e First class:
— introduction
— elementary model of the k-DA (IPV)
— bilateral case
— multilateral case

— convergence: price-taking and efficiency



e Second class:
— discussion of the convergence results
— numerical work

— discussion of related work

e [ hird class:

— asymptotic distributions

— asymptotic FOC and solution



Issues and Motivations

e experimental evidence dating from the 1960s

— "clearinghouse" (one-shot) versus continuous time

e price discovery vs. price verification: where do prices come from?

e M. A. Satterthwaite



e market design
— design of algorithms for computerized trading
— Budish, Cramton and Shim (2014)
— Loertscher, Marx and Wilkening (2015)

— Loertscher and Mazzetti (2014)



Elementary Trading Environment
m buyers and n sellers
unitary demand/supply
indivisible units

redemption value/cost: v; € [v,7], v; « G, ¢; € [¢, €], ¢j ~ F.

- [Qa @] — [Qa E] — [Ov 1]

quasilinear utility



For k € [0, 1], k-Double Auction in Bilateral Case

e bid b, ask a

e trade iff b > a at price kb+ (1 — k)a

e k = 1: buyer’s bid double auction

— dominant strategy of seller to submit his cost as his ask



Buyer FOC
S~H(b)

B (v,b) = /O (v — (kb + (1 — k)S(c))) f(c)de
marginal utility:
- -~ -1 1)) . 1 _ -1
(v (kb+(1 k)S(S (b))) F(S™L (b)) S (S_l(b)> kE (s (b))

R (Ca O 1
— (v —b) 5 (510) KF (S (b))



Seller FOC

o (c,a) = /Bl_l(a)((kB(v) + (1 —k)a) — ¢)g(v)dv

marginal utility:
1

1 —C -1 a)-
~((kB(B™H(@) + (1 = k)a) = )g(B~ () - (B~(a))

+(1-k)(1-G(B7'(a))

— —(a—c)- 9(B~*(a)) _ B 1,
— )B’(B—l(a))+(1 k) (1-G(B7'(a))




Equilibrium

f(S~H(B())
' (S~H(B(v))

0= (v— B(v)) — kF (S71(B(v)))

sy 8BTS
(S =9 5350

+(1—k) (1-G(B™1(S(c))

"linked" differential equations



Chatterjee-Samuelson Solution in Uniform Case



Sufficiency of FOC

evaluating the buyer's FOC at bid b, value B—1(b):
HER0)
S'(S~1(b))
kF (S71(b))
S'(S~1(v))

0= (B 1(b)—b)-

—kF (S71(b)) &

(B71(b) ~b) =

' (7))



marginal utility with value v and bid b:

f(S~1(v)

B — (v—b). B _1
2 (v,b) = (v—10) 5 (510) KF (S (b))
s [ KE(STTO)
= (s |0 ey T O)
_ FSTO) 1wy (Bl —
o g/ (S_l(b)) [( b) (B (b) b)}
f(51 (b))

_ v— B1
B g/ (S_l (b)) [( b (b))]




Geometric Representation
0<c<A<v<1,
O0=(v—A)- f(c)c—KkF(c)

O=—-(A—c¢)-glw)o+(1—-k)(1—-G(v))



_(1-H-GW)

v

(A—c)-g(v)
f kE (c)
JRCEPIENIC
v=0:v=1 V=00:C= A



Existence of "Double Continuum" of Equilibria

D

A

FiG. 3.1. Tetrahedron 0<v,<b<v,<1 that contains solutions. The arrows indicate the
imit of the normalized vector field on the tetrahedron’s faces and edges.



Fig. 4.1. Solution through (r,, vy, b)=(0.375, 0.625, 0.45) shown within tetrahedron. The
solution enters the tetrahedron at point E and exits through point F.
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F1G. 42. Solution through (v,,v,, b)=(0.375, 0625 045). Point H=(v),vy)=
(0.375,0625) is on the trading boundary where S$(0.375)= B(0.625)=045. Point
J=(v,, S(v,)) =(0.375, 0.45) is on the graph of the seller’s strategy. Point K= (B(v;), v;) =
(0.45, 0.625) is on the graph of the buyer’s strategy. The ex ante expected utility is 0.0654 for
the seller and 0.0725 for the buyer.



