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8.E Games of Incomplete Information: Bayesian Nash Equilibrium

games of complete information vs. games of incomplete information: The issue is incomplete knowledge of

one’s opponent’s preferences over the possible outcomes of the game.

formulated by Harsanyi, corecipient with Nash and Selten of the first Nobel Prize in economics awarded

in the field of game theory

This is a mathematically rigorous way of modeling the idea that players make decisions using their beliefs

about the preferences of each other. The beliefs are modeled here using probability theory, and as with

Nash equilibrium, it is typically necessary to assume that the beliefs of each player about the others are

correct. How beliefs turn out to be correct, or whether or not beliefs are consistent with probability theory,

are both legitimate concerns for the theory of games of incomplete information. We know, however, that

people make decisions in situations of uncertainty using their beliefs, and this is a logically consistent way

of modeling this kind of interaction among economic agents.

Bayesian Hypothesis : Whatever an agent doesn’t know for certain, he has complete, probabilistic beliefs

about

Ex.: Auctions

represent as game of imperfect information with a move of nature

incomplete vs. imperfect information

Example 28 The DA’s Brother (continued)

There are two types of player 2: with probability , the game is

type I for player 2:

1\2  

 0−2 −10−1
 −1−10 −5−5

and with probability 1− , the game is

type II for player 2:

1\2  

 0−2 −10−7
 −1−10 −5−11

Type II represents a psychic penalty for confessing (i.e., player 2 hates being a "rat"). Notice that the

issue is the payoffs to player 2. Player 2 is assumed to know his type while player 1 knows the probabilities

of the two different games. In other games, it will be important to also assume that player 2 knows the

beliefs of player 1 so that he can think about how player 1 considers his options.

Player 2’s dominant strategy is to choose C if he is of type I and DC if he is type II. Player 1 therefore

evaluates his choices as follows:

 :  (−5) + (1− ) (−1) = −1− 4

 :  (−10) + (1− ) (0) = −10
The equilibrium therefore depends on the value of : player 1 will choose C if

−1− 4  −10
1  6

 
1

6

and player 1 will choose DC if

 
1

6


We have 2 "candidate" equilibria:

1: C

2: C,DC

and

1:DC

2: C,DC
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Which is actually an equilibrium depends on the value of . In the case of  = 16, each is an equilibrium

This is an example of a pure strategy Bayesian Nash equilibrium ("pure strategy" because there is no

randomization in the choice of moves). It would typically be computed and discussed without reference to

the extensive form representation.

General Framework

( − ) where  ∈ Θ
• it is not necessary to assume that Θ is finite
• private value assumption, for now: ( − ) instead of ( − )

 (1     )

definition: type of player  = 
pure strategy :  : Θ → 
pure strategy Bayesian Nash equilibrium

Θ =

Y
=1

Θ type space, or set of states of the world

mixed strategy : probability distribution over functions (the pure strategies); not used very often

assumption that the conditional expected payoffs exist and can be computed (conditions on  and on )

interpretation of each type of a player as a distinct player; in the above example, each type of player 2

has a dominant strategy

Example 29 This problem appeared on the 2014 midterm. Consider the following two-player game of

incomplete information:

1/2 L R

T 1 2 1 1
2

B 1
2
 0 0−1

It is common knowledge among the two players that player 1’s type 1 and player 2’s type 2 are inde-

pendently drawn from the uniform distribution on [0 1]. Derive a pure strategy Bayesian-Nash equilibrium

in this game.

