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Infinitely Repeated Games

Recall the following theorem

Theorem 72 If a game has a unique Nash equilibrium, then its finite repetition has a unique SPNE.

Our intuition, however, is that long-term relationships may be fundamentally different from one-shot

meetings. This is one of the reasons that we consider infinite repetitions of games. Infinitely repeated

games also model a long-term relationship in which the players do not know a priori when they will stop

repeating the game: there is no pre-ordained number of repetitions.

Recall the terminology: The game that is being repeated is the stage game. The stages of the game

are  = 0, 1, 2, .... An infinitely repeated game is also sometimes called a supergame.

How players evaluate payoffs in infinitely repeated games. A player receives an infinite number of

payoffs in the game corresponding to the infinite number of plays of the stage game. We need a way to

calculate a finite payoff from this infinite stream of payoffs in order that a player can compare his strategies

in the infinitely repeated game.

There are two alternative approaches. Let  denote the payoff that player  receives in the th stage of

the game.

The most widely used approach is discounted payoffs. Let  denote player ’s discount factor. Player

 evaluates the infinite sequence of payoffs

0 1 2 

as the sum ∞X
=0



This will be a finite number as long as (||)∞=0 is bounded above. This discounted sum is typically modified
by putting (1− ) in front,

(1− )

∞X
=0



This is a renormalization of utility that doesn’t change player ’s ranking of any two infinite sequences of

payoffs. The (1− ) insures that player  evaluates the sequence in which he receives a constant  in each

period as , i.e.,

(1− )

∞X
=0

 = (1− )

∞X
=0



= (1− )
1

(1− )
= 

where we have applied the formula for the sum of a geometric series.

An alternative approach is limiting average payoffs. It is sometimes simpler to use than discounted

payoffs. This leaves open the question, "Which formula is the best model for a person’s preferences over

time?"

Player  evaluates the infinite sequence of payoffs

0 1 2 

as the limit

lim
→∞

P−1
=0 




The existence of this limit is sometimes a problem. The advantage of this formula, however, is that it is

easy to calculate the limiting payoff if the sequence of payoffs

0 1 2 
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eventually reaches some constant payoff,

 =  for all  ≥ 
0

regardless of the payoffs over stages 0 through 
0−1. We will use limiting average payoffs below in some cases

to simplify the analysis of infinitely repeated games. This approach is particularly useful in introducing the

Folk Theorem.

Example 73 (An Infinitely Repeated Prisoner’s Dilemma) We’ll analyze the game using discounted

payoffs. Consider the following version of the prisoner’s dilemma:

1/2 c nc

c 2,2 -3,3

nc 3,-3 -2,-2

Here, c refers to "cooperate" (not "confess") while nc refers to "don’t cooperate". A theorem that we

stated in the beginning of the class implies that there is a unique SPNE in the finite repetition of this game,

namely   in each and every stage.

This remains an SPNE outcome of the infinitely repeated game. Consider the strategies:

1 : play nc in every stage

2 : play nc in every stage.

Given the other player’s strategy, playing nc maximizes player i’s payoff in each stage of the game and hence

maximizes his discounted payoff (and also his average payoff, if that is how he’s calculating his return in the

infinite game). This isn’t a very interesting equilibrium, however; why bother with infinite repetition if this

is all that we can come up with? In particular, we ask "Can the players sustain c,c as the outcome in each

and every stage of the game as a noncooperative equilibrium"?

Consider the following strategy as played by both players:

1. play c to start the game and as long as both players play c;

2. if any player ever chooses nc, then switch to nc for the rest of the game.

This is a trigger strategy in the sense that bad behavior (i.e., playing nc) by either player triggers the

punishment of playing nc in the remainder of the game. It is sometimes also called a "grim" trigger strategy

to emphasize how unforgiving it is: if either player ever chooses nc, then player i will punish his opponent

forever.

