Price Discovery Using a Double Auction

by

Mark A. Satterthwaite, Northwestern University

Steven R. Williams, University of Illinois

Kostas E. Zachariadis, London School of Economics

Why study double auctions?

- effect of strategic behavior on efficiency
- comparative analysis of market mechanisms
- relevance to experimental testing
- equilibrium price verification vs. equilibrium price discovery

Accomplished here:

- both correlated private (CPV) and interdependent values/costs (CIV)
- computable model of trading
- generality of the informational enviroment traded for deeper insight
- meaningfulness of rates of convergence
- numerical result vs. theorem

The Buyer's Bid Double Auction

m buyers each of whom wishes to buy one item
n sellers, each of whom wishes to sell one item

- buyers and sellers simultaneously submit bids/offers
- bids/offers are ordered in a list:

$$
s_{(1)} \leq s_{(2)} \leq \ldots \leq s_{(m)} \leq s_{(m+1)} \leq \ldots \leq s_{(m+n)}
$$

- buyers whose bids are at or above $s_{(m+1)}$ trade with sellers whose offers are below $s_{(m)}$ at the market price of $p=s_{(m+1)}$

Novel Feature: Values/Costs and Signals

- a state μ is drawn from the uniform improper prior on \mathbb{R}
- buyer i 's value is $v_{i}=\mu+\varepsilon_{i}$ and seller j 's cost is $c_{j}=\mu+\varepsilon_{j}$, where ε_{i}, $\varepsilon_{j} \backsim G_{\varepsilon}$
- quasilinear utility
- a correlated, private value model (CPV)
- correlated interdependent value model (CIV): each trader observes a noisy signal $\sigma_{i}=z_{i}+\delta_{i}$ of his value/cost z_{i}, where $\delta_{i} \backsim G_{\delta}$

The Uniform Improper Prior

- models complete ignorance about the distribution of values/costs and the likely price ex ante
- DeGroot:
- forming a prior is costly
- good information is on the way at the interim stage
- beliefs conditioned on an observed signal are well-defined
- Maximal test of the BBDA institution
- methodological: invariance
- Cripps and Swinkels (2006) in CPV case, Reny and Perry (2006) in CIV case:
- large numbers of traders
- no examples
- robustness check: $\mu \sim \mathcal{N}(0, v a r)$
Invariance of a Trader's Decision Problem

For all $j, k \neq i$, the distributions of

$$
c_{j}-\sigma_{i}, v_{k}-\sigma_{i}
$$

and

$$
\sigma_{j}-\sigma_{i}
$$

are the same for all $\sigma_{i} \in \mathbb{R}$

- conjectured form of symmetric equilibrium: each buyer i uses

$$
B\left(\sigma_{i}\right)=\sigma_{i}+\lambda_{B} \text { and each seller } j \text { uses } S\left(\sigma_{j}\right)=\sigma_{j}+\lambda_{S} \text { for } \lambda_{B}, \lambda_{S} \in \mathbb{R}
$$

- offset strategies and offset equilibrium

First Order Conditions for Equilibrium

Buyer:

$$
\begin{gathered}
\pi_{b}(b \mid \sigma)=(\mathbb{E}[v \mid \sigma, x=b]-b) f_{x \mid \sigma}^{B}(b \mid \sigma)-\operatorname{Pr}[x<b<y \mid \sigma]=0 \Leftrightarrow \\
b=\mathbb{E}[v \mid \sigma, x=b]-\frac{\operatorname{Pr}[x<b<y \mid \sigma]}{f_{x \mid \sigma}^{B}(b \mid \sigma)} \\
=\text { price-taking term - strategic term }
\end{gathered}
$$

Seller:

$$
\begin{aligned}
\pi_{a}^{S}\left(a \mid \sigma_{S}\right) & =a-\mathbb{E}\left[c \mid \sigma_{S}, x=a\right]=0 \Leftrightarrow \\
a & =\mathbb{E}\left[c \mid \sigma_{S}, x=a\right] \\
& =\text { price-taking term }
\end{aligned}
$$

FOCs define a vector field $\overrightarrow{\mathcal{V}}=\left(\dot{b}, \dot{\sigma}_{B}, \dot{\sigma}_{S}\right)$

The normalized vector field $\overrightarrow{\mathcal{V}}$ for buyers in the CPV case ($m=n=4, G_{\varepsilon}$ standard normal).

