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PREFACE

This primer rigorously introduces the auction model of “risk neutral bidders with
independent private values’. The model is central to auction theory, and its structure is
the same as a many models used in information economics. Results are derived regarding
the nature of equilibria, the effects of entry fees and reserve prices, revenue equivaence,
and the design of optimal auctions. Wdely applicable concepts are emphasized, such as
revealed preference logic, the single-crossing property, and the Revelation Principle.
Intended readers are economics graduate and advanced undergraduate students, and all

economists who want to examine auction theory in detail.
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1. ENVIRONMENT

The environment has one seller and several potential buyers.1 The sdller initially owns a
single, indivisible object. The seller does not know how much any buyer would be
willing to pay for it. If the seller were to know each buyer’s value for the object, she
could just approach the buyer who values it most and bargain with him over aprice. This
strategy is infeasible when she does not know their values. The reason the seller holds an
auction is because her information about the possible buyers isimperfect; the auction is

intended to produce the best sale price in part by identifying the best buyer.

The number of potential buyersisn > 1, which is commonly known. Even so, abuyer
need not know when he bids how many other buyers also submit bids — some buyers
might choose to not bid. We adopt the usual misleading practice of referring to a
potential buyer asa“bidder,” even though he need not bid.

The remaining assumptions describe a simple environment in which we can easily study

auctions. These assumptions are plausible for some, but not all, situations.

(A1) Privatevalues: The private information of abidder is his own value for

the object, and it does not depend on what the other bidders know.

The value of bidder i, denoted v;, is the maximum amount of money he would be willing
to pay for the obj ect.? Assumption (A1) states that a bidder’s value is known only to
himself, and that it is hisonly private information. Everything else in the model is
commonly known to everybody (including assumption (A1) and those that follow). In
game theory jargon, v; is the type of bidder i. When the identity of the bidder is

unimportant, we may refer to any bidder whose value is some v as atype v bidder.

Assumption (A1) applies, e.g., to art auctions if each bidder knows his own personal
evaluation of a painting, regardless of what the others might think. The key aspect of
(A1) isthat abidder’s value should not change if he were to learn another bidder’ s private

information. Thus, (A1) applies even if abidder is uncertain about his value, aslong as
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its expectation (estimate) does not depend on the other bidders' information. (If a bidder

is uncertain about hisvalue, v; isto be interpreted as his estimated value.)

[An example of an auction for which (A1) isless sensibleisan oil tract auction. Each
bidder for an oil tract istypically allowed to privately conduct seismic testing of the tract
before bidding. A bidder’s (estimated) value depends on the test results. Plausibly, the
bidder would form a different estimate of the amount of oil contained in the tract if he

were to also learn the test results of other bidders. Thiswould violate (Al).3]

(A2) Independent types: vy, ..., v, are independently distributed.

Recall from (A1) that each bidder isignorant of the others’ types. We make the
“Bayesian” assumption that bidder i believesvy,..., Vi_y, Vi, 1,..., V,, are random variables
to which he can attribute ajoint probability distribution. Assumption (A2) requires each
bidder to believe the others’ types are distributed independently of hisown. Knowing his
own type does not tell a bidder anything about the others' types; thus, the beliefs of one

bidder about the actions of the others will not be a function of his own type.

Assumption (A2) is, e.g., sensible for art auctions. [Like (A1), it isnot so sensible for oil

auctions. If the test results of one bidder in an oil auction suggest alot of oil, chances are
high that the other bidders also received positive test results. In this case the bidders have
dependent typ&.‘l]

(A3) Symmetry: Each random variable v, has the same distribution F(-).5

The symmetry assumption says two things. First, each pair of bidders have the same
beliefs about how the value of athird bidder is distributed. Second, each single bidder
believes that the values of any pair of other bidders are identically distributed.

(A4) Riskneutrality: The biddersarerisk neutral.

Assumption (A4) implies that each bidder maximizes expected profit. In most of the

auctions we shall consider, a bidder pays some amount p,, if he wins the auction and
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another amount p, if heloses. Given that the bidder values the object at v; dollars, his

profitisv; —p,, if hewinsand —, if he loses. His expected profit is therefore
Priwin] (v, —p,,) + Pr[lose] (0,). (1.1

The probabilities Pr[i wins] and Pr[i loses], and payments p,,, and p,, depend on the rules

of the auction and the behavior of the bidders. Bidder i acts to maximize (1.1).6

The seller is assumed to be risk neutral. Her value, vg, isthe minimum amount of money
sheiswilling to accept for the object, her “opportunity cost” of relinquishing it (or

porducing it to order). Though not often pertinent, vgis assumed to be commonly known.

2. FOUR STANDARD AUCTIONS

1. Second Price Auction (SPA). The bidders simultaneously submit sealed bids.
The high bidder wins and pays a price equal to the second highest bid. This
auction wasinvented in 1961 by William Vickrey. Though rarely used,’ second
price auctions are of central theoretical importance.

2. English Auction (EA). Bidsareora. The auctioneer starts the bidding at some
price. The bidders proclaim successively higher bids until no bidder iswilling
to bid higher. The bidder who submitted the final bid wins and pays a price
equal to hishid. Thisauction iscommonly used for art, used cars, €etc.

3. First Price Auction (FPA). The bidders simultaneously submit sealed bids. The
high bidder wins and pays a price equal to hisbid. Thisauction iscommonly
used for selling mineral rights, e.g., oil tract leases.

4. Dutch Auction (DA). The price continuously declines on a“wheel” in front of
the bidders until one yells“stop.” That bidder wins and pays the price at which
the wheel stopped. Thisauction is used to sell flowersin Holland.

Each auction has arule for breaking ties. For modeling purposes, where we abstract from
such things as personalities and bargaining skills, the appropriate assumption in our
symmetric environment is that ties are broken without bias. A k-way tie is decided by

flipping a“k-sided coin”; each of the high bidders wins with probability 1/k.
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A reserve price, denoted by r, is one parameter of each auction. Thisisanumber which
determines the lower bound on acceptable bids. In the first and second price auctions, all
submitted bids must be greater than or equal to r; no sale occursif no such bids are
submitted. In the second price auction the reserve price will be the price the winning
bidder paysif heisthe only one to submit abid (r isthen, in a sense, the second highest
“bid”). Inthe English auction the auctioneer starts the bidding at r, and no sale occursiif
no bidder iswilling to bid at least that much. In the Dutch auction, no sale occursif no
bidder stops the wheel before the price dropstor. In each auction we assume the reserve

price is announced before the bidding starts, so that all bidders know it before they bid.

An entry fee, denoted by c, is another parameter of each auction. Thisisan amount a
bidder must pay in order to submit abid. Each bidder i knows his value v; before he must

decide whether to participate in the auction by paying the entry fee c.

If we want to be explicit about the reserve price r and entry fee ¢, we write SPA(r, ¢),

EA(r, ¢), FPA(r, c), or DA(r, c) for the different auctions.

Other rules for auctions can be concocted. Each bidder might be paid an amount that
depends on his bid; or the ki highest bid might win; or the winner might pay the sum of
al bids; or al bidders might pay the amount of their own bids; or .... Such auctions
might seem crazy, but they must be — and will be — considered in order to determine an

“optimal auction,” e.g., one that maximizes the seller’s expected profit.

3. PROBABILITY PRELIMINARIES

Asanormalization, assume each v; isin the interval [0, 1].

Weusea“~" to emphasize randomness. Thus, V; is, to the seller and the biddersj # i, the
random variable whose realization is the value of bidder i. The distribution H(-) of V. isa

nondecreasing function giving the probability that V; isin intervals of the form (—o, V]:

F(v) = Pr[v, < V].
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Since Vi issurely in [0, 1], we know F(0) =0 and F(1) = 1.

Assume F(-) has a continuous and positive derivative on [0, 1], the density function
f(-) =F (). Thus, v, is"continuously distributed.” Given any number v, the probability
that V. is equal to v is zero. Consequently,

Priv; <v] = Pr[vi<v] = Rv).

Two derived random variables that will be important are \7(1) and \7(2), the highest and the

n

For v<1, raising nlowersF3)(v) = Rv)™

1

Thus, increasing the sample size n increases the probability of finding \7(1) near its upper
bound, 1. For any positive €, the probability that the highest of the values exceeds 1,

whichis 1—F3)(v) = 1 -F1-€)", increasesto 1 as n— .
Differentiate F(l)(v) to obtain its density function:
fy™) = nF(v)™1(v). (3.2)
Turning to \7(2), the second highest of a sample of size n, its distribution function is
F(V) = PV <V = W) + n[RY)™ - Fv)". (3.3

To derive (3.3), note that it is the sum of the probabilities of n+1 distinct waysin which
the second highest value can be lessthan v. Oneway isif al values arelessthan v; the

term F(v)" is the probability of this event. Another way is for exactly one V; to be greater
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than v; the probability of thisis (1 — F(v))Rv)™1 = Rv)"1 — {v)". Thisterm appearsn

times, one for each i, to yield the second term in (3.3).

Differentiating (3.3) yields the density function of \7(2),
f() = n(-1)RV)™21 - RVITY). (34)
Another useful random variable isy = max(,..., Vi), the maximum of n—1 independent

drawings from the distribution F(-). To bidder 1, this randomYy is the maximum of the

values of the other bidders, with the following distribution and density functions:

G(y) =Ry)™ and g(y) = (-1)Ry)™4(y). (3.5

A simple distribution is the uniform, for which
F(v) =v and {v) =1for every v [0, 1]. (3.6)

A uniform random variable V; is equally likely to be anywherein [0, 1]. Itsmeanisthe
midpoint, E[V.] = 1/2. The maximum \7(1) of asample of size n has the functions:

FyM = V' and  §;,(v) =nvt1, (3.7)
1
E[Vyg)] = OJ’ vimv-lav= D (3.8)

Note that E [\7(1)] increasesto 1 asn - oo, 30\7(1) ismore likely to be near 1 if nislarge.