It is clear that player 1 should choose T if 1 
1
2
. We conjecture a strategy for him as follows:

 if 1  ∗1
 if 1  ∗1

Similarly, We conjecture the following strategy for player 2:

 if 2  ∗2
 if 2  ∗2

We solve for ∗1 and 
∗
2 by noting that each player should be indifferent between his two choices at this value

of his type:

1 : ∗1 (1− ∗2) + 1 · ∗2 =
1− ∗2
2

⇔ ∗1 − ∗1
∗
2 =

1

2
− 3

∗
2

2

and

2 : ∗2 (1− ∗1) + 0 · ∗1 =
1

2
(1− ∗1)− 1 · ∗1

⇔ ∗2 − ∗1
∗
2 =

1

2
− 3

∗
1

2
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Subtracting the two equations produces

∗1 − ∗2 = −3
∗
2

2
+
3∗1
2
⇔

0 = −
∗
2

2
+

∗1
2
⇔

∗1 = ∗2

Substituting into the equation for player 1 produces

∗1 − ∗21 =
1

2
− 3

∗
1

2
⇔

0 = 2∗21 − 5∗1 + 1

∗1 =
5±√25− 8

4
=
5±√17

4

The only solution that is meaningful is

5−√17
4

≈ 0104

Example 30 8.E.2. Two firms jointly share their research outputs. They might be envisioned as divisions

of the same firm. Each firm can independently choose to spend  ∈ (0 1) to develop the "zigger", a device that
is then made available to the other firm. Firm ’s type is , which is believed by firm − to be independently
drawn from the uniform distribution on [0 1].

 ∈ (0 1): This assumption insures that a firm may want to provide the zigger on its own, which makes

the model interesting. If  = 0, then both firms surely want to provide the zigger, and if  ≥ 1, then neither
firm would ever choose to provide the zigger.

value of the zigger to firm : 2
payoff if the zigger is not provided: 0

payoff if it builds the zigger: 2 − 

payoff if it does not build the zigger but firm − does: 2
 : [0 1]→ { }
Let − denote the probability that firm − produces the zigger, given its strategy −
firm ’s utility given its decision and its type :

 : 2 − 

 : −
2


Firm  should thus provide the zigger only if

2 −  ≥ −
2


(1− −)
2
 ≥ 

 ≥
r



1− −

Firm  thus uses a cutoff strategy. A similar analysis applies to firm −. Let b be the cutoff point for
firm . We have:

 = 1− b = 1−r 

1− −

= 1−
s

b−
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Therefore

b =

s
b−b2b− = 

and symmetrically,

 = bb2−
Canceling,

b2b− =  = bb2−b = b−
i.e., the only equilibrium is symmetric. Substituting into an equation above impliesb = b− = 

1
3

Where is the cost of free riding? The zigger should be provided by one of the two firms if

21 + 22 ≥ 

Graph and compare 21 + 22 = , b = 
1
3 ,b− = .

Note: Because  ∈ (0 1),

1
2  

1
3

January 29, 2014

Example 31 Derivation of an Equilibrium in the First Price Sealed Bid Auction with Uniformly Distributed

Private Values

 bidders, with the valuation  of bidder  independently drawn from the uniform distibution on [0 1]

 = : bidder ’s type  is his valuation , which he knows privately.

We wish to solve for a common rule  : [0 1] → [0 1] that defines a Bayesian Nash equilibrium (() =

 ())

Assumption:  is strictly increasing and differentiable (the answer we come up with will have this property)

Condition for equilibrium: for each  ∈ [0 1] () =  maximizes

( ) = ( − )
¡
−1 ()

¢−1
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Note: the assumption that  is increasing is used in this formula.

Two distinct ways of deriving a formula for () are presented below. The first is straightforward as an

approach, the second is more clever and ultimately simpler.

FOC:

− ¡−1 ()¢−1 + ( − )

∙
(− 1) ¡−1 ()¢−2µ 1

0 (−1 ())

¶¸
= 0

Satisfied at () = :

− ¡−1 (())¢−1 + ( − ())

∙
(− 1) ¡−1 (())¢−2µ 1

0 (−1 (()))

¶¸
= 0

− ()−1 + ( − ())

∙
(− 1) ()−2

µ
1

0 ()

¶¸
= 0

( − ())
h
(− 1) ()−2

i
= −1 0 ()

(− 1) ()−1 = −1 0 () + () (− 1) ()−2µ
− 1


¶



()


=





£
−1  ()

¤
µ
− 1


¶
()


= −1  () + 

Argue:  = 0 by substituting  = 0 into the equation. Reducing, we then obtain

() =
(− 1)
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