Price Discovery Using a Double Auction

by

Mark A. Satterthwaite, Northwestern University

Steven R. Williams, University of Illinois

Kostas E. Zachariadis, London School of Economics

Why study double auctions?

- effect of strategic behavior on efficiency
- comparative analysis of market mechanisms
- relevance to experimental testing
- equilibrium price verification vs. equilibrium price discovery

Accomplished here:

- both correlated private (CPV) and interdependent values/costs (CIV)
- computable model of trading
- generality of the informational environment traded for deeper insight
- meaningfulness of rates of convergence
- *numerical result* vs. *theorem*

The Buyer's Bid Double Auction

m buyers each of whom wishes to buy one item

n sellers, each of whom wishes to sell one item

- buyers and sellers simultaneously submit bids/offers
- bids/offers are ordered in a list:

$$s_{(1)} \leq s_{(2)} \leq \cdots \leq s_{(m)} \leq s_{(m+1)} \leq \cdots \leq s_{(m+n)}$$

buyers whose bids are at or above s_(m+1) trade with sellers whose offers are below s_(m) at the market price of p = s_(m+1)

Novel Feature: Values/Costs and Signals

- a state μ is drawn from the *uniform improper prior* on $\mathbb R$
- buyer *i*'s value is $v_i = \mu + \varepsilon_i$ and seller *j*'s cost is $c_j = \mu + \varepsilon_j$, where ε_i , $\varepsilon_j \backsim G_{\varepsilon}$
- quasilinear utility
- a correlated, private value model (CPV)
- correlated interdependent value model (CIV): each trader observes a noisy signal $\sigma_i = z_i + \delta_i$ of his value/cost z_i , where $\delta_i \sim G_{\delta}$

The Uniform Improper Prior

- models complete ignorance about the distribution of values/costs and the likely price ex ante
- DeGroot:
 - forming a prior is costly
 - good information is on the way at the interim stage
 - beliefs conditioned on an observed signal are well-defined
- Maximal test of the BBDA institution

- methodological: *invariance*
- Cripps and Swinkels (2006) in CPV case, Reny and Perry (2006) in CIV case:
 - large numbers of traders
 - no examples
- robustness check: $\mu \backsim \mathcal{N}(\mathbf{0}, var)$

Invariance of a Trader's Decision Problem

For all $j, k \neq i$, the distributions of

$$c_j - \sigma_i, v_k - \sigma_i$$

and

$$\sigma_j - \sigma_i$$

are the same for all $\sigma_i \in \mathbb{R}$

• conjectured form of symmetric equilibrium: each buyer i uses

 $B(\sigma_i) = \sigma_i + \lambda_B$ and each seller j uses $S(\sigma_j) = \sigma_j + \lambda_S$ for $\lambda_B, \lambda_S \in \mathbb{R}$

• offset strategies and offset equilibrium

First Order Conditions for Equilibrium

Buyer:

 $\pi_b(b|\sigma) = (\mathbb{E}[v|\sigma, x=b] - b) f^B_{x|\sigma}(b|\sigma) - \Pr[x < b < y|\sigma] = \mathbf{0} \Leftrightarrow$

$$b = \mathbb{E}[v|\sigma, x = b] - \frac{\Pr[x < b < y|\sigma]}{f_{x|\sigma}^B(b|\sigma)}$$

= price-taking term - strategic term

Seller:

$$\pi_a^S(a|\sigma_S) = a - \mathbb{E}[c|\sigma_S, x = a] = \mathbf{0} \Leftrightarrow$$

$$a = \mathbb{E}[c|\sigma_S, x = a]$$

$$=$$
 price-taking term
FOCs define a vector field $\overrightarrow{\mathcal{V}}=\left(\dot{b},\dot{\sigma}_B,\dot{\sigma}_S
ight)$

The normalized vector field $\overrightarrow{\mathcal{V}}$ for buyers in the CPV case (m = n = 4, G_{ε} standard normal).