Does the use of this trigger strategy define an SPNE? Playing c in any stage does not maximize a player’s

payoff in that stage (nc is the best response within a stage). Suppose player i starts with this strategy and

considers deviating in stage k to receive a payoff of 3 instead of 2. Thereafter, his opponent chooses nc,

and so he will also choose nc in the remainder of the game. The use of trigger strategies therefore defines

a Nash equilibrium if and only if the equilibrium payoff of 2 in each stage is at least as large as the payoff

from deviating to nc in stage k and ever thereafter:

(1− )

∞X
=0

 · 2 ≥ (1− )

"
−1X
=0

 · 2 +  · 3 +
∞X

=+1

 · (−2)
#
⇔

∞X
=

 · 2 ≥  · 3 +
∞X

=+1

 · (−2)⇔

∞X
=

 · 2 ≥  · 3 +
∞X

=+1

 · (−2) cancel the first k terms

⇔
∞X
=0

 · 2 ≥ 3 +
∞X
=1

 · (−2) cancel 

2

1− 
≥ 3 +



1− 
(−2)

2 ≥ 3− 3 − 2
5 ≥ 1

 ≥ 1

5
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Deviating from the trigger strategy produces a one-time bonus of changing one’s stage payoff from 2 to 3.

The cost, however, is a lower payoff ever after. We see that the one-time bonus is worthwhile for player i

only if his discount factor is low (  15), so that he doesn’t put much weight upon the low payoffs in the

future.

When each  ≥ 15, do the trigger strategies define a subgame perfect Nash equilibrium (in addition to

being a Nash equilibrium)? Yes.

A subgame of the infinitely repeated game is determined by a history, or a finite sequence of plays of the

game. There are two kinds of histories to consider:

1. If each player chose c in each stage of the history, then the trigger strategies remain in effect and define

a Nash equilibrium in the subgame.

2. If some player has chosen nc in the history, then the two players use the strategies

1 : play nc in every stage

2 : play nc in every stage.

in the subgame. As we discussed above, this is a Nash equilibrium.

Therefore, whichever of the two kinds of history we have, the strategies define a Nash equilibrium in

the subgame. The trigger strategies therefore define a subgame perfect Nash equilibrium whenever they

define a Nash equilibrium.

Recall the fundamental importance of the Prisoner’s Dilemma: it illustrates quite simply the contrast

between self-interested behavior and mutually beneficial behavior. The play of nc,nc instead of c,c represents

the cost of noncooperative behavior in comparison to what the two players can achieve if they instead were able

to cooperate. What we’ve shown is that that the cooperative outcome can be sustained as a noncooperative

equilibrium in a long-term relationship provided that the players care enough about future payoffs.

A General Analysis

We let (1 2) denote a Nash equilibrium of the stage game with corresponding payoffs (1 2). Suppose

that the choice of strategies (∗1 
∗
2) would produce the payoffs (

∗
1 
∗
2) where

∗  

for each player . The strategies (∗1 
∗
2) would therefore produce a better outcome for each player. The

strategies (∗1 
∗
2) are not a Nash equilibrium, however; when player − chooses ∗−, the maximal payoff that

player  can achieve by changing his strategy away from ∗ is   ∗ . Note that we are assuming that

  ∗   (1)

Can trigger strategies sustain the use of the strategies (∗1 
∗
2) in each and every stage of the game? The

trigger strategy here for each player  is:

1. play ∗ to start the game and as long as both players play (
∗
1 
∗
2);

2. if any player ever deviates from the pair (∗1 
∗
2) then switch to  for every stage in the remainder of

the game.

We’ll calculate a lower bound on  that is sufficient to insure that player  will not deviate from ∗ .
Suppose player  deviates from ∗ in stage . We make two observations:

1. Player − switches to − in each stage   . Player ’s best response is to choose  in each stage

after the th (recall our assumption that (1 2) is a Nash equilibrium).

