self-interests. This causes the cartel to break down. A footnote to this is that agreements within a nation

among firms may violate antitrust laws. The firms therefore have no legal means of contracting among

themselves or appealing to the courts for punishment if one or more firms fails to live up to its obligations

to the cartel. Similar concerns apply for cartels of nations who have no over-arching government that can

enforce the mutually beneficial arrangement.

How then do we explain the fact that OPEC has for the most part succeeded for over 40 years in

influencing the global price of oil? Or how do we explain the documented existence of cartels among

industries (such as railroads in the U.S. in the late 19th century)? Our model above suggests an answer. A

collusive arrangement provides each firm with a larger profit than the competitive outcome. The collusive

arrangement is a noncooperative equilibrium in a long-term relationship, provided that each firm cares

enough about future profits.

Example 77 (Cournot Duopoly) We illustrate the point in a simple example. There are two identical

firms that produce the same product. Let  denote the output of firm . The market price for the aggregate

output  = 1 + 2 is determined by the inverse demand function

() = 14− 

The cost function of each firm  is

() =
2
4


The profit function of firm  is therefore

( −) = (14− (1 + 2))  − 2
4


The Nash equilibrium outputs. We solve for a Nash equilibrium by setting  = 0 for each

firm :

1

1
= (14− (1 + 2))− 1 − 1

2
= 0

2

2
= (14− (1 + 2))− 2 − 2

2
= 0

or

14− 51
2
− 2 = 0

14− 1 − 52
2

= 0

This implies

14− 51
2
− 2 = 14− 1 − 52

2

or 1 = 2. Substitution into either equation implies

14− 51
2
− 1 = 0

14 =
7

2
1 ⇒

1 = 2 = 4
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From above we see that




( − = 4) = (14− ( + 4))− 3

2

= 10− 5
2

which changes from positive to negative at  = 4. This verifies that 1 = 2 = 4 is a Nash equilibrium.

The Nash equilibrium profit for each firm is

(14− (8)) 4− 16
4
= 24− 4 = 20

A better outcome for the firms. We now calculate the outputs 1 2 that maximize the sum of the

profits for the two firms:

1(1 2) + 2(1 2) = (14− (1 + 2)) (1 + 2)− 21
4
− 22
4


0 =


1
= (14− (1 + 2))− (1 + 2)− 1

2

0 = 14− 51
2
− 22

0 =


2
= 14− 21 − 52

2

Again, we have 1 = 2. Solving using either partial derivative implies

0 = 14− 9
2


or 1 = 2 =
28
9


I don’t want to work with such awful fractions. These numbers suggest that both firms would obtain a

higher profit than in the Nash equilibrium by choosing 1 = 2 = 3 (which is close to 289). Let’s check:

(14− 6) 3− 9
4
= 24− 9

4
=
87

4
 20

If firm − produces 3, then how much profit can firm  obtain by deviating? Firm  maximizes

( 3) = (14− ( + 3))  − 2
4

= (11− )  − 2
4

= 11 − 5
2


4

0 =



= 11− 5

2
⇒  =

22

5

The marginal profit changes sign at  =
22
5
, and so it indeed maximizes profit. The maximally profitable

deviation therefore produces a profit of



µ
22

5
 3

¶
=

22

5

µ
11− 5

4
· 22
5

¶
=

22

5

µ
11

2

¶
=

121

5
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Implementation of the superior outcome. Each firm  adopts the following strategy: Choose  = 3

to start the game and as long as each firm produces 3 units in each stage game. If any output is observed

by either firm other than 3, then switch to  = 4 for every stage in the remainder of the game.

The Nash equilibrium profit is

 = 20

a "collusive" outcome produces the profit

∗ =
85

4


and each firm can deviate from the collusive output of 3 to obtain

 =
121

5

The use of this trigger strategy by each firm defines a Nash equilibrium in the infinitely repeated Cournot

duopoly game if each firm ’s discount factor  satisfies

 ≥  − ∗
 − 

=
121
5
− 87

4
121
5
− 20 =

121
5
− 87

4
21
5

=
484− 435

84
=
49

84
=
7

12


Several Observations:

• The relevance of this result in the theory of repeated games to explaining how collusion occurs despite
the absence of legal structures to enforce the collusive agreement was first noted by Jim Friedman.