The normalized vector field $\overrightarrow{\mathcal{V}}$ for buyers in the CIV case (m = n = 4, G_{ε} , G_{δ} standard normal). $S(\sigma_S) = \sigma_S + 0.2172$

The normalized vector field $\overrightarrow{\mathcal{V}}$ for sellers in the CIV case (m = n = 4, G_{ε} , G_{δ} standard normal). $B(\sigma_B) = \beta = \sigma_B - 0.7036$

Sufficiency of FOC Verified Numerically:

Marginal expected utility for focal buyer (m = n = 4, G_{ε} , G_{δ} standard normal)). The vertical dashed line (b = -0.7036) indicates the offset solution to the focal trader's FOC.

Marginal expected utility for focal seller (m = n = 4, G_{ε} , G_{δ} standard normal)).

Results

 Numerical Result I: Existence and uniqueness of symmetric equilibrium in CIV and CPV cases

- Theorem: Existence of offset solution to buyer's FOC in CPV case

- Numerical Results II-III: Fixed m, n, ηm buyers and ηn sellers
 - Equilibrium strategic term of buyers is $O(1/\eta)$:

$$\frac{\Pr\left[x < b < y|\sigma\right]}{f_{x|\sigma}^{B}\left(b|\sigma\right)} \leq \frac{K_{1}\left(m, n, G_{\varepsilon}, G_{\delta}\right)}{\eta}$$

– Relative inefficiency is
$$O(1/\eta^2)$$
:

$$\frac{\overline{GFT}^{\mathsf{pt}} - \overline{GFT}^{\mathsf{e}}}{\overline{GFT}^{\mathsf{pt}}} \leq \frac{K_2(m, n, G_{\varepsilon}, G_{\delta})}{\eta^2}$$

- Numerical Result IV: convergence to REE
 - theorems in the CPV case

2	4	8	16
-1.3404, 0.4124	-0.8372, 0.4912	-0.3642, 0.6508	0.0361, 0.8546
-1.2189, 0.1332	-0.7036, 0.2172	-0.2657, 0.3948	0.1128, 0.6192
-1.2084, -0.1712	-0.7431, -0.0787	-0.3417, 0.1091	0.0212, 0.3494
-1.3011, -0.4677	-0.8853, -0.3756	-0.5175, -0.1886	-0.1754, 0.0614

Equilibrium offsets λ_B, λ_S for different values of m and n in the case of G_{ε} , G_{δ} standard normal.

η	λ_B	\overline{GFT}^{pt}	\overline{GFT}^{eq}	$(\overline{GFT}^{pt} - \overline{GFT}^{eq})/\overline{GFT}^{pt}$
2	-0.6896	1.3265	1.2221	0.0795
4	-0.3398	2.9008	2.8535	0.0163
8	-0.1639	6.0812	6.0653	0.0026
16	-0.0805	12.4604	12.4516	0.0007

CPV case (m = n = 1, G_{ε} standard normal)

η	$\left \begin{array}{c} {\Pr[x < \!\lambda_B \! < \! y \sigma_B]} \\ {f_x^B(\lambda_B \sigma_B)} \end{array} ight $	\overline{GFT}^{pt}	\overline{GFT}^{eq}	$(\overline{GFT}^{pt} - \overline{GFT}^{eq})/\overline{GFT}^{pt}$
2	0.9279	0.9395	0.7151	0.2389
4	0.4864	2.075	1.9354	0.0594
8	0.2326	4.3011	4.2434	0.0134
16	0.1139	8.8093	8.776	0.0037

CIV case (m = n = 1, G_{ε} , G_{δ} standard normal)

Limit Market

- *limit market* in each state μ: m times a unit mass of buyers and n times a unit mass of sellers with values/costs and signals generated using the distributions G_ε, G_δ
- $V(\sigma) \equiv \mathbb{E}[z|\mathbf{0},\sigma]$ assumed increasing
- *REE function* $P^{\mathsf{REE}} : \mathbb{R} \to \mathbb{R}$
- invertible. Let Λ denote the function that recovers the state μ from the REE price, $\Lambda(p^{\text{REE}}) = \mu$.