Multilateral Case

S(l) S 8(2) S S S(m—l—n)

bids offers $

1
S(m+1)_ ===

— S(m)




S(m) < S(m+1)

bids asks
Z S(m—l—l) t
S S(m) m—1=© t



S(m) p— S(m_|_1), S—|—w > 1

bids asks
>S(m):S(m—|—1) t n—x—1y
= $(m) = S(me1) | ¢ :
<S(m):S(m—|—1) m—s—t vy

t+(n—z—y)<n=>t<zx+y

y+(m—s—t)<m=y<s+t



Increasing Strategies

probability of trading must be nondecreasing in a buyer’s value and nonincreasing
in a seller’'s cost

"no flat spots" in the multilateral case

Leininger, Linhart and Radner (1989): step function equilibria

no trade equilibrium



Buyer's Bid Double Auction (BBDA)
® D= 5(;m1) with sellers trading only if their asks are strictly less than the price

FOC:

7 (v,b) = (v —b) Pr(b = S(m)) = Pr(s(m) <b <S(my1))

S(m) S(m+1}



1

Pr(s(m) < b < S(mi1)) =

) < mn—i ) G (B_l(b)y (1-G <B—1(b)>>m—1—i.

F(c)™ (1= F(c))" T



m—1 |
nf(b) ZO (mz—1> (mTL_—]-]-_Z>G(B—1(b))z

(1 -G (B_l(b)))m_l_i F (c)m_l_i (1-— F(C))n—m—l—i

g(B—(b)) =2 n — 2 _ i
—I_(m_l)B’(B—l(b)). ,Z%) ( i ) <m—1—z’>G(B 1(b)) :

(1-6 (B_l(b)))m_2_i F ()17 (1 — F(e))—m it




FIGURE 4.1

1£ (S, B) is an equilibrium then the graph of B lies in the triangle XYZ defined by the inequalities 0=b=0v,=1.
The arrows show the direction of the vector field (#,, b) on the edges and at a point on v,
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FIGURE 4.2

The curves p,, p;, and p; are solutions to the differential equation (3.6)-(3.7) when m = 2 and reservation values
are distributed uniformlv. Onlv o, defines an equilibrium
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FIGURE 4.3

The boundaries vy,, yg,and y,, are shown for the uniform case. The graph of any equilibrium strategy B in a
market with 2m traders must lie above y,, almost everywhere. The edge XZ corresponds to the strategy of
truthful revelation
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Ficure 3.—A bundle of equilibrium strategies in the 0.5-DA for uniform F and G and
m = n = 2, Buyers' strategies lie below the diagonal, sellers’ strategies lie above it, and each buyer’s
strategy is paired with a particular seller’s strategy to form an equilibrium.
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Ficure 4.—A bundle of equilibrium strategies in the 0.5-DA for uniform F and G and
m=n=6,



Convergence RESUltS
i 1 m
® M, n SatISfy the bounds F < W

e Convergence to price-taking behavior at the rate O(1/m):

v — B(v),S(c) —c < k(IS F, G)




Convergence to Efficiency

e relative inefficiency:

GFTPt — GFTE€
GFTpt

o relative inefficiency is O(1/m?):

GFTP' — GFT® o 2 (K F,G)

GFEFTpt — m2

e meaning of rates



Numerical Results

Expectep INEFFICIENCIES OF THE OpriMaL MecHanism, THE Least aAnD Most INEFFICIENT
EoquiLisria of THE (.5-DousLE AucTtion, THE DuaL Price MEcHANISM, AND THE FIXeEp PRICE
MecHAaNISM FOR DIFFERENT MARKET Si1zEs IN THE Casie ofF UniForm F anp G.

(For the dual price mechanism the first number listed includes in the gains from trade only the
profits of the traders while the second number also includes the specialist’s profits.)

Optimal 0.5-DA 0.5-DA Dual Price Fixed Price
me=n Mechanism Least Most Mechanism Mechanism
1 0.16 0.16 1.00 0.25 (0.25 0.25
2 0.056 0.056 0.063 0.21 (0.18) 0.22
4 0.015 0.015 0.016 0.16 (0.075) 0.18
6 0.0069 0.0069 0.0070 0.12  (0.040) 0.16
8 0.0039 0.0039 0.0039 0.099 (0.024) 0.15

Notes: The values of the optimal and fixed price mechanisms are taken from Tables I and Il respectively of Gresik and
Satterthwaite (1989). We calculated the values for the dual price mechanism by numerical integration; our values for m = 2
and 4 agree with the values from a simulation that McAfee (1992) reported in his Table 1. Finally, the values for the 0.5-DA
were obtained by numerical integration using the equilibria that we computed employing the procedure described in
footnote 12. Calculation of the values for the 0.5-DA posed numerical difficulties; consequently values are reported to only
two significant digits.