• Are trigger strategies realistic? We in fact see cartels sustaining their collusive behavior through mutual
punishment if anyone member cheats on the collusive agreement. As the member of OPEC with the

greatest reserves and capacity, Saudi Arabia plays the role of enforcer in the following sense. Suppose

some nation cheats by producing beyond its OPEC-negotiated quota. Saudi Arabia opens its taps and

floods the world market with oil, punishing all members with a lower price for oil and correspondingly

low profits. After a period of punishment, the cartel gets its act together and reinstitutes a collusive

agreement. Such flooding of the market has happened several times in the history of OPEC. It is the

tool or threat that Saudi Arabia has to keep the member countries in line.

• The preceding story about punishment, however, does not correspond to an equilibrium in trigger

strategies. Notice that: (i) in an equilibrium with trigger strategies, the firms collude and never revert

to the Nash equilibrium outputs; (ii) if the firms ever did switch to the Nash equilibrium outputs,

they would do so forever and would never reestablish the collusive outcome. These issues have been

addressed in a paper by Ed Green and Rob Porter.2 Each firm in this paper observes the market

price and not the output of the other firm. Moreover, there is a random or stochastic element to

market demand in their model; a decline in the market price may therefore be caused by an increase in

production by a firm or simply by a random decline to demand. Green and Porter construct equilibria

of the infinitely repeated game in which:

— Each firm starts out producing at a collusive level;

— A market price that falls below a target e causes the two firms to enter a punishment phase in
which they each choose larger and less profitable outputs for  stages;

— After the  stages of the punishment phase, each firm returns to its collusive output level.

The target price e and the length  of the punishment phase are part of the construction of the

equilibrium. Their equilibrium has the property that (i) periods of intense competition through

overproduction between the two firms occur with positive probability during the infinitely repeated

game, and (ii) after a punishment phase, the firms reestablish their collusive agreement (that is, until it

breaks down again). In equilibrium, no firm ever deviates from the collusive output in non-punishment

stages; the punishment phases occur with positive probability, however, because of random declines in

the market price.

2Edward J. Green and Robert H. Porter, "Noncooperative Collusion Under Imperfect Price Information", Econometrica,

Vol. 52 (1984), p. 87-100.
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Minmax values

Our definition of a trigger strategy has a player switch to a Nash equilibrium strategy in the event that

punishment is triggered in the game. Assuming that the discount factors are sufficiently large so that the

trigger strategies form a Nash equilibrium, the assumption that the players switch to a Nash equilibrium

if punishment is triggered insures that the equilibrium is subgame perfect, i.e., the punishment is credible.

We can obtain a smaller "lower bound" on the discount factor for Nash equilibrium if we dispense with the

requirement of subgame perfection. Let’s think instead about the worst punishment that one player can

impose on the other because this will serve as the most effective deterrent.

Player ’s minmax value  is the lowest payoff in the stage game that player − can impose on him
through his choice of a strategy − given that player  can choose his own strategy to maximize his own
payoff:

 = min
−

max


 ( −) 

Here,  ( −) is the payoff to player  in the stage game given the strategy profile ( −). The "max"
represents the capability of player  to choose his own strategy  to maximize his payoff given the other

player’s strategy −, and the "min" represents player −’s choice of − minimize this "best response" payoff
for player . Let e− denote the strategy of player − at which the minmax value is obtained. The strategye− is the worst choice of a strategy by player − from the perspective of player . Existence of e− is not a
problem in finite games.

Notice that player  cannot receive less than his minmax value in any Nash equilibrium of the stage game.

The value  is the lowest payoff that player  receives when he chooses his strategy in his own best interest.