2. The maximal payoff that player  can gain in the th stage is  (by assumption).
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The following inequality is therefore necessary and sufficient for player  to prefer his trigger strategy to

the deviation that we are considering:

(1− )

∞X
=0

 · ∗ ≥ (1− )

"
−1X
=0

 · ∗ +  ·  +
∞X

=+1

 · 
#
⇔

∞X
=

 · ∗ ≥  ·  +
∞X

=+1

 ·  ⇔

∞X
=

 · ∗ ≥  ·  +
∞X

=+1

 ·  cancel the first k terms

⇔
∞X
=0

 · ∗ ≥  +

∞X
=1

 ·  cancel 

∗
1− 

≥  +


1− 
· 

∗ ≥  (1− ) + 

∗ −  ≥  ( − )

 − ∗ ≤  ( − )

 ≥  − ∗
 − 

applying (1)

As in the previous example, we have obtained a lower bound on  that is sufficient to insure that player 

will not deviate from his trigger strategy given that the other player uses his trigger strategy.

Several observations are in order:

1. The analysis focuses on a single player at a time and exclusively on his payoffs. The bound thus

extends immediately to stage games with   2 players. The assumption that there are two players

has no role in the above analysis.

2. Notice that any player who deviates from the "better" strategies (∗1 
∗
2) triggers the switch by both

players to the Nash equilibrium strategies (1 2). This is unfair in the sense that both players suffer

from the bad behavior of one of the two players (it is part of the definition of equilibrium).

3. If  ≤ ∗ , then player  has no incentive to deviate from ∗ (he doesn’t even get a one-stage "bonus"
from ending the play of (∗1 

∗
2) for the rest of the game). We thus don’t have to worry about player

’s willingness to stick to his trigger strategy regardless of the value of his discount factor.

Example 74 Consider the following stage game:

1\2 L C R

T 1,-1 2,1 1,0

M 3,4 0,1 -3,2

B 4,-5 -1,3 1,1

The unique pure strategy Nash equilibrium is T,C, which gives the payoffs 2,1. Both players prefer

the outcome 3,4 determined by the play of M,L, which isn’t a Nash equilibrium. We consider the trigger

strategies

• Player 1: Play M to start the game and as long as the strategies M,L are played; if M,L is ever not

played, then switch to T for all future stages of the game.

• Player 2: Play L to start the game and as long as the strategies M,L are played; if M,L is ever not
played, then switch to C for all future stages of the game.

From above we have the following bound on player 1’s discount factor:

1 ≥ 1 − ∗1
1 − 1

=
4− 3
4− 2 =

1

2

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If 1 ≥ 12, then player 1’s trigger strategy is a best response to player 2’s trigger strategy. Given that

player 1 plays M, player 2’s best response is L (he has no reason to switch to any other strategy). Player

2’s trigger strategy is thus a best response to player 1’s trigger strategy for all values of 2.

An Application in Industrial Organization

One form of collusive behavior among firms is to restrict output in order to keep the price of the product high.

This is a goal of the OPEC oil cartel, for instance: member countries have output quotas that are mutually

negotiated within the cartel with an eye toward keeping the price of oil at a desired level. Economists

have often claimed that cartels and collusive behavior are fundamentally unstable and hence unlikely to

endure for the long-term. The argument essentially is that collusive agreements are not Nash equilibria and

member firms or countries have the incentive to cheat on the common agreement in pursuit of their own

self-interests. This causes the cartel to break down. A footnote to this is that agreements within a nation

among firms may violate antitrust laws. The firms therefore have no legal means of contracting among

themselves or appealing to the courts for punishment if one or more firms fails to live up to its obligations

to the cartel. Similar concerns apply for cartels of nations who have no over-arching government that can

enforce the mutually beneficial arrangement.

How then do we explain the fact that OPEC has for the most part succeeded for over 50 years in

influencing the global price of oil? Or how do we explain the documented existence of cartels among

industries (such as railroads in the U.S. in the late 19th century)? Our model above suggests an answer. A

collusive arrangement provides each firm with a larger profit than the competitive outcome. The collusive

arrangement is a noncooperative equilibrium in a long-term relationship, provided that each firm cares

enough about future profits.