Similar statements apply to \7(2), the second highest of a sample of n uniform random
variables. Itsdensity and expectation are, respectively,

foy() = n(n—Lv2(1-v), (3.9)
1
E[Yp) = OJ’vf(z)(v)dv: % (3.10)

From (3.8) and (3.10), we obtain the intuitive inequality E [\7(2)] <E [\7(1)] . The
distribution and density functions of y = max(w,..., V,) are

Gy) =y** and g(y) = (n-1y™2. (3.11)
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4. SeconD Price AucTIONS

We begin with the concept of a strategy in any sealed bid auction. Asin any game, a
strategy maps each of a player’sinformation setsinto afeasible action. In aseaed bid
auction, abidder’ s information sets are indexed by histype. So his strategy is afunction

of histype, i.e., afunction b;(-) with domain [0, 1].

The set of actions available to abidder in a sealed bid auction consists of not submitting a
bid, and all the possible bids that can be submitted. We represent this set of actions as
{No} O [r, ). Action“No” denotes not bidding, and the numbersin the interval [r, «)
are the possible acceptable bids (recall that an acceptable bid cannot be less than the
reserve pricer). Thus, astrategy for bidder i isafunction b;(-) mapping [0, 1] to

{No} O [r, «). If b;(v;) = No, the bidder does not bid when his valueisv;; otherwise

b(v;) is the number he submits as his bid.

Consider now SPA(r, c), the second price auction with reserve price r and entry fee c.
Suppose abidder bidsb > r and hasvalue v. Let z be the maximum of the other bidsif
there are any other bids, and otherwiselet z=r. The rules of thisauction imply that this

bidder’s profit is given by the following function:

EO if b<z

Ab,zVv) = [{v-2pb)-c if b=z
V—2Z if b>z
where p(b) isthe probability this bidder winsatie at b. We know that 0 < p(b) < 1; aswe
will see, the nature of p(b) will not matter. The bidder chooses a bid that maximizes his
expected profit. Generaly he will not know the maximum of the other bids, but will
instead view it as arandom variable Z distributed according to some distribution. He

accordingly chooses his bid b to maximize the expected profit,E [A(b, Z, v)].

Our first important result is that if the entry feeis c = 0, then each bidder in the second
price auction has adominant strategy. That is, for each i and v;, thereis abid b(v;) which

isoptimal for the bidder regardless of what he believes the other bidders are doing; it
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maximizesE [A(b, Z, v)] regardless of what distribution of Z is used to take the
expectation. The bidder’s dominant isto bid if and only if his value exceeds the reserve

price, and in that case to bid “truthfully,” i.e., to submit abid equal to hisval ue.®

THEOREM 4.1: Inthe SPA(r, 0), the following is each bidder’ s dominant strategy:°

v ifv>r
b(v):g _
No ifv<r.

PROOF: Consider first thecasev <r. Then “No” (weakly) dominates any bid. To see
this, note that “No” surely yields zero profit. But submitting abid, sincev—r <0 and the
price awinner payswill be at least r, resultsin negative profit if it wins (which it doesif

the other bidders do not bid), and zero profit (asc = 0) if it loses.
Consider now the casev >r.

Contemplate a hypothetical situation in which you are a bidder, and you know that the
highest of your competitors' bidsisanumber z. The number zisthe price you will pay if
you win the auction. Your bid — call it b — determines only whether you win; you win
if b>zandyouloseif b<z If v—z> 0youwant towin, and so any bid b > zis optimal
for you. Thebidb=vissuchahbid. Similarly, if v—z< 0 you want to lose, and so any
bid b < zisoptimal for you. The bid b =vissuch athebid. We now know that if you
know the highest of your competitors' bids, then b = visabest bid for you when your
valueisv. (Bid b =visnot your only best bid, but that isirrelevant.)

Now we consider the situation in which you do not know the highest of your
competitors' bids. Thisstep isactually trivial. The argument in the previous paragraph
does not depend on the precise value of the number z. This means that its conclusion
must be true regardless of what zis: b =visalways optimal. Therefore, even if you do

not know the maximum of your competitors' bids, b = visan optimal bid.
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Thissimple argument is a bit dippery. We clarify it by taking a more formal tack.
Referring back to the expression for abidder’s profit A(b, z, v), consider Figure 4.1. 1t

shows A(b, z, v) asb variesin three different cases. z<v,z=v,andz>v.

$
4 .
vz A(,zV)
{
Z \'
\
$
/'y
A(,zV)
V-2 *—b b
Z=V
v
$
/'y
Z
*} » b
v o
\V4 O—— A(.,Z’V)
\
Figure4.l

The figure shows that in each case, b = v maximizes A(b, z, v), which isthe first step of
the argument presented above. The second step, that in which you don’t know z, follows
from standard Bayesian decision theory. Not knowing z means that you believeitisa
random variable Z with some density function h(-).11 Denote by B(b, V) your expected

profit when you bid b and your valueisv. Then B(b, v) is the expectation of A(b, Z, v):
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—00

B(b,v) = IA(b, z, V)h(z)dz (4.2)

Since density functions are nonnegative, and since we already established in the first step
of the argument that A(b, z, v) < A(v, z, V) for every (b, z, v), we know that

—00 —00

J'A(b, z,Vh(2)dz < IA(b, z, V)h(2)dz. (4.2)

Thus, B(b, v) < B(v, v), so that bid b = v gives you greater expected profit than any other
bid. Because this argument holds regardless of your beliefs about the behavior of your
competitors, i.e., regardless of the nature of the density function h(-), it shows that the

identity function b(v) = v is adominant strategy. ¢ 12

We can now say something about the sale price, i.e., the price paid to the seller by the
winning bidder, in a second price auction. Consider the auction with a zero reserve price
and a zero entry fee: let W2 be the sale price in the SPA(0, 0) when the bidders play their
dominant strategies. These strategies entail truthful bidding, and so the bidder with the
highest value wins and pays a price equal to the second highest value. Thus,

WZ:W@- (4.3)

The expected sale price, E[W2], is the seller’ s expected revenue from holding the auction.

(If her own value for the object isvg=0,E| w2] isalso her expected profit.) From (4.3),

E[W2] =E[Vjp)]- (4.4)

=1

In the uniform case, from (3.10) and (4.4), we see that E[W?] = N+l -

Remark: Second price auctions have other equilibria, though they are not very plausible.
Consider SPA(0, 0). Suppose that regardless of their values, bidders 2,..., n al choose
“No”, and bidder 1 bidsb = 1. Thisisan equilibrium. Given that bidder 1 bidsb = 1,
another bidder will pay a price of 1, which is greater than his value, if he submits abid
that wins. Thus, “No” isindeed abest reply of each of the bidders 2,..., n. Bidder 1, on
the other hand, wins by bidding, and pays the reserve pricer = 0 for the object. Ashis
valueis greater than O, bidding b = 1 isabest reply for him.
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The strategies in this equilibrium are (weakly) dominated. For example, note that bidder
1 would make just as much profit by bidding b = v; as by bidding b = 1, if the other
bidders chose “No” asthey are supposed to do, but that b = v, is strictly better if one of
the other bidders happens to submit a bid greater than v;. One of these bidders just might
“tremble” and submit any bid less than 1, since such bids are also best repliesto the bid

b =1 of bidder 1. If one of the bidders 2,..., n might “tremble” in this way, then bidder 1
takes an unnecessary risk by bidding b =1. Similarly, submitting the bid b =v;
dominates “No” for each of the biddersi = 2,..., n, given that the entry feeis zero.

How does a positive entry fee affect these results? Observe first that truthful bidding is
no longer adominant strategy for any bidder! With an entry fee, the decision whether to
submit a bid depends on how one thinks the others are bidding. For example, if bidder 1
believes some other bidder always submits avery high bid, say b > 1, then bidder 1
cannot win by submitting a bid less than or equal to hisvalue v, < 1. Hence, submitting a

bid guarantees aloss that is no less than the entry fee. Bidder 1's best reply is“No”.

However, it remains true that for any given profile of strategies for the other bidders, if a
bidder’ s best reply isto submit abid, then he can do no better than to bid hisvalue. The
argument the same as before: b; = v; is always no worse, and sometimes better, than any

other bid (even though not bidding might be better).

A positive entry fee also causes bidders with values very close to the reserve price to not
bid. To seethis, notethat if abidder bids, he paysthefeec > 0. Hisprofit gross of this
feeisat most v; —r, sincer isthe lowest price he can pay if hewins. So, if v; isonly

dightly abover, then v; —r < ¢ and the bidder should refrain from bidding.

The marginal value, the value vy which a bidder’s value must exceed in order to find it
worthwhile bidding, must be formally derived as part of the equilibrium. But we can use
our intuition to guessit. First, we should expect a bidder with value vq to be indifferent
between bidding and not bidding, i.e., his expected profit from bidding should be zero.
Asabidder’s best bid is his value, this bidder’s best bid isvp. Since any other bidder
who bids will bid his value, and that value will exceed v, the bidder bidding vy wins
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exactly if the othersdon’t bid. The probability this happens is the probability that the
others’ values are less than v, which is G(vp). And since this bidder who bids vy wins
only if no other bid is submitted, he will pay a price of r when he wins. His expected
profit is therefore (vg —r)G(vp) — ¢. Setting this expression equal to zero determines the
marginal value v asafunction of r and c. That is, the marginal value isthe vy(r, )

defined as the solution to the following equation:
(Vo—1)G(vp) =c. (4.5)

Remark: Forr>0andO < c < 1, the following facts are easy to verify. [Draw the
graph of 1= (v—r)G(v) asafunction of v, and note where it crosses the horizontal line
m=c.] First, (4.5) issatisfied by aunique vgJ[0, 1]. Second, thisvg satisfiesvg >,
strictly if and only if ¢> 0. Third, thisvg satisfies vy < 1, strictly if and only if ¢ < 1.
Unless c < 1+, no bidder bids: awinning bidder pays a price of at least r, and so his
expected profit from bidding is bounded above by (v—r)(1) —c<1-r—c. A bidders
expected profit from bidding is therefore negative if ¢ > 1—r.

Theorem 4.2 describes the equilibrium of a second price auction with an entry fee and a
reserve price. The equilibrium it describes is the same as that of Theorem 4.1 if c = 0.

[The proof isrelatively concise and may be skipped at afirst reading.]