Is This Fast?

the k-DA is worst case asymptotic optimal among all BIC, IR and EABB mechanisms

e asymptotic: mechanisms are compared using the rates at which relative ineffi-
ciency converges to zero

e worst-case: each mechanism is evaluated in its least favorable environment



Result

o relative inefficiency of the constrained efficient mechanism > ~/m? in the uni-
form case for some v > 0

e We believe that this holds for all F', G that are reasonably well-behaved

e relative inefficiency of any mechanism in its worst case >

relative inefficiency of constrained efficient mechanism in its worst case > fy/mz



T. A. Gresik and M. A. Satterthwaite (1989)
multilateral case

markets with nm buyers and nn sellers for n € N

relative inefficiency in the constrained efficient mechanism is O (In—gl>

n

notable for the question that it pursues



R. Wilson (1985)

If min{m,n} is sufficiently large, then an equilibrium of a k-DA is interim

Incentive efficient

imputes welfare weights from the allocation rule in the k-DA in equilibrium

the issue is whether or not these imputed weights are positive

these imputed weights converge uniformly for all trader types to 1 as

min {m,n} — oo



Wilson Critique

e procedures that are not defined in terms of the probabilistic beliefs of the agents
(traders)

e relaxing the assumption of common knowledge of beliefs

e "The practical advantage of a double auction is that its rules for trades and
payments do not invoke the data that are common knowledge among the agents
— namely, the numbers of buyers and sellers, the joint probability distribution
of their types, and the functional dependence of their reservation prices on the
type parameter. Instead, the burden of coping with the complexity of the com-
mon knowledge features is assumed by the traders in the construction of their
strategies."



P. McAfee (1992)

S(n)

S{k+1)

S(k)

S(1)

S(n)

S(k+1)

S(k)

5(1)






: dominant strategies

. if the monetary surplus of the "specialist" is counted among the gains from trade,
then expected inefficiency is O (1/ (m + n))

: does not converge to efficiency if the monetary surplus is treated as a cost of
trading to the traders

Loertscher, Marx and Wilkening (2015), Anbarci and Roy (2015)



Large Double Auctions

o 1. S-W
— focus on the first order conditions

— analyzed using combinatorics

e large double auctions: assumes a sufficiently large number of traders
— results of probability and statistics become applicable

— remains a model of strategic price discovery



— rarely the production of an equilibrium or any connection to smaller markets

— motivation: strategic foundation for competitive equilibrium and for REE



M. W. Cripps and J. M. Swinkels (2006)

e As the number of traders grows, every nontrivial equilibrium of the double auction
converges to the Walrasian outcome. Relative inefficiency disappears at the rate
1/n°~% for any a > 0

e correlated, private values in [0, 1]

— asymmetry of the distribution and across the strategies used by each side of
the market is allowed

— no asymptotic gaps, no asymptotic atoms

— for z € (0, 1], z-independence



e symmetry and "purification" of equilibrium strategies as the number of traders
y y P q g

grows

e n "quite large" is necessary



P. J. Reny and M. Perry (2006)

a strategic foundation for rational expectations equilibrium

affiliated, interdependent values/costs

limit market: BNE equilibrium in increasing strategies that implements REE price

continuity as the number of traders and the number of possible bids/asks goes
to infinity



e all traders are fully rational and strategic: no noise traders and sellers are active
(unlike auction models)

e no indication of how large a market is required, no examples in finite markets



R. C. Shafer (2015)

e P. B. Linhart and R. Radner (1989)

e Does the emergence of price-taking behavior as the market increases in size
fundamentally require that traders be Bayesians?
e minimax regret and maxmin: behavior invariant to the size of the market
— culprit: this is true of any decision rule that satisfies the axiom of symmetry

— [-minimax regret, and ['-maxmin; minimizing maximum expected regret



J. H. Kagel and W. Vogt (1993)

experimental design

— m = 2 and m = 8 traders on each side

few sellers played their dominant strategies, causing inefficiency

buyers underbid by less than the equilibrium prediction

change from m = 2 to m = 8 notable but not as much as predicted by theory

opportunities for learning in BBDA



Continuous Bid/Ask Market

R. Wilson, "Equilibria of Bid-Ask Markets," 1987.

D. Easley and J. Ledyard, "Theories of Price Formation and Exchange in Double
Oral Auctions," 1993.

D. Friedman, "A Simple Testable Model of Double Auction Markets," 1991.

D. Friedman, "The Double Auction Market Institution: A Survey, "1993.

The Double Auction Market: Institutions, Theories and Evidence, D. Friedman
and J. Rust, eds.



Asymptotics in the CPV Model

identify the asymptotic distribution of the BBDA's price

identify the asymptotic limits of the probabilities in a trader's FOC

formulate the asymptotic FOCs (AFOCs) and solve

compare the solutions to the AFOCs to computed equilibrium

AFQOCs identify what is "first order" in a trader’s decision problem



Review

a state p is drawn from the uniform improper prior on R

buyer ¢'s value is v; = pu + €; and seller j's cost is ¢; = p + €, where

Eq Ej A Gg

a correlated, private value model (CPV)

convergence results



Limit Market

— — —1
® qg= mT_rf_nv gq — G(—: (C])
e measure g of buyers and measure 1 — g of sellers

e values/costs z, which conditional on p, are i.i.d. according to Ge(z — ).