Example 75 (Cournot Duopoly) We illustrate the point in a simple example. There are two identical

firms that produce the same product. Let  denote the output of firm . The market price for the aggregate

output  = 1 + 2 is determined by the inverse demand function

() = 14− 

The cost function of each firm  is

() =
2
4


The profit function of firm  is therefore

( −) = (14− (1 + 2))  − 2
4


The Nash equilibrium outputs. We solve for a Nash equilibrium by setting  = 0 for each

firm :

1

1
= (14− (1 + 2))− 1 − 1

2
= 0

2

2
= (14− (1 + 2))− 2 − 2

2
= 0

or

14− 51
2
− 2 = 0

14− 1 − 52
2

= 0

This implies

14− 51
2
− 2 = 14− 1 − 52

2
or 1 = 2. Substitution into either equation implies

14− 51
2
− 1 = 0

14 =
7

2
1 ⇒

1 = 2 = 4
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From above we see that




( − = 4) = (14− ( + 4))− 3

2

= 10− 5
2

which changes from positive to negative at  = 4. This verifies that 1 = 2 = 4 is a Nash equilibrium.

The Nash equilibrium profit for each firm is

(14− (8)) 4− 16
4
= 24− 4 = 20

A better outcome for the firms. We now calculate the outputs 1 2 that maximize the sum of the

profits for the two firms:

1(1 2) + 2(1 2) = (14− (1 + 2)) (1 + 2)− 21
4
− 22
4


0 =


1
= (14− (1 + 2))− (1 + 2)− 1

2

0 = 14− 51
2
− 22

0 =


2
= 14− 21 − 52

2

Again, we have 1 = 2. Solving using either partial derivative implies

0 = 14− 9
2


or 1 = 2 =
28
9


I don’t want to work with such awful fractions. These numbers suggest that both firms would obtain a

higher profit than in the Nash equilibrium by choosing 1 = 2 = 3 (which is close to 289). Let’s check:

(14− 6) 3− 9
4
= 24− 9

4
=
87

4
 20

If firm − produces 3, then how much profit can firm  obtain by deviating? Firm  maximizes

( 3) = (14− ( + 3))  − 2
4

= (11− )  − 2
4

= 11 − 5
2


4

0 =



= 11− 5

2
⇒  =

22

5

The marginal profit changes sign at  =
22
5
, and so it indeed maximizes profit. The maximally profitable

deviation therefore produces a profit of



µ
22

5
 3

¶
=

22

5

µ
11− 5

4
· 22
5

¶
=

22

5

µ
11

2

¶
=

121

5


51



Implementation of the superior outcome. Each firm  adopts the following strategy: Choose  = 3

to start the game and as long as each firm produces 3 units in each stage game. If any output is observed

by either firm other than 3, then switch to  = 4 for every stage in the remainder of the game.

The Nash equilibrium profit is

 = 20

a "collusive" outcome produces the profit

∗ =
85

4


and each firm can deviate from the collusive output of 3 to obtain

 =
121

5

The use of this trigger strategy by each firm defines a subgame perfect Nash equilibrium in the infinitely

repeated Cournot duopoly game if each firm ’s discount factor  satisfies

 ≥  − ∗
 − 

=
121
5
− 87

4
121
5
− 20 =

121
5
− 87

4
21
5

=
484− 435

84
=
49

84
=
7

12


Several Observations:

• The relevance of this result in the theory of repeated games to explaining how collusion occurs despite
the absence of legal structures to enforce the collusive agreement was first noted by Jim Friedman.