We can of course define a minmax value − for player − and the strategy e. For a desired outcome
(∗1 

∗
2) in the stage game with corresponding payoffs (

∗
1 
∗
2), define the trigger strategy of player  as follows:

Player : Choose ∗ to start the game and as long as (
∗
1 
∗
2) is played by the players; if (

∗
1 
∗
2) is ever

not played, then switch to e for ever more.
The choice of e in every future stage is the worst thing that player  can do to player − and it therefore

is the most effective deterrent. Similar remarks hold for player −’s choice of e−. We obtain a different

and looser lower bound on the discount factors in this case. Player  compares his payoff if he follows his

trigger strategy to his best possible deviation in stage  (assuming that   ∗ ):

(1− )

∞X
=0

 · ∗ ≥ (1− )

"
−1X
=0

 · ∗ +  ·  +
∞X

=+1

 ·

#
⇔

 ≥  − ∗
 −

We substitute his maxmin payoff for his Nash equilibrium payoff . Notice that

 − ∗
 −

≤  − ∗
 − 

because  ≤  (a player’s minmax value is less than or equal to his payoff in any Nash equilibrium).

These new trigger strategies do not necessarily form a subgame perfect Nash equilibrium when they do

form a Nash equilibrium. Consider a history in which (∗1 
∗
2) does not occur in some stage. In the subgame

defined by that history, the strategies specify that the players play (e e−) in each and every stage. This

need not define a Nash equilibrium in the subgame (in particular, there is no reason that e must be a best
response to e− in the stage game).
Through the use of a more severe punishment by each player in their trigger strategies, we have obtained

a lower bound on the discount factor  that is sufficient to insure that (
∗
1 
∗
2) is played in each and every

stage of a Nash equilibrium of the supergame. We have sacrificed subgame perfection of the equilibrium,

however, in that punishment may not be credible.

As a final point, note that the analysis would change further if we considered mixed strategies. Such

strategies can lower or raise a player’s minmax value (the set of strategies over which the min is taken is

increased in size, but so is the set of strategies over which the max is taken). This really doesn’t change

any of the ideas that we are discussing, however, and so we’ll stick to the case of pure strategies.
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Example 78 Let’s reconsider the following stage game:

1\2 L C R

T 1,-1 2,1 1,0

M 3,4 0,1 -3,2

B 4,-5 -1,3 1,1

We’d like to implement (3 4) as the outcome in each stage. As above, we don’t need to worry about

player 2 deviating from his trigger strategy. Let’s focus on player 1’s minmax value 1 and the strategy e2
that player 2 should use if he really wants to hurt player 1:

1 = 1 e2 = 

Before we had the following bound on player 1’s discount factor:

1 ≥ 1 − ∗1
1 − 1

=
4− 3
4− 2 =

1

2


If player 2 punishes with R instead of C, we have the bound

1 ≥ 1 − ∗1
1 −1

=
4− 3
4− 1 =

1

3


A Version of the Folk Theorem

We’ve discussed implementing as a Nash in the supergame any outcome that gives each player a larger per

stage payoff than he receives in a Nash equilibrium of the stage game. Let’s return to the prisoner’s dilemma

and depict graphically all of the possible payoffs of the players in the supergame. This discussion will be

easier if we now switch to limiting average payoffs as the method used by players to calculate their payoffs

in the infinitely repeated game.

1/2 c nc

c 2,2 -3,3

nc 3,-3 -2,-2

The average payoffs of the two players in the supergame is a point in the convex hull of the four pairs

(2 2), (−3 3), (3−3), and (−2−2):

The Folk Theorem describes the points in this convex hull that can result from the play of Nash equilibria

in the supergame. The term "Folk" refers to the fact that the result was known in the small community

of game theorists in the 1960s before anyone wrote it down or formalized the proof. It was like a "folk"

song, whose origin in unknown and which is passed among people by oral communication. It would really

be more correct to say "a" Folk Theorem because there are variations that depend upon how payoffs are

calculated in the supergame, whether or not a refinement of Nash equilibrium such as subgame perfection
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is added, etc.. We’ll discuss some of these alternative versions after presenting result in the simple case of

average payoffs.