THEOREM 4.2: AssumeO < c< 1+ < 1. Thenan equilibrium of SPA(r, c) consists of
each bidder using the following strategy (where vi(r, ) isthe solution of (4.5)):

v ifvyvy(r, o)

) =H (4.6)
No if v<vy(r,c).

PROOF: If v<r, bidding b;(v) = Nois clearly abest reply. So we can restrict attention to
abidder with valuev >r. We show that if the other bidders bid according to (4.6), then
so should this bidder. Let vy = vy(r, ¢), and recall that vo > .

First, suppose the bidder bids b O[r, vg]. Because the other bidders use (4.6), thisbid

wins exactly if the others' values are less than v, which occurs with probability G(vp). If
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he wins, the priceisthereserve pricer. The bidder’s expected profit gross of the entry
feeistiv, b) = (v—r)G(vg). Observe that 1,(v, b) = 0 for b U[r, vg].

Now suppose the bidder bids b > vp. Hewinsif y < b, wherey is the maximum of the

other bidders' values. If hewins he pays price

Hr if¥<v
PY) =H
ay ifyzv.

The bidder’ s expected gross profit is therefore

b
(v, b) = [[v—p(y)gy)dy. (4.7)
0

Hence (v, b) = [v—p(b)]g(b) = (v—b)g(b), since b > v,. We conclude that
(v—Db)m(v, b) 2 0. Thisinequality holds for all b >, given the previous paragraph.
Therefore Ti(v, b) < 1i(v, v) for any b > r: among all bids, b = visoptimal. (Thisargument

ismade in more detail in Section 6; see Lemma 6.2 and Figure 6.2.)

Consequently, abest reply for the bidder isb = v if (v, v) = ¢, and “No” if r(v, v) <c. It
remains only to show that Ti(v, v) = cif and only if v > vjy. The expressions above imply

TV, V) is continuous on [r, o), and Ty, Vg) = €. For v[r, vp),

(v, V) = (V= 1G(vg) < (Vo—NG(vo) = ¢,

by the definition of vy in (4.5). For v> vy,
\
v, v) = [[v—py)lg)dy.
0

Sincep(y) < vfor aly<v(usingv>vg=2r), we seethat Ti(v, V) strictly increases on

[Vo, @). Hence, T(v, V) > 11V, V) = c for all v>vp. Thisfinishesthe proof?
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5. ENGLISH AUCTIONS

Recall that an English auction isthe usual oral auction in which biddersyell bids. Itisa
complicated object to study. For example, consider what a strategy for a bidder might be.
A bidder can remain silent for awhile, then yell out a couple of bidsin quick succession,
or never bid until it looks like the bidding is slowing down, or, .... The possibilities are
endless and complicated. A realistic extensive form model of an English auction would

be very complicated indeed.

However, assmple model of an English auction captures the relevant phenomena. This
tractable model is called a“button auction.” In the button auction, each bidder presses a
button in front of him as the “ standing bid” continuously increases. A bidder can release
his button at any time; he hasirreversibly “dropped out” of the bidding at the moment he
releases his button. The auction is over once there is only one bidder pressing a button.
That bidder wins and pays a price equal to the value of the standing bid at the moment the
last bidder dropped out. We also assume a bidder holding down his button does not see

how many other bidders are still holding down their buttons.3

The set of possible actions for a bidder in this button auction is the same asin asealed bid
auction, {No} O [r, o). The“No” action corresponds to never pressing the button. A
number b = r represents releasing the button when the standing bid reaches b, provided no
other bidder released his button first. A strategy for bidder i isafunction b;(") from the
set of possible values, [0, 1], to the set of possible actions, {No} [I [r, ). Thisisthe

standard definition of a strategy as a map from information sets into actions.

Suppose for simplicity that r = c = 0. Then abidder cannot lose money by adopting the
strategy of pressing his button as long as the standing bid is below hisown value. If a
bidder releases his button before the standing bid reaches his value, he will lose, even
though thereis still a chance of winning and paying a price below hisvalue. The bidder
should therefore not release the button before the standing bid reaches hisvalue. On the
other hand, if he holds the button down after the standing bid exceeds his value, he takes

achance on “winning” and taking aloss, since the price he would have to pay in this case
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would be greater than hisvalue. This argument shows that releasing his button when the
standing bid reaches his value is a bidder’ s optimal strategy, regardless of what the other
biddersdo. Just asin SPA(O, 0), the strategy defined by b(v;) = v; is adominant strategy.
[More generally, it is straightforward to show that the equilibrium of auction SPA(r, c),

as described in Theorem 4.2, is al'so an equilibrium of auction EA(r, ¢).]

Thus, in SPA(O, 0) the item will be sold to the bidder with the highest value, \7(1). This
bidder pays a price equal to the level reached by the standing bid at the moment the last
of the other bidders drops out. Thislast bidder to drop out will be the bidder with the
second highest value, \7(2). Letting W E denote the sale price in EA(0,0), we see that

Comparing (5.1) to (5.3), we see that EA(0O, 0) and SPA (0, 0) have the same sales prices:
wE=w?2, (5.2)

The two sale prices are equal for any redization of the variablesvy,..., V,,. Thisimplies

that the expected sale prices are equal: E[WE] =E[wW2].

6. FIrRsT PRICE AUCTIONS

We turn now to the first price auction, FPA(r, ¢). Recall that in this auction, each bidder
either does not bid, or submits a sealed bid no less than the reserve pricer; the high
bidder wins; the price the winner paysis equal to his own bid; and every bidder who

submits abid pays the entry fee c.

For amoment, consider intuitively the differences between the first and second price
auctions. Put yourself in the shoes of abidder in afirst price auction. Suppose your
valueisv =.5. Canit beoptimal to bid .5? Certainly not, at least if you think thereisa
chance your competitors will bid lessthan .5. By bidding .5 you would make zero profit
even if you win, because you would pay a price equal to your valueif you win. If you
bid dightly less than .5, you might have a dlightly lower probability of winning, but at

least you would have a positive gain if you did win.
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How much less than .5 should you bid? Well, it depends on what you think your
competitors are bidding. For example, if you thought they were al bidding .25, you
should bid only dlightly more than .25, as that would be the lowest price at which you
could get theitem. But if you thought they were probably bidding closeto .5, you should
bid closeto .5 yourself in order to have a chance at winning. If you thought they were all
bidding greater than .5, you would have no incentive to bid at all. This argument
suggests that a bidder in the first price auction generally does not have a dominant

strategy; his optimal strategy depends on what he thinks the other bidders are doing.

Let'sbe moreformal. A strategy for bidder i in afirst price auction with zero reserve
price is again amapping b,() from his set of possible values, [0, 1], to his set of possible
actions, {No} [I[r, ). Asbefore, “No” represents not bidding and the numerical actions
represent possible bids. Given a profile of strategies b4(-), ..., by(-)[Jone for each player,

we can define a* probability-of-winning” function for bidder i:
(Agi(b) = Prob[i wins|i bidsb and each j # i bids according to b;(")].

Luckily, we will not need to compute this function in general. From the point of view of
bidder i, if he expects the others to play according to the given strategy profile, his
probability of winning is éi(b) if hebidsb. His expected profit, excluding the entry fee

¢, when hisvalueisy; is

(i, b) = (v ~b)Q;(0). (6.1)

The bidder’s net expected profit is thus t(v;, b) — ¢, which must not be negative if the
bidder is acting rationally (as he can guarantee himself zero profit by not bidding).
Profile b4(-), ..., by(-)Ls a(Bayesian-Nash) equilibrium (in pure strategies) if for each i
and vj, bid b;(v;) isabest reply to strategies () Lk;:

bj(vy)=No O m(v,b)<cforalbzr,
bi(vi) #No O Tt(v;, bj(v;)) = cand t(v;, bi(v;)) = T5(v;, b) foralb=r.
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S0, abidder does not bid only if he cannot bid profitably, and he bids only if he makes
nonnegative profit, in which case his bid maximizes his expected profit. (A bidder whois

indifferent between not bidding and submitting his best bid can take either action.)

In asymmetric equilibrium, each strategy b;(') is equal to the same b()). To simplify
matters, consider for the remainder of this section only the first price auction with zero
reserve price and zero entry fee, FPA(O, 0). Itsequilibrium consists of any bidder with

any value v > 0 submitting the following bid:

\'%
5o = [y & 62)

We shall prove that b"(-) is an equilibrium, and that it is the only symmetric equilibrium.
(Although it istrue that asymmetric equilibriafail to exist, we will not prove this.) First,

however, we make three observations about the equilibrium.

(1) Interpretation
A bidder’ s equilibrium bid is equal to the expectation of the maximum of his competitors
values conditional on that value being less than his own:

b'(v) =E[Y | <M.

Thisiseasy to see. Recall that g(y) isthe density function of y, the maximum of n—1 of
the bidders’ values. The probability that event {y < v} occursis G(v) = F(v)n'l. Hence,
g(y)/G(v) isthe conditional density of y, given {y<v}. Theright side of (6.2) istherefore

the expected value of y conditiona on {y < v}.

(2) Underbidding and Competition
From (6.2) we see that bidders with positive values bid |ess than their values, b"(v) < v.

We seethis clearly by integrating (6.2) by parts and substituting F(x)"1 = G(x) to obtain

\/
b*(W) = v —Oj’ %@; 6.2)



TECHNICAL PRIMER ON AUCTION THEORY PAGE 19

The amount of underbidding is measured by the integral in (6.2"). Since the integration
variabley isless than v, the ratio Hy)/F(v) islessthan one. It therefore diminishesto
zero asn — oo; as competitive pressure increases in that the number of bidders grows, the
amount of underbidding goesto zero. (Obtaining thisintuitive result is a useful check of

amodel — we want our models to yield results we “just know, intuitively” areright.)

(3) Revenue Equivalence

Denote the equilibrium sale pricein FPA(0, 0) asw1. Its expectation can be shown to
equal that of W2 and, hence, of WE. The seller’s expected revenueis the samein
FPA(0O, 0), SPA(0, 0), and EA(0, 0)! The next section explores this surprising result.