• Are trigger strategies realistic? We in fact see cartels sustaining their collusive behavior through mutual
punishment if anyone member cheats on the collusive agreement. As the member of OPEC with the

greatest reserves and capacity, Saudi Arabia plays the role of enforcer in the following sense. Suppose

some nation cheats by producing beyond its OPEC-negotiated quota. Saudi Arabia opens its taps and

floods the world market with oil, punishing all members with a lower price for oil and correspondingly

low profits. After a period of punishment, the cartel gets its act together and reinstitutes a collusive

agreement. Such flooding of the market has happened several times in the history of OPEC. It is the

tool or threat that Saudi Arabia has to keep the member countries in line.

• The preceding story about punishment, however, does not correspond to an equilibrium in trigger

strategies. Notice that: (i) in an equilibrium with trigger strategies, the firms collude and never revert

to the Nash equilibrium outputs; (ii) if the firms ever did switch to the Nash equilibrium outputs,

they would do so forever and would never reestablish the collusive outcome. These issues have been

addressed in a paper by Ed Green and Rob Porter.2 Each firm in this paper observes the market

price and not the output of the other firm. Moreover, there is a random or stochastic element to

market demand in their model; a decline in the market price may therefore be caused by an increase in

production by a firm or simply by a random decline to demand. Green and Porter construct equilibria

of the infinitely repeated game in which:

— Each firm starts out producing at a collusive level;

— A market price that falls below a target e causes the two firms to enter a punishment phase in
which they each choose larger and less profitable outputs for  stages;

— After the  stages of the punishment phase, each firm returns to its collusive output level.

The target price e and the length  of the punishment phase are part of the construction of the

equilibrium. Their equilibrium has the property that (i) periods of intense competition through

overproduction between the two firms occur with positive probability during the infinitely repeated

game, and (ii) after a punishment phase, the firms reestablish their collusive agreement (that is, until it

breaks down again). In equilibrium, no firm ever deviates from the collusive output in non-punishment

stages; the punishment phases occur with positive probability, however, because of random declines in

the market price.

2Edward J. Green and Robert H. Porter, "Noncooperative Collusion Under Imperfect Price Information", Econometrica,

Vol. 52 (1984), p. 87-100.

52



Minmax values

Our definition of a trigger strategy has a player switch to a Nash equilibrium strategy in the event that

punishment is triggered in the game. Assuming that the discount factors are sufficiently large so that the

trigger strategies form a Nash equilibrium, the assumption that the players switch to a Nash equilibrium

if punishment is triggered insures that the equilibrium is subgame perfect, i.e., the punishment is credible.

We can obtain a smaller "lower bound" on the discount factor for Nash equilibrium if we dispense with the

requirement of subgame perfection. Let’s think instead about the worst punishment that one player can

impose on the other because this will serve as the most effective deterrent.

Player ’s minmax value  is the lowest payoff in the stage game that player − can impose on him
through his choice of a strategy − given that player  can choose his own strategy to maximize his own
payoff:

 = min
−

max


 ( −) 

Here,  ( −) is the payoff to player  in the stage game given the strategy profile ( −). The "max"
represents the capability of player  to choose his own strategy  to maximize his payoff given the other

player’s strategy −, and the "min" represents player −’s choice of − minimize this "best response" payoff
for player . Let e− denote the strategy of player − at which the minmax value is obtained. The strategye− is the worst choice of a strategy by player − from the perspective of player . Existence of e− is not a
problem in finite games.

Notice that player  cannot receive less than his minmax value in any Nash equilibrium of the stage game.

The value  is the lowest payoff that player  receives when he chooses his strategy in his own best interest.