The average payoff in an equilibrium is a weighted average of the four outcomes (2 2), (−3 3), (3−3),
and (−2−2) where the weights reflect the frequency with which the different outcomes are played in the
equilibrium. We note first that each player cannot receive less than his minmax value as his average payoff

in the supergame. This is true because given the strategy of his opponent, he can always choose a strategy

in each stage so that he receives at least his minmax payoff. The possible equilibrium average payoffs of

the infinitely repeated game are therefore bounded below by the pair (12), which in this game equals

(−2−2):

The Folk Theorem that we are discussing here states that any point (∗1 
∗
2) in this shaded region is the

average payoff in some Nash equilibrium of the supergame.

The idea will be clear from considering a point (∗1 
∗
2) in which both entries are rational numbers. As

rational numbers, the vector (∗1 
∗
2) can be written as

(∗1 
∗
2) = 1(2 2) + 2(−3 3) + 3(3−3) + 4(−2−2)

where each  is a nonnegative rational number such that

1 + 2 + 3 + 4 = 1

Let  ∈ N denote a common denominator for these four rational numbers. We consider a "cycle" C consisting
of  stages in which each of the four outcomes (2 2) (−3 3) (3−3) (−2−2) is played with the frequency
determined by the numerator of  once the common demominator  has been chosen. The order in which

the outcomes are played can be chosen arbitrarily, but the order is fixed and known to the players as part

of their strategies. We consider the following trigger strategy for each player :

Start the game by selecting the strategy specified by the first outcome in the cycle C. Follow the cycle
again and again unless at some stage the outcome specified by the cycle C is not played. In this case, switch
to e ever after.
It is easy to see that this is a Nash equilibrium when players evaluate their sequence of payoffs in the

infinitely repeated game using the limiting average method:

• Consider the prisoner’s dilemma game above. By following the cycle, player  receives each of the

four outcomes with frequencies as specified by the cycle, resulting in an average payoff of ∗ . By

deviating from the cycle, he receives at most  in every stage of some infinite tail (depending on when

he deviates from the cycle), resulting in an average payoff of . Because by assumption  ≤ ∗ for
each player , the trigger strategies form a Nash equilibrium.

• Read over the last bullet point. It reflects the prisoner’s dilemma only insofar as it mentions four

outcomes of the game. A different convex hull would be drawn for each different stage game, and
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(depending on the size of the game) a cycle might involve many more than four different outcomes.

The principle, however, remains the same: because by assumption  ≤ ∗ for each player , the
trigger strategies form a Nash equilibrium.

• In general, the trigger strategies that we have defined will not define a subgame perfect Nash equilibrium
because the play of (e1 e2) need not form a Nash equilibrium off the equilibrium path. In the case

of the prisoner’s dilemma, however, (e1 e2) = ( ), which is a Nash equilibrium of the stage game.

The play of (e1 e2) = ( ) is a Nash equilibrium of the supergame with limiting average payoffs,

and so the trigger strategies form an SPNE in this case.

• What if the objective (∗1 ∗2) consists of a pair of irrational numbers? Consider a sequence of rational

pairs

(1 

2)∈N → (∗1 

∗
2)

For each , one constructs a cycle C that implements (1 2) as the average payoffs over the play of
C. The trigger strategies then specify that the players move successively through C1 C2  as the
game is played, again with the threat of (e1 e2) if any one ever fails to play according to the specified
cycles. We will not pursue this more thoroughly because it seems to be mainly a point of mathematical

interest.

• Returning to discounted payoffs, can we implement (∗1 ∗2)? This is a little tricky because the

discounting must be taken into account in selecting the cycle (i.e., the discounted payoffs over the cycle

are (∗1 
∗
2)). But the result extends: if (

∗
1 
∗
2) ≥ (12), and if the discount factors of the traders

are sufficiently large, then there exists a Nash equilibrium of the supergame whose discounted payoffs

are (∗1 
∗
2).

• There are many versions of the folk theorem. They differ mainly by the solution concept used (i.e.,

what properties one wants the equilibrium to have that implements the particular payoffs). If you

are interested in learning more about this topic, consult the text "Repeated Games and Reputations:

Long-Run Relationships" by George Mailath and Larry Samuelson.

57