For now, observe merely that revenue equivalence is not too surprisi ng.14 In FPA(O, 0)
the bidders bid less than their true values, but in SPA (0, 0) they bid their true values. So
bids are higher in the SPA. But the sale pricein the FPA isthe highest instead of the
second highest bid. Casual thought might suggest that which of these opposing forces
should dominatewould depend on the distribution of values. The revenue equivalence

result isthat in fact, these two forces always actually offset each other.

Remark: Though they have the same expectation, w1 and W2 are not the same random
variable. [A risk averse seller can be shown to prefer Wl (Matthews, 1980).] Thisisin

contrast to the English and second price auctions, where w2 and wE are both equal to \7(2).

In the uniform example, calculation from either (6.2) or (6.2) yields

(n—1)v

b*(v) = -

The expected sale price, calculated from thisand (3.8), is

* ,~ 1 v
E[WY] = E[b" (V)] = E %n—n)V(l)E: @;1@121 = L‘j

_ 1 . .
Recall that E[W?] = 2:71 Hence, revenue equivalence indeed holds.
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Theorem 6.1 below isthe central result of this section. The arguments used to prove it

are economically interesting and of general use in information economics.

THEOREM 6.1: Inthe FPA(O, 0),
(i) thestrategy b*()) defined by (6.2) is a symmetric equilibrium, and

(i) if b() isany symmetric equilibrium, then b(v) = b"(v) for all v> 0.

We start the proof by making some “inspired guesses,” and then go back to rigorously
prove the guesses. Thistechnique is how the first economist to study auctions might
have originally derived the equilibrium. That economist might have made the following

good guesses about the equilibrium b(-) of FPA(O, 0) being sought:

GuessA: All types of bidder submit bids: b(v) # No for al v=0.
Guess B: Bidders with greater values bid higher: b(v) > b(2) for dl v>z
Guess C: Thefunction b() is differentiable.

Guess A is natural because, asr = ¢ = 0, even bidders with low values should find it
worthwhile to bid (except type v =0). Guess B isa so intuitive; abidder with a higher
willingness-to-pay has a greater should be expected to bid higher. Guess C, on the other
hand, is based more on optimism than intuition, since differentiable functions are easy to
work with. Obviously, many functions other than b"(-) satisfy Guesses A —C. We now
show that the only possible equilibrium satisfying them isb" ().

LEMMA 6.1: If b(") isa symmetric equilibrium of FPA(O, 0) satisfying Guesses A — C,
then b(:) = b" ().

PROOF: The planisto use Guesses A — C to show that 1(v, b) is differentiablein b.
Then, since b(v) is optimal for atype v bidder, b = b(v) satisfies Ty (v, b(v)) = 0. Asthis

holds for all types v, a necessary differential equation is obtained, and its solutionisb” ().

Let’'sdoit. From Guesses B and C, b(-) has an inverse function, which we denote as ¢ ('),
that satisfies b(¢(b)) = b for al numbers b in the range of b(-). Vauev = ¢(b) isthe value
a bidder must have in order to bid b when using strategy b(:).
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A b(v)

> Vv
d(b)

Figure6.1
Because b(-) strictly increases, the probability that bidder i winsif hebidsbis

Q) = Fo®)™™ = G(o(b). (6.3)
Why? Well, observe that since b() is strictly increasing and the other bidders’ values are
continuoudly distributed, we can ignore ties: another bidder j bids the same b only if his
valueis precisely v = ¢(b), which occurs with probability zero. So the probability of
bidder i winning with bid b is equal to the probability of the other bidders bidding no
more than b. Because b(:) strictly increases, thisis the probability that each other
bidder’ s value is no more than ¢(b). This probability is G(¢(b)) = I(-'¢(b))”_l, the

probability that the maximum of the other bidders’ valuesis no more than ¢(b).

Thus, the expected profit of atype v bidder who bids b when the others use b() is

(v, b) = (v—-b)G(¢(b)).
Because of Guess C, theinverse function ¢(:) isdifferentiable. Letting ¢'(b) beits
derivative at b, the partial derivative of Ti(v, b) with respectto bis

(v, b) = —G(¢(D) + (v—0)a($ (D)9’ (h).

Since b(-) isan equilibrium, b(v) is an optimal bid for atype v bidder, i.e., b = b(v)
maximizes T(v, b). Thefirst order condition Ti,(v, b(v)) = 0 holds:

—=G(d(b(v))) + (v=Db(v))g(¢(b(V))$'(b(v)) = O.
Use ¢(b(v)) = v and ¢'(b(v)) = /b (v) to write this as

(v=bW)a(v) _

0.
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Thisisadifferential equation that almost completely characterizes the exact nature of

b(). Itiseasy to solve. Rewriteit as

G(V)b'(v) +g(v)b(v) = vg(v). (6.4)

Since g(v) = G'(v), the left side isthe derivative of G(v)b(v). So we can integrate both
sides from any v to any v (using “y” to denote the dummy integration variable):

\Y

G(v)b(v) — G(vp)b(vo) = vI yg(y)dy. (6.5)
0

From Guess A, all types bid, so we can take vy — 0. We know b(0) 20, asr = 0. Hence,
G(vg)b(vp) — Oasvg — 0. Takethislimitin (6.5) and divide by G(v) to obtain

\'%
o) = [y & = v

Thisis the desired result. ¥

Technical Aside: Write (6.4) asb’ = (v—b)g(v)/G(v). Notice that itsright side blows up
asv -0, since G(0) = 0. Thus, asadifferential equation for b(-), it does not satisfy the
Lipschitz condition required for the theorem which concludes that a differential equation
has a unique solution for any inital value of b(0). Infact, (6.4) has a solution b(-) only for
threeinitial values of b(0): —oo, 0, and . It iseasy to verify that afunction b(:) on (O, 1]
isasolution if and only if for some K, b(v) = b(v; K) = b"(v) + K/G(v) for al v (0, 1]. If
K> 0, b(v; K) decreasesin v when vissmall, and so b(-; K) is not an equilibrium. If

K <0, b(v; K) - —0 asv - 0+, and so b(-; K) isnot an equilibrium if the reserve priceis
finite. But for any entry feec >0, if K < —c then b(:; K) is an equilibrium of FPA (-0, C).

Thisisof no practical interest, as no real auction has areserve pricer = —oo,

We now prove that b*(-) is actually an equilibrium. Its derivation in Lemma 6.1 shows
that it satisfies afirst-order condition for equilibrium; it is shown in the proof of Lemma

6.2 that it satisfies a“ pseudoconcavity” property that isakind of second-order condition.
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LEMMA 6.2: b"(-) isa symmetric equilibrium of FPA(O, 0).

PROOF: Because b’ (") satisfies Guesses A — C, the argument used in Lemma 6.1 shows

that the expected profit of atype v bidder who bids b when the othersuse b* (") is

(v, b) = (v—b)G(¢" (b)), (6.6)

where ¢" () istheinverse of b*(-). We must prove b = b"(v) maximizes T(v, b).

We first observe that “No” is not preferred to b*(v). This follows from the observation

that Ti(v, b*(v)) = 0, which is a consequence of (6.6) and b (v) < v for all v (see (6.2')).

To prove b" (v) maximizes (v, b), we prove (v, *) is ps;eudoconcave,15 I.e., that the
derivative T (v, b) is nonnegative if b < b*(v), and nonpositiveif b > b"(v). Thisthen

implies (v, b) ismaximized at b = b* (v) (since 1(v, b) is continuous in b).

(v, b) =0

Figure6.2

The key isto show that T, > 0. Differentiate (6.6) to obtain T (v, b) = G(¢" (b)), and

then differentiate again to obtain

TV, b) = G(9” (b))g(9” ()™ (b).

Hence, 11, (v, b) > 0 for al v (0, 1) and b (0, b*(1)).

Now we can show Ti,(v, b) >0 for all b 0[O, b*(v)). (A similar argument proves
(v, b) <0 for al b>Db(v).) Choose b 0[O, b"(v)). Let V be the type who is supposed to
bid b, so that b* (V) = b. Since b <b"(v), V<v. Therefore, since 1, >0,

TV, b) = T (V, b).

Because b = b" (\A/), the proof of Lemma 6.1 implies T[b(\\/, B) =0. Thus, T (v, lA)) >0. 7
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To finish the proof of Theorem 6.1, we now need only to prove that b* () is the only

symmetric equilibrium. Inlight of Lemma 6.1, we need only show that any symmetric
equilibrium of FPA (O, 0) satisfies Guesses A-C. Thisisdone in a sequence of lemmas.
Y ou will see that much of the proof of Lemma 6.1 is actually redundant. (The proof of

differentiability, Guess C, directly derives the differential equation (6.4).)

Lemma 6.3 validates Guess A, and proves some other useful facts. Its proof is more

technical than those that follow; it can be skipped at first reading.

LEMMA 6.3 (GUESSA): If b() isa symmetric equilibrium of FPA(O, 0), then for all v> O:
b(v) # No, é(b(v)) >0, and b(v) <v. That is, every bidder type v > 0 bids, winswith

positive probability, and makes positive profit when he wins.

PROOF: We first show that aimost every type bids. That is, letting Q° = Pr[b(V;) = No]
be the equilibrium probability that a bidder does not bid, we prove Q9 = 0.

Assume Q%> 0. Letv>0. If atypev bidder unilaterally deviates from the equilibrium
by bidding 0, his probability of winning still exceeds the probability that no other bidder
bids: Q(0) = (Q9)™1> 0. Thus, (v—0)Q(0) > 0, and type v makes positive profit. His
optimal action istherefore to bid. We conclude that b(v) # No for al v > 0, which implies
QY= 0. This contradicts the assumed Q° > 0. Hence, Q° = 0.

The equilibrium probability of {No Sale} is(Q%"=0. Hence, for any v= 0,
Pr[No Saleand v; < v [0i] = 0. Consequently,

F)"

Privi < v i]
Pr[Saleand V; < v [i] + Pr[No Saleand v; < v [i]
Pr[Sale and v; < v [i].