- importance of revealing $\boldsymbol{\mu}$
- $P^{\mathsf{REE}}(\mu) = p^{\mathsf{REE}}$ clears the limit market in the state μ . Each trader learns his private signal σ , observes p^{REE} , and calculates his expected value/cost $\mathbb{E}\left[z|\Lambda\left(p^{\mathsf{REE}}\right),\sigma\right]$.

$$q\equiv rac{m}{m+n}$$
, $\xi_q^{arepsilon+\delta}\equiv G_{arepsilon+\delta}^{-1}\left(q
ight)$

Consider the CIV case. For fixed m and n, consider the limit market. Then:

• The unique REE price in state μ is

$$p^{\mathsf{REE}} \equiv \mu + V\left(\xi_q^{\varepsilon + \delta}\right)$$

The one-to-one mapping from the REE price to the state is $\Lambda\left(p^{\mathsf{REE}}\right) = p^{\mathsf{REE}} - V\left(\xi_q^{\varepsilon + \delta}\right)$.

• In the BBDA, all traders play the equilibrium offset $\lambda_B = \lambda_S = V\left(\xi_q^{\varepsilon+\delta}\right) - \xi_q^{\varepsilon+\delta}$. This results in the equilibrium price $\mu + V\left(\xi_q^{\varepsilon+\delta}\right)$.

Strategic Error vs. Sampling Error

Absolute Error in the strategic market price p^e as an estimate of $p^{\mathsf{REE}} \equiv \mu + V\left(\xi_q^{\varepsilon+\delta}\right)$:

$$AE = \left| p^e - p^{\mathsf{REE}} \right|$$

$$\le \left| p^e - p^{pt} \right| + \left| p^{pt} - p^{\mathsf{REE}} \right|$$

= Strategic Error + Sampling Error

Numerical Result IV

- For every sample of values/costs, strategic error is $O\left(1/\eta\right)$
- Sampling error is a random variable that can achieve any value in \mathbb{R}^+
- $\mathbb{E}[\text{sampling error } | \mu]$ is $\Theta(1/\sqrt{\eta})$, i.e.,

$$0 < rac{k_1}{\sqrt{\eta}} \leq \mathbb{E}\left[\textit{Sampling Error} \left| \mu
ight] \leq rac{k_2}{\sqrt{\eta}}.$$

• Expected total error is $\Theta(1/\sqrt{\eta})$

- The effect of strategic behavior is swamped by the error inherent in the finiteness of the market and the noisiness of the signals
- This holds as a theorem in the CPV case if G_{ε} satisfies two regularity conditions on its downward tail

Asymptotics

CPV case: For each μ , p^{pt} and p^{eq} share the same asymptotic distribution,

$$p^{\mathsf{pt}}, p^{\mathsf{eq}} \sim \mathcal{AN}\left(\mu + \xi_q^{\varepsilon}, \frac{mn}{\eta \left(m+n\right)^3 g_{\varepsilon}^2\left(\xi_q^{\varepsilon}\right)}\right)$$

- each is an asymptotically unbiased and consistent estimate of $\mu + \xi_q^{arepsilon}$
- holds despite the fact that $\mathbb{E}\left[p^{\mathsf{pt}} p^{\mathsf{eq}} \,|\mu\right] > \mathsf{0}$ for all η
- result concerning p^{pt} is standard; result concerning p^{eq} is new

η	$VAR\left(p^{pt} - p^{REE} \mu\right)$	$VAR\left(p^{eq} - p^{REE} \mu\right)$	$\frac{1}{8\eta\phi^2(0)}$
2	0.3646	0.3834	0.3927
4	0.1887	0.1901	0.1963
8	0.0954	0.0958	0.0981
16	0.0482	0.0483	0.0491

CPV case (m = n = 1, G_{ε} standard normal)

	Exp. Sampling Error	Exp. Total Error	Exp. Strategic Error
η	$\mathbb{E}\left[\left p^{pt} - p^{REE}\right \mu\right]$	$\mathbb{E}\left[\left p^{eq} - p^{REE}\right \mu\right]$	$\mathbb{E}\left[\left p^{eq} - p^{pt}\right \mu\right]$
2	0.7546	0.7327	0.5895
4	0.5174	0.4968	0.3354
8	0.3597	0.3509	0.1682
16	0.2526	0.2491	0.0871

CPV case (m = n = 1, G_{ε} standard normal)

Conclusion

- informational environment:
 - simple enough: formal analysis, computational work, and the display of equilibrium
 - rich enough to include the CPV and CIV cases
- Previous work: the asymptotic properties of large markets.
- Private information marginally affects the market's performance relative to price formation, allocative efficiency, and the estimation of the REE price.