The normalized vector field $\overrightarrow{\mathcal{V}}$ for buyers in the CIV case $(m=n=4$, $G_{\varepsilon}, G_{\delta}$ standard normal). $S\left(\sigma_{S}\right)=\sigma_{S}+0.2172$

The normalized vector field $\overrightarrow{\mathcal{V}}$ for sellers in the CIV case ($m=n=4$, $G_{\varepsilon}, G_{\delta}$ standard normal). $B\left(\sigma_{B}\right)=\beta=\sigma_{B}-0.7036$

Sufficiency of FOC Verified Numerically:

Marginal expected utility for focal buyer $\left(m=n=4, G_{\varepsilon}, G_{\delta}\right.$ standard normal)). The vertical dashed line ($b=-0.7036$) indicates the offset solution to the focal trader's FOC.

Marginal expected utility for focal seller $\left(m=n=4, G_{\varepsilon}, G_{\delta}\right.$ standard normal)).

Results

- Numerical Result I: Existence and uniqueness of symmetric equilibrium in CIV and CPV cases
- Theorem: Existence of offset solution to buyer's FOC in CPV case
- Numerical Results II-III: Fixed $m, n, \eta m$ buyers and ηn sellers
- Equilibrium strategic term of buyers is $O(1 / \eta)$:

$$
\frac{\operatorname{Pr}[x<b<y \mid \sigma]}{f_{x \mid \sigma}^{B}(b \mid \sigma)} \leq \frac{K_{1}\left(m, n, G_{\varepsilon}, G_{\delta}\right)}{\eta}
$$

- Relative inefficiency is $O\left(1 / \eta^{2}\right)$:

$$
\frac{\overline{G F T}^{\mathrm{pt}}-\overline{G F T}^{\mathrm{e}}}{\overline{G F T}^{\mathrm{pt}}} \leq \frac{K_{2}\left(m, n, G_{\varepsilon}, G_{\delta}\right)}{\eta^{2}}
$$

- Numerical Result IV: convergence to REE
- theorems in the CPV case

2	4	8	16
$-1.3404,0.4124$	$-0.8372,0.4912$	$-0.3642,0.6508$	$0.0361,0.8546$
$-1.2189,0.1332$	$-0.7036,0.2172$	$-0.2657,0.3948$	$0.1128,0.6192$
$-1.2084,-0.1712$	$-0.7431,-0.0787$	$-0.3417,0.1091$	$0.0212,0.3494$
$-1.3011,-0.4677$	$-0.8853,-0.3756$	$-0.5175,-0.1886$	$-0.1754,0.0614$

Equilibrium offsets λ_{B}, λ_{S} for different values of m and n in the case of G_{ε}, G_{δ} standard normal.

η	λ_{B}	$\overline{G F T}^{\mathrm{pt}}$	$\overline{G F T}^{\mathrm{eq}}$	$\left(\overline{G F T}^{\mathrm{pt}}-\overline{G F T}^{\mathrm{eq}}\right) / \overline{G F T}^{\mathrm{pt}}$
2	-0.6896	1.3265	1.2221	0.0795
4	-0.3398	2.9008	2.8535	0.0163
8	-0.1639	6.0812	6.0653	0.0026
16	-0.0805	12.4604	12.4516	0.0007

CPV case ($m=n=1, G_{\varepsilon}$ standard normal)

η	$\frac{\operatorname{Pr}\left[x<\lambda_{B}<y \mid \sigma_{B}\right]}{f_{x}^{B}\left(\lambda_{B} \mid \sigma_{B}\right)}$	$\overline{G F T}^{\mathrm{pt}}$	$\overline{G F T}^{\mathrm{eq}}$	$\left(\overline{G F T}^{\mathrm{pt}}-\overline{G F T}^{\mathrm{eq}}\right) / \overline{G F T}^{\mathrm{pt}}$
2	0.9279	0.9395	0.7151	0.2389
4	0.4864	2.075	1.9354	0.0594
8	0.2326	4.3011	4.2434	0.0134
16	0.1139	8.8093	8.776	0.0037

CIV case ($m=n=1, G_{\varepsilon}, G_{\delta}$ standard normal)

Limit Market

- limit market in each state μ : m times a unit mass of buyers and n times a unit mass of sellers with values/costs and signals generated using the distributions $G_{\varepsilon}, G_{\delta}$
- $V(\sigma) \equiv \mathbb{E}[z \mid 0, \sigma]$ assumed increasing
- REE function $P^{\mathrm{REE}}: \mathbb{R} \rightarrow \mathbb{R}$
- invertible. Let Λ denote the function that recovers the state μ from the REE price, $\Lambda\left(p^{\mathrm{REE}}\right)=\mu$.
- importance of revealing μ
- $P^{\mathrm{REE}}(\mu)=p^{\text {REE }}$ clears the limit market in the state μ. Each trader learns his private signal σ, observes $p^{\text {REE }}$, and calculates his expected value/cost $\mathbb{E}\left[z \mid \Lambda\left(p^{\mathrm{REE}}\right), \sigma\right]$.