\'
Let E; be the event { Sale to bidder i and v; < v}. Then Pr(E;) :OI AQ(b(x)) {x)dx. Asthe

union of the disjoint events E; contains{ Sale and v; < v i},

Pr[Sdeand v; < v 0i] < Pr(OF) y

= SPIE) = nJ O(b(x) tx)dx.
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Putting these expressions together gives us
\'%
F(v"< nOI O(b(x) tX)dx.

This shows that for all v > 0, the interval [0, v] contains an x for which é(b(x)) >0. The
profit of type xis(x— b(x))(AQ(b(x)) > 0, asnot bidding is an option. Hence, b(x) < x. The
profit of type v > x, as bidding b = b(x) is an option, satisfies

(v—b(v))Q(b(v)) = (v—b(x))Q(b(x)) > 0.

We conclude that é(b(v)) > 0 and b(v) < v for every v> 0.7

Turning to Guess B, Lemma 6.4 shows that it holds weakly, i.e., any equilibrium b(-) is

weakly increasing. The revealed preference proof of the result is of general importance.
LEMMA 6.4: Any symmetric equilibrium b(-) of the FPA(O, 0) weakly increases on (0, 1].

PROOF: Letv>z>0. Wemust show b(z) < b(v). Typev prefersbid b(v) to bid b(2);

i.e., the chosen action of type v “reveals’ that he prefersit to the action chosen by type z

(v—b(v)) Qb(v)) = (v—b(2) Q(b(2). (6.7)
Similarly, the type z bidder prefers b(z) to b(v):

(2 b(2)Qb(2)) = (2 b(¥)) QB(V)). (6.8)
Add these inequalities and cancel termsto obtain

(v—2)[Q(b(v)) - Q(b(2)] = 0. (6.9)

Asv > z, we see that Q(b(v)) = Q(b(2)): type v has a (weakly) greater win probability. 16
By Lemma6.3, (AQ(b(v)) >0and z—b(2) > 0. Wedivide (6.8) by these termsto get,17

Qb@) , z-bW)
Q(b(v) ~ 2~

Because the left side is no larger than one, this shows that

z—Db(v)
z—b(2).

12>

Multiplying both sides by z—b(2) yields z—b(z) = z—b(v). Thisprovesb(z) < b(\/i
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Revealed Preference Picture

Because revealed preference arguments like that used to prove Lemma 6.3 are so
important, let us digress for amoment to make a picture.

The problem faced by atype z bidder, when the behavior of the other bidders resultsin
his probability-of-winning function being CA)(-), can be written in the following way:
maximize (z—b)Q suchthat Q = Q(b).
b, Q
Writing it this way means that we are viewing the type z bidder’ s problem as one of
choosing an optimal point (b, Q) on the curve determined by the equation Q = (A)(b).

View (z—b)Q as the “utility function” of atype z bidder over points (b, Q). Hisutility
decreasesin the bid b, and increases (if b < z) in the probability Q of winning. Thus, the
indifference curves of this utility function in b — Q space are upward sloping (in the
region where b < z), and utility increases to the northwest.

The maximization problem written above is conceptually the same as the standard
consumer problem of maximizing utility subject to a budget constraint, where the budget
constraint isQ = é(b). We cannot draw the curve Q = é(b) because we do not know
much about it yet; in fact, the point of this exercise isto discover its properties.

We do know, however, that point (b(2), Q(b(2)) is the point on the curve Q = Q() that lies
on the highest indifference curve of the utility function (z—b)Q. Thisindifference curve
isthe thicker of the two curves shown in Figure 6.3 below.

(z—b)Q = const
(2 (v—-b)Q = const
Q(bi2) (b(v), Qb))
» b
b(2)

Figure6.3
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The thin indifference curve isthat of atype v > z bidder which passes through point
(b(2), é(b(z)). The thin curveisflatter than the thick one; this property is very important
and is called the single-crossing property. 18 Thes ngle-crossing property here means
that when his value is higher, the bidder is willing to submit a higher bid in order to get
the same increase AQ in his probability of winning.

The type v bidder faces the same sort of problem as does the type z bidder. He too must
choose an optimal point on the curve Q = é(b). His optimal point, (b(v), é(b(v)), must
liein the shaded region. Thisis because of reveaed preference: the type z bidder prefers
(b(2), (Ag(b(z)) over (b(v), (Ag(b(v)), but the type v bidder has the opposite preference. This
means that the point (b(v), (Ag(b(v)) must lie below the thick indifference curve and above
the thin one, which is the shaded region.

This observation shows that the curve Q = é(b) must go into the shaded region from the
point (b(2), O(b(2)). Thus, Q(b(v)) = Q(b(2)) and b(2) < b(v).

LEMMA 6.5 (GUESSB): Any symmetric equilibrium b(-) of the FPA(O, 0) strictly

increaseson (0, 1].

PROOF: Assume b() only weakly increases. Thenv > z> 0 and bid b exist such that
b(V) = bif VO(z v), and b(V) < bif V< z and b(V) > bif Y>v. Thisisshown in Figure 6.4

below (for the case of a continuous b()).

4

b()

ol

45°

Y4 \Y

Figure6.4

Consider V (z, v). Theflat resultsin a positive probability that this type will tie, with
other bidders whose types arein (z, v), when he bidsb. Bidding slightly more would

reduce the tie probability to zero. This causes the win probability to jump up, adiscrete
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benefit bounded above zero. Becauseit isobtained at only the infinitesimal cost of
bidding slightly more than b, the benefit of this action is greater than its cost, and thus b
cannot be this bidder’ s optimal bid — contradiction.

To make the argument more formal, note that the flat implies

limit O(b + €) > Q(b).

€0+
\ Q)
Qp+e) $ /
Q®) j
— > b
b b+e¢
Figure 6.5

By Lemma6.3, v>b. Hence,
limit (\=b—£)Q(b + ) > (—B)Q(B).
€0+
So for small € > 0, bid b + € gives type ¥ more than his equilibrium profit, a contradiction.

This proves b(-) has no flat, and so Lemma 6.4 implies b(-) strictly increases. 7

Because b(-) strictly increases, the probability that type v > 0 winsisjust the probability
G(v) that histype is higher than the other bidders' types. The following verifiesthis

result formally:

Pr[i wins when bids b(Vv)]

Pr[b(V;) < b(v) for all j#i] asthe probability of atieis zero
because b(+) has no flats

Q(b(v)

Prv, < vfor all j#i] as b() strictly increases
G(V).

Using this, we now finish the proof of Theorem 6.1 by proving the validity of Guess C.
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LEMMA 6.6 (GUESSC): Any symmetric equilibriumb(-) of the FPA(O, 0) is
differentiable on (0,1].

PROOF: Letv>2z>0.By thereveaed preference inequalities, (6.7) and (6.8),
4G(V) —G(2)] < b(V)G(V) —b(2G(2) < V[G(V) —G(2)]. (6.20)
Define P(x) = b(X)G(x). Usethisin the middlie term of (6.10), and divide by v—z
PO -Clap [P0 -Rag_ (60 -6y (6.11)
Now, G(-) is differentiable, with derivative g(:). Thus,

... [6(V)-G(2
imit =2 o

Holding v fixed and letting z— v in al three terms of (6.11), we see that the left and right

terms both converge to vg(v). The middle term is sandwiched, and so it too converges to
vg(v). By the definition of aderivative, this provesthat R-) isdifferentiable at v, with
P'(v) = vg(v). Sinceb(v) = Rv)/G(v), the derivative b'(v) also exists. 1%

Remark: Note that the middle term in (6.10) is the expected cost of changing one’s bid

from b(2) to b(v). The left term isthe expected benefit to type z of the change in bid, and
the right term is the expected benefit to typev. So, (6.10) states that the expected cost of
changing abid from b(2) to b(v) is greater than its expected benefit to atype z bidder, but
less than its expected benefit to atype v bidder.

/. DutcH AUCTIONS

Recall that in a Dutch auction, a“wheel” in front of the bidders turns at aregular pace so
that the price it indicates steadily falls. Thefirst bidder to yell “stop” wins the object and
pays the price the wheel indicates at the time he stopsit. Each bidder pays an entry feec
if he chooses to enter the room with the whedl (participate in the auction), and the wheel

stops with the object unsold if the price falls to the reserve pricer.
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Any bidder’s action is either “Not bidding,” which means never stopping the wheel, or a
number (a“bid”) at which to stop the wheel if it fallsthat far. Once again, the set of
actions for a bidder can be denoted as{No} [J [r, ). A strategy for bidder i isafunction
b;(-) from, [0, 1], his possible values, to { No} [ [r, ).

Let us compare a Dutch auction and afirst price auction with the same reserve price r and
entry fee c. Consider an action profile, (by,..., b)), where each b; is anumber or “No”. If
all these actions are “No”, then in the FPA no bidder submits abid, and in the DA no
bidder stopsthe wheel. Each bidder’ s payoff is zero in either auction. The other case
occursif at least one bidder bids. Suppose b, isthe only highest bid. Then in the FPA,
bidder i wins and has payoff v, — b, — ¢, and the others obtain zero or — payoffs,
depending on whether they bid. Inthe DA, no bidder stopsthe wheel before it reaches b,
and so bidder i stopsit at b;; again bidder i wins and has payoff v, — b, — ¢, and the others
have zero or — payoffs, depending on whether they participated. These payoffs have to
be multiplied by Lk if there are k highest bids in the action profile, but still the
conclusion holds: any action profile, if played in both auctions, results in the same

payoffsfor all the bidders.

The conclusion of this argument is that the (reduced) normal form games corresponding
to the Dutch and first price auctions (with the same reserve price and entry fees) are
identical. They both have the same strategy sets, and the same action profile gives each
bidder the same payoff in the two auctions. Thus, any strategy profile (b4("),..., b,()) will
give each bidder the same payoff. This shows that the two auctions are strategically
equivalent. Thisisthe strongest kind of equivalence we have seen, and it also holdsin
more general information environments. Two games that are strategically equivalent are
to all intents and purposes the same game, and a fortiori they must have the same
equilibria. Theorem 7.1 therefore applies to the Dutch auction; the b" () defined in (7.2)
is the unique equilibrium of the DA(0, 0), and its sale price, WP, is equal to w1, the sale
price of the FPA(O, 0).
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A MoreAccurate Treatment

The observation that the Dutch and first price auctions are strategically equivalent is more
subtle than we have made it seem. The obvious way of writing down extensive forms for
the two auctions does result in a difference. The extensive form of the first price auction
isvery simple, with Nature moving first to choose the type profile and then each bidder
simultaneously choosing a bid or a“No”; the strategies for this extensive form are
functions b;(-): [0, 1] — {No} I [r, ).