REE
e REE: The unique REE price in state y is pREE = 11 + &q

e REE function PREE - R & R

— invertible

— PREE(1,) = pREE lears the limit market in the state



Asymptotics

CPV case: For each p, pPt and p®9 share the same asymptotic distribution,

ppt’ peq ~ AN ,u—|—£€, mn )
( T n(m+n)’ g2 (&)

e cach is an asymptotically unbiased and consistent estimate of u + Sg

e holds despite the fact that [ [ppt — p® |,u} > 0 for all n

e result concerning pP! is standard; result concerning p®9 is new
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CPV case (m = n = 1, G¢ standard normal)

VAR (ppt _ pREE|M> VAR (peq _ pREE|,LL) 1

|
oy O P NI

8n¢(0)
0.3646 0.3834 0.3927
0.1887 0.1901 0.1963
0.0954 0.0958 0.0981

0.0482 0.0483 0.0491




Asymptotic FOC in CPV and its Solution

fix n, m; markets with nm buyers and nn sellers

z(n) = Spm:n(m4n)—1 y(n) = Spm4-1:m(m+4n)—1

x(n), y(n) are asymptotically consistent, unbiased and normal estimators of the REE
price in state pu:

z(n), y(n) ~ AN <pREE mn/(m + n)? )

[n(m +n) — 1] g2(&,)



FOC

(v— b)f:c(n)|v(b|v) — Pr[z(n) <b < y(n)lv] =0

1 1
(m + n)77 o 1g€(£q)

Aapprox (17) =

e no distinction between m and n except in determining q

e dependence on ge(§,)Buyer's Bid Double Auction (BBDA)



® D= 5(;m1) with sellers trading only if their asks are strictly less than the price

FOC:

7 (v,b) = (v —b) Pr(b = S(m)) = Pr(s(m) <b <S(my1))

S(m) S(m+1}



1

Pr(s(m) < b < S(mi1)) =

) < mn—i ) G (B_l(b)y (1-G <B—1(b)>>m—1—i.

F(c)™ (1= F(c))" T



m—1 |
nf(b) ZO (mz—1> (mTL_—]-]-_Z>G(B—1(b))z

(1 -G (B_l(b)))m_l_i F (c)m_l_i (1-— F(C))n—m—l—i

g(B—(b)) =2 n — 2 _ i
—I_(m_l)B’(B—l(b)). ,Z%) ( i ) <m—1—z’>G(B 1(b)) :

(1-6 (B_l(b)))m_2_i F ()17 (1 — F(e))—m it
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Figure 1: The densities f of the mixture of normals that we use for our numerical illustration.
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Panel A: N/(0,1), £, =0, f(§,) = 0.3989.

n )\ >\approx |>\approx T )\| Aappr)C\)X_)\
2 [ 0.6896 | 0.8355 0.1459 0.2116
4 10.3398 | 0.3581 0.0183 0.0539
8 |0.1639 | 0.1671 0.0031 0.0195
16 | 0.0805 | 0.0809 0.0004 0.0050

Panel B: M ({0.5,0,1},{0.5,0,4}), &, = 0, f(&,) = 0.2992.

7 A Aapprox | |Aapprox — Al /\apprfx_/\
2 109304 | 1.1141 0.1837 0.1974
4 | 0.4617 | 0.4775 0.0158 0.0342
8 | 0.2215 | 0.2228 0.0065 0.0293
16 | 0.1077 | 0.1078 0.0001 0.0009




Panel C:

MN ({0.5,-1,1},{0.5,1,1}), &, = 0, f(&,) = 0.2420.
77 )\ >\approx |>\approx _ >\| Aappr)?X_A

2 [ 1.0468 | 1.3776 0.3308 0.3160

4 05305 | 0.5904 0.0599 0.1129

8 | 0.2610 | 0.2755 0.0145 0.0556

16 | 0.1296 | 0.1333 0.0037 0.0285

Panel D: MA ({0.5,-1.5,1},{0.5,1.5,1}), £, = 0, f(,) = 0.1295.

7 A Aapprox | |Aapprox — Al AapprAOX_/\
2 | 1.4650 | 2.5737 1.1087 0.7568
4 |1 0.7626 | 1.1030 0.3404 0.4464
8 | 0.3948 | 0.5147 0.1199 0.3037
16 | 0.2084 | 0.2491 0.0407 0.1953




[A1,20—A2 1]

n | A2 | A1 | A2 — A2l | =5
2 | 0.5027 | 0.5085 0.0058 0.0115
4 10.2433 | 0.2441 0.0008 0.0033
8 | 0.1184 | 0.1185 0.0001 0.0008
16 | 0.0583 | 0.0583 0 0