We can of course define a minmax value − for player − and the strategy e. For a desired outcome
(∗1 

∗
2) in the stage game with corresponding payoffs (

∗
1 
∗
2), define the trigger strategy of player  as follows:

Player : Choose ∗ to start the game and as long as (
∗
1 
∗
2) is played by the players; if (

∗
1 
∗
2) is ever

not played, then switch to e for ever more.
The choice of e in every future stage is the worst thing that player  can do to player − and it therefore

is the most effective deterrent. Similar remarks hold for player −’s choice of e−. We obtain a different

and looser lower bound on the discount factors in this case. Player  compares his payoff if he follows his

trigger strategy to his best possible deviation in stage  (assuming that   ∗ ):

(1− )

∞X
=0

 · ∗ ≥ (1− )

"
−1X
=0

 · ∗ +  ·  +
∞X

=+1

 ·

#
⇔

 ≥  − ∗
 −

We substitute his minmax payoff for his Nash equilibrium payoff . Notice that

 − ∗
 −

≤  − ∗
 − 

because  ≤  (a player’s minmax value is less than or equal to his payoff in any Nash equilibrium).

These new trigger strategies do not necessarily form a subgame perfect Nash equilibrium when they do

form a Nash equilibrium. Consider a history in which (∗1 
∗
2) does not occur in some stage. In the subgame

defined by that history, the strategies specify that the players play (e e−) in each and every stage. This

need not define a Nash equilibrium in the subgame (in particular, there is no reason that e must be a best
response to e− in the stage game).
Through the use of a more severe punishment by each player in their trigger strategies, we have obtained

a lower bound on the discount factor  that is sufficient to insure that (
∗
1 
∗
2) is played in each and every

stage of a Nash equilibrium of the supergame. We have sacrificed subgame perfection of the equilibrium,

however, in that punishment may not be credible.

As a final point, note that the analysis would change further if we considered mixed strategies. Such

strategies can lower or raise a player’s minmax value (the set of strategies over which the min is taken is

increased in size, but so is the set of strategies over which the max is taken). This really doesn’t change

any of the ideas that we are discussing, however, and so we’ll stick to the case of pure strategies.
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Example 76 Let’s reconsider the following stage game:

1\2 L C R

T 1,-1 2,1 1,0

M 3,4 0,1 -3,2

B 4,-5 -1,3 1,1

We’d like to implement (3 4) as the outcome in each stage. As above, we don’t need to worry about

player 2 deviating from his trigger strategy. Let’s focus on player 1’s minmax value 1 and the strategy e2
that player 2 should use if he really wants to hurt player 1:

1 = 1 e2 = 

Before we had the following bound on player 1’s discount factor:

1 ≥ 1 − ∗1
1 − 1

=
4− 3
4− 2 =

1

2


If player 2 punishes with R instead of C, we have the bound

1 ≥ 1 − ∗1
1 −1

=
4− 3
4− 1 =

1

3


A Version of the Folk Theorem

We’ve discussed implementing as a Nash in the supergame any outcome that gives each player a larger per

stage payoff than he receives in a Nash equilibrium of the stage game. Let’s return to the prisoner’s dilemma

and depict graphically all of the possible payoffs of the players in the supergame. This discussion will be

easier if we now switch to limiting average payoffs as the method used by players to calculate their payoffs

in the infinitely repeated game.

1/2 c nc

c 2,2 -3,3

nc 3,-3 -2,-2

The average payoffs of the two players in the supergame is a point in the convex hull of the four pairs

(2 2), (−3 3), (3−3), and (−2−2):

The Folk Theorem describes the points in this convex hull that can result from the play of Nash equilibria

in the supergame. The term "Folk" refers to the fact that the result was known in the small community

of game theorists in the 1960s before anyone wrote it down or formalized the proof. It was like a "folk"

song, whose origin in unknown and which is passed among people by oral communication. It would really

be more correct to say "a" Folk Theorem because there are variations that depend upon how payoffs are

calculated in the supergame, whether or not a refinement of Nash equilibrium such as subgame perfection
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is added, etc.. We’ll discuss some of these alternative versions after presenting result in the simple case of

average payoffs.