In the Dutch auction, a bidder has more information upon which to act, namely, the
current price reached by the wheel. Hisinformation setsin the extensive form are
indexed by a pair of numbers, (v, p), where v is hisvalue and p is the price the wheel has
reached. A strategy in the Dutch auction (for a participating bidder) should be afunction

Bi(): [0, 1] x (r, ®) — {stop wheel, don’t stop wheel}.

The interpretation is that 3;(v, p) = “stop wheel” if the type v bidder isto stop the wheel at
price p, and B;(v, p) = “don’t stop wheel” otherwise.

Now, such a strategy may have much redundancy init. If the bidder plans to stop the
wheel at aprice p, then what he plansto do if the wheel getsto alower priceisirrelevant;
the wheel cannot get to alower price because he himself would stop it at p. Given a
strategy [3;(-, ), for each v let b;(v) be the maximum price at which {3;(v, p) = “stop
wheel”; if B,(v, p) = “don’t stop wheel” for all p >, let b(v) = “No”.?% Then, in the
language of game theory, two strategies 3;(-,-) and f%i(-,-) are equivalent strategiesif they
giveriseto the same function b;("), i.e., if the bidder stops the wheel at the same point
according to each strategy. Given any strategy profile, no bidder’s payoff will change if
bidder i switchesto an equivalent strategy.

The reduced normal form of a game is defined from its normal form by identifying as a
single strategy each set of equivalent strategies. The functions b;(-) we discussed above
this box are actually strategies of the reduced normal form of the Dutch auction.
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8. ABSTRACT AUCTIONS

We have seen that the four auctions SPA(0, 0), EA(O, 0), FPA(O, 0), and DA(O, 0) all
yield the same expected sale price, given that the bidders play the equilibria we have
derived. Thissurprising result isreferred to as the “ Revenue Equivalence Theorem.” In
this section we explore more deeply the ways in which auctions can be equivalent,
considering as we do so many other kinds of auctions. The thrust of the argument is that

the equilibrium behavior of bidders can nullify the differences in rules between auctions.

Before we start, observe that the equivalency we are discussing now isin terms of
expected payoffs. Two equivalent auctions yield the same expected profit to the seller
and to each type of bidder. The sale prices of two auctions that are equivalent in this
sense can be random variables with different distributions, in which case only arisk

neutral seller would necessarily regard them as equivalent.

Consider an arbitrary auction, one of the ones we have studied, with or without a reserve
price or an entry fee, or even any crazy kind of auction we might dream up (e.g., all
bidders pay their bid, even if they lose, or the winner is the one who submits the lowest
bid, or ...). What isit that a bidder really cares about in this auction? Because heisrisk
neutral, he only cares about two variables, his probability of winning, Q, and his expected
payment, P. If atype v bidder has chosen an action so that his probability of winning is Q

and his expected payment is P, his expected profit is Qv — P.

Consider an equilibrium of the auction. Take the viewpoint of a particular bidder, say
Paul, when the other bidders play according to the given equilibrium. Let b(-) be Paul’s
equilibrium strategy, so that b(v) is his best action when hisvalueisv. (At thislevel of
generality, b(v) may be more complicated than abid. This does not matter.)

Paul’ s action, b, together with the rules of the auction, the strategies of the other bidders,
and the probability distribution over the values of the other bidders, determine Paul’ s
probability of winning and his expected payment. This means we can write Q and P as
functions of b, say Q(b) and P(b).
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Examples. In FPA(O, 0), we see that

Q) =G(¢(b) and P(b)=G(d(b))b. (8.1)
In SPA(0, 0), we obtain Q(b) = G(b) and
b
P(b) = Py <bIE[V]|y<h] = Jyg(y)dy. 82)

Paul’ s problem can be viewed as choosing b to maximize é(b)v - Ig(b). Because b(v) is

his optimal action when hisvalueisv, action b = b(v) solves this problem.

Instead of examining this problem directly, it is convenient to perform a* change of
variables.” Suppose that instead of submitting a bid to the seller himself, Paul programs a
computer to do it for him. (He may want to do this, for example, because he plansto go
to the beach on the day of the auction.) When he programs the computer he does not yet
know hisvalue. But he does know his optimal strategy, b(:), which he can program into
the computer. On the day of the auction, when he knows his value, he can smply call up
his computer (from the beach on his cellular telephone) and report hisvalue. The

computer then calculates a bid, using the function b(-), and submits it to the seller.

Paul must still make a choice: instead of reporting his true value to his computer, he

could report some other value. Letting z denote the value he reports, Paul’ s problemis:

Maximize Q(2v —R2), (8.3
z

where the functions Q(-) and R-) are defined to be the composition of the computer’srule

of action, b(+), and the auction functions (AQ(-) and Ig(-):

Q@ =Q®@) and R2= P(b(2).

Examples: Referring to the box above, we see that in FPA(O, 0),
Q2 = G(¢(b(2))) =G(v) and B = G(¢(b(2))b(2) = G(2)b(2).

In SPA(O, 0), since b(z) = z, we obtain Q(2) = G(z) and

V4
P(2) =P(b(2) = O[yg(y) dy.
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Luckily for Paul, problem (8.3) istrivia. After al, since the computer is programmed
with his optimal strategy, it has his best interests at heart. If Paul reports histrue valuev,
the computer will take action b(v), which is Paul’ s best action when hisvaluereally isv.
If he lies to the computer by reporting z# v, it will take action b(z), which cannot be

better and may be worse than b(v). Thus, z= v solves problem (8.3).

The moral of the story is, “do not lie to your computer.” The reasoning we have followed

is known as the Revelation Principle, akey devicein information economics.?!

The argument appliesto any bidder. But their equilibrium strategies need not be the
same, and so we resort to subscripts. Let Q;(z) and P;(2) denote bidder i’s probability of
winning and expected payment (from his point of view) when he reports to his computer

that hisvalueisz Then, if histypeisv, the equilibrium expected profit of bidder i is

M;(v) = Q;(V)v—P;(v). (8.4)

Revenue Equivalence is a consequence of the following more fundamental theorem.

What information do we need in order to know the equilibrium expected profit of bidder i
when hisvalueisv,? In order to know the number ;(v;), expression (8.4) tells us that we
need to know two numbers, Q;(v;) and P;(v;). In order to know the entire function I'1;(-), it
seems as though we need to know both functions, Q;(-) and P;(-). In fact, however, we
need less information. Because each type of bidder i optimizes, the function IT;(:)

actually depends only on one function, Q;(-), and one number, 1;(0).

THEOREM 8.1: The expected profit of bidder i in any equilibrium of any auction
depends only on his equilibrium probability-of-winning function, Q;(-), and the

equilibrium profit of his lowest type, M.(0). Specifically,
%
M;(v) = M;0) +(J Q;(y)dy. (8.5)

PROOF: Sincez=v solves (8.3), thefirst order condition holds: Qi(v)v—P;(v) =0.
Differentiate (8.4) to get I (v) = Q;(V)v + Q;(v) — P;(v). Put these two equations together
to obtain ;(v) = Q;(v). Integrate this to obtain (8.5).22 ¥
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Aside on “ Envelopes”

The reasoning in Theorem 8.1 isimportant and of general use. It relies on an envelope
property that is exhibited by any set of maximization problems like (8.3).

Suppose, so we can make a picture, that Paul has only afinite number of possible types:
Vy,.-, VT, numbered so that vy <v2 < - <v™, Let Q¥= Qfy and P = R\X).

Problem (8.3) can be viewed as choosing a pair (P, Q) from among those pairs for which
some z exists such that (P, Q) = (R2), Q(2). If the only Z swhich Paul can report are
Vy,.-., VT, then he can only choose one of the pairs (P, Q),..., (F", QM. Sincez=\Kis
the solution to (8.3) when histypeis VK, hisoptimal pair isthen (P¥, QX).

Figure 8.2 below tries to illustrates the situation. The horizontal axisindexes the possible
types. The vertical axis measures expected profit. Paul’s expected profit when heistype
vK and chooses (PI, Q) is measured by the vertical distance at v = WK from the horizontal
axistolinej. Linej isthe graph of the equation N = v@—P). Thefact that (PX, QK) is
his optimal pair when his type is \X follows from line k being the highest line at v = \K.

M linek+1: M =vQkl_ petl

linek: M= VQk—Pk

linek=1: M = va‘l— pt

- V

Vk

Figure8.1

Because thisis true for each \X, the graph of M(-) is the upper envelope of these lines.
Going to a continuum of types, with VK1, VK and vk*1 being just three of them, we have
Figure 8.2:
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line k+1

» O

9% line k

_— linek-1

Figure8.2

The key feature of the envelope property is the tangency at v = \K between line k and the
graph of M(v): they have the same slopes at this point. The slope of line k is X = Q(W).
This shows that M'() = Q(W), which is the derivative version of (8.5).

Economically, M'(W) = Q(W) means that the equilibrium profit of atype v slightly greater
than VK is nearly equal to what it would be if type v were to take the same action as type
vK. That is, increasing v from \K, but holding the action fixed, increases the payoff along
linek. Only by allowing the bidder to re-optimize by changing his action will his payoff
go up from line k to M(v). The envelope theorem says that this second way in which the
bidder’ s payoff increases when histypeincreasesis of “second order” importance,
insignificant for small changes from \X.

We now discuss some applications of (8.4) and (8.5).

8.1 Deriving Equilibria

Expressions (8.4) and (8.5) can be used to derive auction equilibriaeasily. Consider the
FPA(r, c). Letus“guess’ that an equilibrium takes the form of al bidders with types less
than a marginal type v not bidding, and all other types bidding according to a strictly
increasing function b(-). Then, in equilibrium, a bidder wins only if histype is greater
than all the other bidders' types and greater than vig. The equilibrium probability-of-

winning function is,
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0 if v<vg
(V) = 8.6
) Qs(v) if v vy (80)

The marginal and non-participating types have zero profit: IM;(v) = 0for v {0, vg].