Asymptotic FOC in CPV and its Solution

$$\lambda_{\mathsf{approx}}(\eta) = rac{1}{(m+n)\eta - 1} rac{1}{g_{arepsilon}(\xi_q)}$$

Figure 1:

Panel A: $\mathcal{N}(0,1)$, $\xi_q = 0$, $f(\xi_q) = 0.3989$.

Figure 2:

η	λ	$\lambda_{\sf approx}$	$ \lambda_{approx} - \lambda $	$rac{ \lambda_{approx} - \lambda }{\lambda}$
2	0.6896	0.8355	0.1459	0.2116
4	0.3398	0.3581	0.0183	0.0539
8	0.1639	0.1671	0.0031	0.0195
16	0.0805	0.0809	0.0004	0.0050

Panel B: $\mathcal{MN}(\{0.5, 0, 1\}, \{0.5, 0, 4\}), \xi_q = 0, f(\xi_q) = 0.2992.$

η	λ	$\lambda_{\sf approx}$	$ \lambda_{approx} - \lambda $	$rac{ \lambda_{approx} - \lambda }{\lambda}$
2	0.9304	1.1141	0.1837	0.1974
4	0.4617	0.4775	0.0158	0.0342
8	0.2215	0.2228	0.0065	0.0293
16	0.1077	0.1078	0.0001	0.0009

Panel C: $\mathcal{MN}(\{0.5, -1, 1\}, \{0.5, 1, 1\}), \xi_q = 0, f(\xi_q) = 0.2420.$

η	λ	$\lambda_{\sf approx}$	$ \lambda_{approx} - \lambda $	$rac{ \lambda_{approx} - \lambda }{\lambda}$
2	1.0468	1.3776	0.3308	0.3160
4	0.5305	0.5904	0.0599	0.1129
8	0.2610	0.2755	0.0145	0.0556
16	0.1296	0.1333	0.0037	0.0285

Panel D: $\mathcal{MN}(\{0.5, -1.5, 1\}, \{0.5, 1.5, 1\})$, $\xi_q = 0$, $f(\xi_q) = 0.1295$.

η	λ	λ_{approx}	$ \lambda_{approx} - \lambda $	$rac{ \lambda_{approx} - \lambda }{\lambda}$
2	1.4650	2.5737	1.1087	0.7568
4	0.7626	1.1030	0.3404	0.4464
8	0.3948	0.5147	0.1199	0.3037
16	0.2084	0.2491	0.0407	0.1953

η	$\lambda_{1,2}$	$\lambda_{2,1}$	$ \lambda_{1,2} - \lambda_{2,1} $	$\frac{ \lambda_{1,2}-\lambda_{2,1} }{\lambda_{1,2}}$
2	0.5027	0.5085	0.0058	0.0115
4	0.2433	0.2441	0.0008	0.0033
8	0.1184	0.1185	0.0001	8000.0
16	0.0583	0.0583	0	0

For different market sizes η and F standard normal, the equilibrium offset $\lambda_{1,2}$ for the case of m = 1 buyer, n = 2 sellers is compared to the equilibrium offset $\lambda_{2,1}$ for the case of m = 2 buyers, n = 1 seller.

η	$\lambda_{1,2}$	$\lambda_{2,1}$	$ \lambda_{1,2} - \lambda_{2,1} $	$\frac{ \lambda_{1,2}-\lambda_{2,1} }{\lambda_{1,2}}$
2	0.5027	0.5085	0.0058	0.0115
4	0.2433	0.2441	0.0008	0.0033
8	0.1184	0.1185	0.0001	0.0008
16	0.0583	0.0583	0	0