The average payoff in an equilibrium is a weighted average of the four outcomes (2 2), (−3 3), (3−3),
and (−2−2) where the weights reflect the frequency with which the different outcomes are played in the
equilibrium. We note first that each player cannot receive less than his minmax value as his average payoff

in the supergame. This is true because given the strategy of his opponent, he can always choose a strategy

in each stage so that he receives at least his minmax payoff. The possible equilibrium average payoffs of

the infinitely repeated game are therefore bounded below by the pair (12), which in this game equals

(−2−2):

The Folk Theorem that we are discussing here states that any point (∗1 
∗
2) in this shaded region is the

average payoff in some Nash equilibrium of the supergame.

The idea will be clear from considering a point (∗1 
∗
2) in which both entries are rational numbers. As

rational numbers, the vector (∗1 
∗
2) can be written as

(∗1 
∗
2) = 1(2 2) + 2(−3 3) + 3(3−3) + 4(−2−2)

where each  is a nonnegative rational number such that

1 + 2 + 3 + 4 = 1

Let  ∈ N denote a common denominator for these four rational numbers. We consider a "cycle" C consisting
of  stages in which each of the four outcomes (2 2) (−3 3) (3−3) (−2−2) is played with the frequency
determined by the numerator of  once the common demominator  has been chosen. The order in which

the outcomes are played can be chosen arbitrarily, but the order is fixed and known to the players as part

of their strategies. We consider the following trigger strategy for each player :

Start the game by selecting the strategy specified by the first outcome in the cycle C. Follow the cycle
again and again unless at some stage the outcome specified by the cycle C is not played. In this case, switch
to e ever after.
It is easy to see that this is a Nash equilibrium when players evaluate their sequence of payoffs in the

infinitely repeated game using the limiting average method:

• Consider the prisoner’s dilemma game above. By following the cycle, player  receives each of the

four outcomes with frequencies as specified by the cycle, resulting in an average payoff of ∗ . By

deviating from the cycle, he receives at most  in every stage of some infinite tail (depending on when

he deviates from the cycle), resulting in an average payoff of . Because by assumption  ≤ ∗ for
each player , the trigger strategies form a Nash equilibrium.

• Read over the last bullet point. It reflects the prisoner’s dilemma only insofar as it mentions four

outcomes of the game. A different convex hull would be drawn for each different stage game, and
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(depending on the size of the game) a cycle might involve many more than four different outcomes.

The principle, however, remains the same: because by assumption  ≤ ∗ for each player , the
trigger strategies form a Nash equilibrium.

• In general, the trigger strategies that we have defined will not define a subgame perfect Nash equilibrium
because the play of (e1 e2) need not form a Nash equilibrium off the equilibrium path. In the case

of the prisoner’s dilemma, however, (e1 e2) = ( ), which is a Nash equilibrium of the stage game.

The play of (e1 e2) = ( ) is a Nash equilibrium of the supergame with limiting average payoffs,

and so the trigger strategies form an SPNE in this case.

• What if the objective (∗1 ∗2) consists of a pair of irrational numbers? Consider a sequence of rational

pairs

(1 

2)∈N → (∗1 

∗
2)

For each , one constructs a cycle C that implements (1 2) as the average payoffs over the play of
C. The trigger strategies then specify that the players move successively through C1 C2  as the
game is played, again with the threat of (e1 e2) if any one ever fails to play according to the specified
cycles. We will not pursue this more thoroughly because it seems to be mainly a point of mathematical

interest.

• Returning to discounted payoffs, can we implement (∗1 ∗2)? This is a little tricky because the

discounting must be taken into account in selecting the cycle (i.e., the discounted payoffs over the cycle

are (∗1 
∗
2)). But the result extends: if (

∗
1 
∗
2) ≥ (12), and if the discount factors of the traders

are sufficiently large, then there exists a Nash equilibrium of the supergame whose discounted payoffs

are (∗1 
∗
2).

• There are many versions of the folk theorem. They differ mainly by the solution concept used (i.e.,

what properties one wants the equilibrium to have that implements the particular payoffs). If you

are interested in learning more about this topic, consult the text "Repeated Games and Reputations:

Long-Run Relationships" by George Mailath and Larry Samuelson.
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