Expressions (8.4) and (8.5), for v = vy, become (dropping subscripts):

M) = GV)v—Rv). (8.4
N = [Gy)dy. (85)
Vo

The expected payment of typev = vy is
P(v) = c+ G(v)b(v). (8.7)

Solving these three equations for b(v) shows that for v = v,

\Y
b(v) = v - %J %Qﬂy - % (8.9)
Vo

Thisisthe equilibrium bidding function, completely specified except for the marginal
type. To find vy, note first that a bidder with type vp wins only if no other bidder bids.
His probability of winning is G(vg), even if he bids less than b(vg). Since lowering his
bid does not affect his probability of winning, and since b(vp) is hisoptimal bid, it must
be as low as possible: b(vp) =r. Therefore, from (8.8),

r=\vg— G((\:/o)- (8.9
This equation uniquely determines the marginal type: vg = vg(r, €). Equation (8.9) isthe
same as (4.5), and so the marginal type is the same in both auctions, SPA(r, ¢) and
FPA(r, c). (Refer to Theorem 4.2, and the Remark following (4.5).) Integrating (8.8) by
parts and using (8.9) yields ageneralization of (7.2): b(v) ="No” for all v < v, and for
al vz vy,

b(v) = %jyg%gdy i %@ (8.10)

Vo
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This derivation was based on the “guess’ that precisely the types greater than some
marginal type bid, and they bid according to a strictly increasing bid function. The b(-)
we have found satisfies these guesses, and proving it is actually an equilibrium can be

done by checking the pseudoconcavity condition, asin Lemma6.2.

8.2 Equivalent Auctions

Suppose that in two auctions A and B, bidder i has the same equilibrium expected profit
when histypeisthe lowest possible, I'I'iA‘(O) = I'I'i3(0), and his equilibrium probability of
winning is the same in the two auctions for all his types, Qf‘(-) = QF(-). Then by (8.5), the
expected profit of any type of the bidder is the same in both auctions, M4Y(v) = NB(v). To

the bidder, the auctions are (expected) payoff equivalent.

For example, consider the four auctions SPA(r, c), EA(r, c), FPA(r, c), and DA(r, ¢). In
each of them, the marginal type v is the same, determined by (8.9) (or (4.5)), and the
probability-of-winning function is the same, shown in (8.6). In each auction, the
expected profit of the lowest type of bidder isI1;(0) = 0. Thus, every type of every bidder

views the four auctions as equivalent.

It isnow not surprising that the seller also views these auctions as equivalent, in terms of
her expected profit. Her expected profit from an auction can, using (8.4) and (8.5), also
be put in terms of just the numbers IM;(0), and the functions Q,(), fori =1,..., n. She
therefore obtains the same expected profit from all auctions that have the same I1;(0)

numbers and Q;(-) functions.

To show thisrigorously, let Mg(vo) be the seller’ s expected profit in a given auction when
her value for the object isvg, We show that it can be expressed as

1-F(v) O

MNgvg = vg+ > a 1%/-— —vdQi(v))fv.)dv: — TT:(0) - (8.11)
S S =] D| f(Vi) %Q (AN Vaad| i E

This expresses (Vo) solely in terms of the I1;(0) numbers and Q;(-) functions. Proving
(8.11) isa“mere” calculation based on (8.4) and (8.5).
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COROLLARY 8.1: The seller’s expected profit from any auction is given in terms of its
equilibrium quantities ;(0) and Q;(") by (8.11).

PROOF: For now, drop subscripts. From (8.4) and (8.5),
[l \ [l
P(v) = QMv-N(V) = Q(v)v—@w(m " Oj'Q(y)dyﬁ

A bidder’ s expected payment to the seller istherefore

1V

1 1
JP(v)f(v)dv = O]’Q(v)vf (Vdv — 0]'o]’Q(y)‘(v)dydv — 11(0). (8.12)

1V 11

1
Now, Oj' 0{ Q(y){v)dyadv = on[ Qly){vydvdy = [ Q(y)(1—Ry))dy.
Substitute the last integral, after changing its integration variable to v, for the middle term

on theright of (8.12). Thisyields

1 A0 1-F()
U[ PW){V)dv = OJ’ @x— ) @g(v)(v)dv — (). (8.13)

Restoring the subscripts i and summing over i yields the sum of the bidders' expected
payments to the seller. Her expected profit is this expected revenue plus her own value

times the probability of not making asale. Her probability of making asale to bidder i is
1
JQi (v))fv))av; .
Summing this over i gives the probability of asale, so that
n 1
1- Qi(vfv))dv,
;l. OI INT] | |

is the probability of no sale. Multiplying this by vgand adding the result to the
summation over i of (8.13) yields (8.11). 7
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To check (8.11), calculate it using vg= 0, Q(v) = Rv)™1 N@0) =0, Rv) = v, and {v) = 1.
This should yield (n—1)/(n+1), the seller’ s expected revenue in the four standard auctions

withr = ¢ =0in the uniform case.

8.3 Optimal Reserve Prices and Entry Fees

Let usfind the seller’ s optimal entry fee and reserve price in the first or second price
auction. Aswe have seen, achoice of (r, c) resultsin amarginal type vy(r, c) defined by
(8.9). Each bidders' equilibrium probability-of-winning function is given by (8.6), and
his equilibrium expected profit is zero when istypeis zero. Hence, letting v = vo(r, ©),

the seller’ s expected profit in either auction is, from (8.11),

1
Mg(Vg) = Vg+ N g/ | Qx - 1;(5)(") - v%z(v)”‘lf(v)dv g. (8.14)
0

The seller’s choice of (r, c) affects her expected profit only in so far asthey affect the
marginal type. If VB isamarginal type v that maximizes (8.14), any (r, c) satisfying
vo(r, €) = VB isoptimal. For the distributions F(-) we usually work with, the function

1-F()
(V)

increasesinv. Inthiscasethereisanumber such that (8.15) is negative for v less than

—Vg (8.15)

this number and positive for v greater than this number. Setting vy equal to this number
maximizes (8.14), since it makes the interval of integration precisely equal to the interval
on which the integrand is positive. The following equation then determines VBZ

* 1-F (VB)
0T )

—Vvg= 0. (8.16)

Even if (8.15) does not increase in v, the optimal v satisfies (8.16); the problem then is

that (8.16) may have multiple solutions, and only some maximize the seller’ s profit.

Notice something remarkable: the seller’s optimal marginal value VB does not depend on
the number of bidders. Thus, the pairs (r, ¢) of optimal reserve price and entry fee

combinations also do not depend on the number of bidders.
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8.4 Optimal Auctions

Formula (8.11) can be used more generally to determine the seller’s optimal auctions,
those that maximize her expected profit. From (8.11), we seethat the seller would like to
choose an auction in which each N;(0) is as small as possible, and to choose functions

Q;(") that maximize

ZJD_fW) %$mmw (8.17)

Assuming the seller cannot coerce the biddersinto participating, the smallest that I1;(0)
can be in any feasible auction is zero. Setting 1,(0) = 0 is no problem; indeed, thisis thr
case in all the auctions we have considered. The problemisto find functions Q;(-) that
maximize (8.17). These functions cannot be chosen freely — they are constrained by the
rules of probability (if there is more than one bidder). For example, it isimpossible for
Qi(v) =1forali<nandall typesvinaninterval [a, b]. Because only one bidder can
win, and there is positive probability that all the bidders' typesarein [a, b], no bidder can

be sure of winning just because histypeisin thisinterval.

For our problem, we do not need to find the appropriate constraint for the Q;()
functions.?® For each bidder i, let qj(vy,---» V) bethe equilibrium probability that bidder i
wins when the vector of bidders' typesis (v4,..., ;). Then, the probability of winning
Q;(v;) is obtained from g;(v,..., V) by “expecting out” the other values:

1

1
Qv) = cr[ 0]’ A (Vys--es V) [jl;li f(vj)dvj]. (8.18)

(There are n—1 integrals here.) Use (8.18) to replace Q;(v;) in (8.17), and move the

summation inside the integrals:

1 g 1-Fw) O
Jdd 2 Vi~ iy Vel i) LT v (8.19)

(There are nintegrals here.)
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Now, instead of choosing functions Q;(-) to maximize (8.17), choose functions g;(-) to

maximize (8.19). They are constrained only to be probabilities: for each (v4,...,v,)),
n
Qi(Vq,-.-, V) 2 Ofori = Z Qi(Vy,-es V) < 1. (8.20)

(The sum isless than one when the probability of asaleislessthan one.)

The obviousthing to try is to maximize (8.19) pointwise, i.e., to find for each (v4,..., v;))

avector (y,..., g,) that maximizes

g 1-F(v) O
I:zl%/i - W) —v%qi (8.21)

subject to the constraints (q;,..., d,,) O[O0, 1]n and 20; < 1. Functions g;(-) can be defined
by letting (dq(V,-+-, Vi)s s Un(Vy,---, V) beasolution to this problem for each

(Vq,..., V). Thedifficulty, however, isthat these functions may not be the equilibrium
probability-of-winning functions for any auction. To avoid this difficulty, we make the

following monotonicity assumption.

—F(v)

1 . ,
ASSUMPTIONM: v — f(v) increasesinvon [0, 1].

Assumption M is not terribly restrictive — most standard distributions satisfy it. (Weran

into this monotonicity assumption implicitly at (8.15). It was not so important there.)

Maximizing (8.21) subject to (qy,..., g,) D[0, 1]" and X, < 1is now simple. Note that
(8.21) isaweighted average of the ntermsin big brackets. It is maximized by putting
zero weight on al but the largest of those terms. By Assumption M, the largest of those
terms are those with the largest v;'s. Hence, g; = 0if v; # max(vy,..., v,,). Eventhe
largest termsin big brackets should get a zero weight if they are negative, but not if they
are positive. Assumption M impliesthat a unique VB is defined by

. 1-F(p)

Vo — f(VB) - vg= 0. (8.22)
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(We saw this before as (8.16).) Theith term in big bracketsin (8.21) is positive if and

only if v; > VB. Hence (q;,..., d,,) maximizes (8.21) at (vy,..., V) if and only if

(& g;=--=0,=0if eachv;, <\,
n

(b) > g =1 if max(vy,..., Vi) >\p, and (8.23)
=1

(© g>0 0O v,=maxX(Vq,..., V).