$$
q \equiv \frac{m}{m+n}, \xi_{q}^{\varepsilon+\delta} \equiv G_{\varepsilon+\delta}^{-1}(q)
$$

Consider the CIV case. For fixed m and n, consider the limit market. Then:

- The unique REE price in state μ is

$$
p^{\mathrm{REE}} \equiv \mu+V\left(\xi_{q}^{\varepsilon+\delta}\right)
$$

The one-to-one mapping from the REE price to the state is $\Lambda\left(p^{\mathrm{REE}}\right)=$ $p^{\mathrm{REE}}-V\left(\xi_{q}^{\varepsilon+\delta}\right)$.

- In the BBDA, all traders play the equilibrium offset $\lambda_{B}=\lambda_{S}=V\left(\xi_{q}^{\varepsilon+\delta}\right)-$ $\xi_{q}^{\varepsilon+\delta}$. This results in the equilibrium price $\mu+V\left(\xi_{q}^{\varepsilon+\delta}\right)$.

Strategic Error vs. Sampling Error

Absolute Error in the strategic market price p^{e} as an estimate of $p^{\mathrm{REE}} \equiv$ $\mu+V\left(\xi_{q}^{\varepsilon+\delta}\right):$

$$
\begin{gathered}
A E=\left|p^{e}-p^{\mathrm{REE}}\right| \\
\leq\left|p^{e}-p^{p t}\right|+\left|p^{p t}-p^{\mathrm{REE}}\right| \\
=\text { Strategic Error }+ \text { Sampling Error }
\end{gathered}
$$

Numerical Result IV

- For every sample of values/costs, strategic error is $O(1 / \eta)$
- Sampling error is a random variable that can achieve any value in \mathbb{R}^{+}
- $\mathbb{E}[$ sampling error $\mid \mu]$ is $\Theta(1 / \sqrt{\eta})$, i.e.,

$$
0<\frac{k_{1}}{\sqrt{\eta}} \leq \mathbb{E}[\text { Sampling Error } \mid \mu] \leq \frac{k_{2}}{\sqrt{\eta}}
$$

- Expected total error is $\Theta(1 / \sqrt{\eta})$
- The effect of strategic behavior is swamped by the error inherent in the finiteness of the market and the noisiness of the signals
- This holds as a theorem in the CPV case if G_{ε} satisfies two regularity conditions on its downward tail

Asymptotics

CPV case: For each $\mu, p^{\text {pt }}$ and $p^{\text {eq }}$ share the same asymptotic distribution,

$$
p^{\mathrm{pt}}, p^{\mathrm{eq}} \sim \mathcal{A N}\left(\mu+\xi_{q}^{\varepsilon}, \frac{m n}{\eta(m+n)^{3} g_{\varepsilon}^{2}\left(\xi_{q}^{\varepsilon}\right)}\right)
$$

- each is an asymptotically unbiased and consistent estimate of $\mu+\xi_{q}^{\varepsilon}$
- holds despite the fact that $\mathbb{E}\left[p^{\mathrm{pt}}-p^{\mathrm{eq}} \mid \mu\right]>0$ for all η
- result concerning p^{pt} is standard; result concerning p^{eq} is new

η	$\operatorname{VAR}\left(p^{\mathrm{pt}}-p^{\mathrm{REE}} \mid \mu\right)$	$\operatorname{VAR}\left(p^{\mathrm{eq}}-p^{\mathrm{REE}} \mid \mu\right)$	$\frac{1}{8 \eta \phi^{2}(0)}$
2	0.3646	0.3834	0.3927
4	0.1887	0.1901	0.1963
8	0.0954	0.0958	0.0981
16	0.0482	0.0483	0.0491

CPV case ($m=n=1, G_{\varepsilon}$ standard normal)

η	Exp. Sampling Error $\mathbb{E}\left[\left\|p^{\text {pt }}-p^{\mathrm{REE}}\right\| \mid \mu\right]$	Exp. Total Error $\mathbb{E}\left[\left\|p^{\text {eq }}-p^{\mathrm{REE}}\right\| \mid \mu\right]$	Exp. Strategic Error $\mathbb{E}\left[\left\|p^{\text {eq }}-p^{\text {pt }}\right\| \mid \mu\right]$
2	0.7546	0.7327	0.5895
4	0.5174	0.4968	0.3354
8	0.3597	0.3509	0.1682
16	0.2526	0.2491	0.0871

CPV case ($m=n=1, G_{\varepsilon}$ standard normal)

Conclusion

- informational environment:
- simple enough: formal analysis, computational work, and the display of equilibrium
- rich enough to include the CPV and CIV cases
- Previous work: the asymptotic properties of large markets.
- Private information marginally affects the market's performance relative to price formation, allocative efficiency, and the estimation of the REE price.