This should look familiar: the probability-of-winning functions of our four auctions
satisfy (8.23), if their reserve price and entry fees are set appropriately. Specificaly, if
(r, c) satisfies vy(r, €) = va, then the equilibrium probability-of-winning functions for any

of the four auctions with this (r, c) are given by,

G(Vy,-., V) =0 if vy <V or v, £ max(vy,..., v,), and

Gi(Vy,--es Vi) = UK i vi = max(vy,..., Vi) 2V andk:|{j|vj:max(vl,...,vn)|

These functions clearly satisfy (8.23) and hence maximize (8.21). They therefore
maximize (8.19). We conclude that for any (r, ) satisfying vy(r, c) = VB, each of the
auctions SPA(r, c), EA(r, c), FPA(r, c) and DA(r, c) isan optimal auction.

Remarkably, among all possible auctions we could dream up, the four standard ones are

optimal for the seller. However, this conclusion does require Assumption M 24

Remark: Reconsider (8.21). If thetermsin big brackets were smply v; —vg, the entire
expression (if added to vg) would give the expected social surplus from the probabilistic
trade defined by the probabilities qy,..., g,,. It would be welfare maximizing to choose
these probabilities to maximize this expression. Under complete information, this is what
the seller would do, as making the social pie as large as possible is how she, a perfectly
discriminating monopolist, would maximize her share of it. However, since the buyers
values are private information, the seller cannot perfectly price discriminate. Each type
v; > 0 of bidder receives an “information rent”, M1;(v;) > 0. In view of the actual (8.21),
we see that the seller’s optimal (..., g,,) would be socially optimal if instead of having
value v, the type v; bidder had valueV; =v; — (1—Rv;)/{v;). This V hasbeen called (by
Myerson) the virtual value of the bidder.
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10. EXERCISES

1. Consider SPA(r, 0) with n= 1 bidder.

(@ What isan equilibrium bidding strategy?
(b) What value of r maximizes the seller’ s expected profit?
(c) Discussthe efficiency of the auction with this optimal reserve price.

. Derive, from first principles using Theorem 4.2, the value of r that maximizes the
seller’s expected profit in the SPA(r, 0) with n > 1 bidders.

3. Sameas problem 1, but with a FPA.

. Same as problem 2, but with a FPA.

5. Consider the all-pay auction: sealed bids are submitted, the high bidder wins, and

each bidder, including each loser, pays an amount equal to hisown bid. Suppose
r = c=0. Find the symmetric equilibrium.

. Consider the buying-bids auction. ItisaFPA in the sense that the high bidder
wins and pays as the sale price an amount equal to hisbid. Thereserve priceis
zero. But the entry fee is negative and depends on the magnitude of the submitted
bid. Specifically, tht()a seller pays a bidder wishing to submit abid b the amount

E(b) = J F(x)"1dx.

Find the symmetric equilibrium of this auction. Compare this auction to the other
auctions we have studied. What nice properties does it have?

. Consider an auction in our private values setting in which sealed bids are
submitted, the high bidder wins, and the price he paysisthe third highest bid.
Suppose the reserve price and entry fee are both zero.

(@ Show that truthful bidding is not a dominant strategy.
(b) Will the equilibrium be to bid higher or lower than one’s value?
(c) Find the equilibrium in the uniform case.

. Assume the values are uniformly distributed on [0, 1]. Let bidder i berisk averse,
with utility function (for money) u;(m) = m?, where a (0, 1] isaconstant. Thus,
if abidder pays p,, when he wins and 0 when he loses, his expected utility is

Priwin] (v, —p,)2.

(@ Find the equilibrium of the SPA(O, 0).
(b) Find the equilibrium of the FPA(O, 0).
(c) Doesrevenue equivalence hold here?

. The same as problem 8, but assume each bidder has a different risk parameter, and
these parameters are private information and uniformly distributed. That is,

u;(m) = m&, only bidder i knows a;, and the others view &, as arandom variable
distributed uniformly on [0, 1]. [A strategy is now afunction b(v;, &).]
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11. NOTES

1

10

11

12

The model also appliesto (procurement) auctions in which there is one buyer and several
potential sellers. Just let the bidders' bids and values (defined below) be negative.

In other economic models, v; would be called the “reservation price” of bidder i. We

avoid thisterm in order to not confuse it later with an auction’s “reserve price’.

Qil tract auctions are “common value’ auctions. See, e.g., Matthews (1984), Porter
(1995), and Milgrom and Weber (1982). (Full referencesarein Section 9.)

Eveninan art auction, (A1) and (A2) might fail. Suppose the bidders are art dealers who
will face the same uncertain resale price about which each has private information. Then
their values are neither private nor independent, just asin an oil auction.

The “dot” denotes functions. Thus, F(-) isafunction, but Hv), itsvalue at v, is a number.

Without (A4), the bidder would have anonlinear utility function u; such that instead of
maximizing his expected profit as shown in (1.1), he would maximize his expected
utility, Priwin] u;(vi—p,,) + Pr[lose] u,(—p,).

A procedure close to a second price auction is used for selling rare stamps. For a
discussion of the empirical issue, see M. Rothkopf, T. Teisberg, and E. Kahn, “Why Are
Vickrey Auctions Rare,” Journal of Political Economy 98, February 1990, 94-109.

Statisticians call V(3y and V), respectively, the nh order statistic and the
(1)t order statistic of the random sample Vs Vi

Economists use the phrases “truthful bidding” or “truthful reporting,” which have
unwarranted moral connotations. Bidding other than truthfully is not immoral in any
accepted sense. In an auction in which the winner pays his own bid, bidding one’ s true
value is usually more dumb than moral.

For v; =r, either action, “No” or b =r, is dominant.

The argument below holds even if z does not have a density function. If your are familiar
with Riemann-Stieltjes integrals, just replace h(z)dz by dH(2) in the integrals below.

| toast the reader who reads a proof to its end: ?.
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This simplifying assumption would be important, and hence bad for amodel of an
English auction, if the values were not private and independent. In acommon value
setting, the learning that a bidder in areal English auction does when he sees others drop
out isimportant. See Milgrom and Weber (1982).

The winning bidder’ s bid in the first price auction, b* (\7(1)), isequal to the expectation of
the highest of his competitors's values, which is necessarily the second highest value.
For you probability experts: if one bidder’s value is the highest, \7(1), then the highest of
his competitors’ values, Y, is necessarily the second highest of al the values, \7(2). So,

E[W1] =E[b (V)] =E{E[VIT <Yy}
=E{E[Vp) |2 <Vpyl} =El[Vp)] = [W2].

A differentiable function f: 0" - O is pseudoconcave if for all x andy in o",
(y—x)-0fx) < 0impliesfy) < f(x). Pseudoconcavity is a sufficient second order
condition because, if f(-) is pseudoconcave and Of(x") = 0, then X maximizes{:). The
graph of a pseudoconcave f: [1 . [I is single-peaked (though the peak can be at +).

The FPA rules alone imply that (A)(b) isweakly increasing in b. A common error isto
think that thisand é(b(v)) > (A)(b(z)) imply b(v) = b(z). They don't!

Why choose (6.8) to divide? Well, we want to prove that type v bids more than type z
We have just shown that type v has a greater probability of winning. If typev aso bid
less, then (b(v), é(b(v)) would be unambiguously preferable to (b(2), CAQ(b(z)), sinceit
would have a greater win probability and alower price. Itis(6.8) that contradicts this,
since it says that type z must prefer (b(2), Q(b(2)) to (b(v), Q(b(v)).

Let u(b, Q|v;) = (v; —b)Q denote atype v; bidder’s utility function over pairs (b, Q). The
slope (marginal rate of substitution) of type v;’sindifference curve at (b, Q) is

—U,(b, Qlv;) . Q
Ug(b, Qlv)) — vi—b’

This decreasesinv; when Q > 0. Sincev >z, we see that Q/(v—b) < Q/(z—b).

From P(v) = G(v)b(v) and Rv) = vg(v), we obtain the same differential equation we
derived in (6.4): G(V)b'(v) + g(v)b(v) = vg(V).
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Because there is a continuum of prices p, b;(") is not well-defined for some strategies
B;(,-). Thisisof little economic consequence. If the wheel “ticks’ the price downin
discrete increments, b;(-) is well-defined.

The Revelation Principle states that the composition of an auction with one of its
equilibriaisa“revelation auction” for which truthtelling is an equilibrium. Here, the
auction/equilibrium combination is [GAQ(-), FA>(-)D and the revelation auction is [Q(), P

OK — this proof cheats. It relies on the unwarranted assumption that Q(:) and R) are
differentiable. These functions are endogenous, and so we should not assume anything
about them. In fact, in many auctions they are not differentiable, e.g., they often have
kinks at the marginal type vy. Thefollowing is a correct proof of Theorem 8.1.

Choose two values, v and z= v — 0. Therevealed preference relations between these two
types, based on (8.3) (see (7.5) and (7.6) in Section 7), can be manipulated to:

3QW—23) < M) —MvV-3) < 3QV). *)

This shows that IM(+) is absolutely continuous and hence differentiable almost everywhere
and equal to the integral of its derivative. By choosing > 0in (*), we seethat Q(') is
nondecreasing. Hence, Q(*) is continuous almost everywhere. At every v whereit is
continuous, dividing (*) by & and letting & — 0 shows that N'(v) exists and ' (v) = Q(V).
This provesT1(:) istheintegral of Q('), i.e.,, Theorem 8.1.Y

For the nature of this constraint and a setting where its use cannot be avoided, see
Matthews, Steven A. (1984), “On the implementability of reduced form auctions,”
Econometrica, 52, 1519-1522, and references cited there.

Myerson (1981) dispenses with Assumption M. See also Bulow and Roberts (1989).