Asymptotic FOC in CPV and its Solution

$$
\lambda_{\operatorname{approx}}(\eta)=\frac{1}{(m+n) \eta-1} \frac{1}{g_{\varepsilon}\left(\xi_{q}\right)}
$$

Figure 1:

Panel A: $\mathcal{N}(0,1), \xi_{q}=0, f\left(\xi_{q}\right)=0.3989$.

Figure 2:

η	λ	$\lambda_{\text {approx }}$	$\left\|\lambda_{\text {approx }}-\lambda\right\|$	$\frac{\left\|\lambda_{\text {approx }}-\lambda\right\|}{\lambda}$
2	0.6896	0.8355	0.1459	0.2116
4	0.3398	0.3581	0.0183	0.0539
8	0.1639	0.1671	0.0031	0.0195
16	0.0805	0.0809	0.0004	0.0050

Panel B: $\mathcal{M N}(\{0.5,0,1\},\{0.5,0,4\}), \xi_{q}=0, f\left(\xi_{q}\right)=0.2992$.

η	λ	$\lambda_{\text {approx }}$	$\left\|\lambda_{\text {approx }}-\lambda\right\|$	$\frac{\left\|\lambda_{\text {approx }}-\lambda\right\|}{\lambda}$
2	0.9304	1.1141	0.1837	0.1974
4	0.4617	0.4775	0.0158	0.0342
8	0.2215	0.2228	0.0065	0.0293
16	0.1077	0.1078	0.0001	0.0009

Panel C: $\mathcal{M} \mathcal{N}(\{0.5,-1,1\},\{0.5,1,1\}), \xi_{q}=0, f\left(\xi_{q}\right)=0.2420$.

η	λ	$\lambda_{\text {approx }}$	$\left\|\lambda_{\text {approx }}-\lambda\right\|$	$\frac{\left\|\lambda_{\text {approx }}-\lambda\right\|}{\lambda}$
2	1.0468	1.3776	0.3308	0.3160
4	0.5305	0.5904	0.0599	0.1129
8	0.2610	0.2755	0.0145	0.0556
16	0.1296	0.1333	0.0037	0.0285

Panel D: $\mathcal{M N}(\{0.5,-1.5,1\},\{0.5,1.5,1\}), \xi_{q}=0, f\left(\xi_{q}\right)=0.1295$.

η	λ	$\lambda_{\text {approx }}$	$\left\|\lambda_{\text {approx }}-\lambda\right\|$	$\frac{\left\|\lambda_{\text {approx }}-\lambda\right\|}{\lambda}$
2	1.4650	2.5737	1.1087	0.7568
4	0.7626	1.1030	0.3404	0.4464
8	0.3948	0.5147	0.1199	0.3037
16	0.2084	0.2491	0.0407	0.1953

η	$\lambda_{1,2}$	$\lambda_{2,1}$	$\left\|\lambda_{1,2}-\lambda_{2,1}\right\|$	$\frac{\left\|\lambda_{1,2}-\lambda_{2,1}\right\|}{\lambda_{1,2}}$
2	0.5027	0.5085	0.0058	0.0115
4	0.2433	0.2441	0.0008	0.0033
8	0.1184	0.1185	0.0001	0.0008
16	0.0583	0.0583	0	0

For different market sizes η and F standard normal, the equilibrium offset $\lambda_{1,2}$ for the case of $m=1$ buyer, $n=2$ sellers is compared to the equilibrium offset $\lambda_{2,1}$ for the case of $m=2$ buyers, $n=1$ seller.

η	$\lambda_{1,2}$	$\lambda_{2,1}$	$\left\|\lambda_{1,2}-\lambda_{2,1}\right\|$	$\frac{\left\|\lambda_{1,2}-\lambda_{2,1}\right\|}{\lambda_{1,2}}$
2	0.5027	0.5085	0.0058	0.0115
4	0.2433	0.2441	0.0008	0.0033
8	0.1184	0.1185	0.0001	0.0008
16	0.0583	0.0583	0	0

