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Abstract

We develop a prior-free double-clock auction that is asymptotically Bayesian

optimal. It preserves the privacy of trading buyers and sellers, endows agents with

obviously dominant strategies, is envy-free and weakly group strategy-proof. We

characterize the Bayesian optimal privacy preserving mechanism, show that our

mechanism converges to it as estimation errors vanish, and establish the impossibil-

ity of ex post efficient, or indeed optimal, privacy-preserving trade. Our mechanism

accommodates revenue thresholds and other constraints, requires limited commit-

ment by the designer, extends to accommodate heterogeneous groups of agents,
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1 Introduction

Bayesian mechanism design has proved fruitful as an analytical tool and a conceptual

framework, yet has been deemed “fragile” for practical purposes on the grounds that it

depends on the fine details of the environment about which designers, and possibly the

agents, are likely to be uncertain. This has led to the postulates that for the purposes

of practicality, mechanisms ought to be free of the details of the environment, such as

the distributions from which agents draw their types, and robust with respect to agents’

beliefs about the environment. At the same time, and to the extent that econometricians

and savvy designers can infer distributions and other design-relevant details, the theory

of Bayesian mechanism design is empirically predictive exactly because the mechanisms

it prescribes depend on the fine details of the environment. As a case in point, in an

optimal auction, the reserve price varies with the distributions from which bidders draw

their values. This raises the question as to whether it is possible to design mechanisms that

are both practical, in the sense of being robust and prior free, and empirically predictive

insofar as the mechanism varies with the environment.

In this paper, we answer this question in the affirmative by developing a double-clock

auction that is prior free, endows agents with dominant strategies, and converges to the

Bayesian optimal mechanism as the number of agents becomes large, while still being op-

erational and envy free for any size of the market.1 We do so in a two-sided environment

with privately informed buyers and sellers. Although our double-clock auction is defined

without reference to distributions and does not depend on the agents’ or designer’s beliefs

about distributions, its equilibrium outcomes vary with distributions because the mecha-

nism estimates the relevant details and uses these estimates to determine who trades. The

double-clock auction preserves the privacy of trading agents and endows agents with ob-

viously dominant strategies.2 It is constructed in such a way that it requires only limited

commitment by the designer, and it permits real-time diagnostics as to whether revenue is

expected to increase or decrease if the auction continues. Our mechanism is weakly group

strategy-proof because of the VCG nature of the pricing rule, and the resulting equilib-

1A mechanism is envy free if no agent wishes to swap allocations and payments with another agent.
Not only is envy-freeness normatively appealing and sometimes even imposed by law, but it is also
necessary for approximate implementation in large economies as shown by Jackson and Kremer (2007).

2The concept of “obviously dominant strategies” is introduced by Li (2015). The English auction
endows bidders with obviously dominant strategies because at the earliest point in the game at which a
strategy differs from the dominant strategy, the maximum payoff from the alternative strategy is not more
than the minimum payoff a bidder gets from playing the dominant strategy. In contrast, the second-price
auction does not endow agents with obviously dominant strategies because the minimum payoff from
bidding truthfully is zero whereas when overbidding a buyer may win at a price below her value. The
experimental evidence summarized by Kagel (1995) supports the view that experimental subjects are
more likely to play their dominant strategies in English auctions than in second-price auctions.
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rium outcomes remain equilibrium outcomes in a first-price double auction when agents

have full information. In this way, our paper shows that Bayesian mechanism design can

be implemented, asymptotically, in a way that is robust in a number of dimensions that

are relevant in practice.

Specifically, we study a two-sided private values setup with buyers who have unit

demands and sellers who have unit capacities. We impose the assumption that it is

sometimes but not always optimal for the market maker to induce all agents to trade.

This assumption is innocuous insofar as without it the design problem is trivial. We

assume that the market maker’s objective is to achieve asymptotically the Bayesian ob-

jective of maximizing a weighted average of expected revenue and expected social surplus.3

When the Bayesian optimal mechanism design problem has a unique local maximum, the

Bayesian optimal mechanism induces trade by those agents who belong to the Walrasian

set defined with respect to the weighted virtual types, which depend on the distributions.

We assume that neither the market maker nor the agents know these distributions.

The key observation that we make and exploit is the connection between the empirical

spacings of order statistics and the theoretical construct of virtual types. For buyers

who draw their values independently from some distribution, we show that the empirical

counterpart to the virtual value of the buyer with the kth highest draw is given by his

value minus k times the spacing between the kth highest and the k + 1st highest value.

Analogously, the empirical counterpart to the virtual cost of the seller with the kth lowest

draw is given by her cost plus k times the spacing between her cost and the next lowest

cost.

The basic idea underlying our approach is then simple. The prices at which agents drop

out in a double-clock auction (or, equivalently, the bids that they submit in a second-price

auction) are statistically informative about the distributions from which types are drawn.

This information can be used to estimate nonparametrically the virtual types needed to

approximate the Bayesian optimal mechanism. Under the additional assumption that

the Bayesian design problem is characterized by a unique local maximum (which is the

case, for example, under Myerson’s regularity condition), all agents who are inframarginal

should trade once the virtual value is above the virtual cost. This means that incentive

compatibility is not too difficult to handle even if, as is inevitable in a prior-free setup,

virtual type functions have to be estimated, provided the estimates only depend on data

3A mechanism’s ability to accommodate these two goals is valuable for market designers because their
objectives often entail both. For example, the pivotal argument that led the U.S. Congress to allocate
spectrum licenses using auctions was the U.S. Government’s need for funds in the early 1990s, while the
economists that paved the way for auctions to be used had emphasized the social surplus that such an
allocation mechanism would generate. Similar arguments are being echoed in current discussions relating
to the “incentive auction”; see, for example, Loertscher, Marx, and Wilkening (forthcoming) for more
details.
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inferred from agents who have dropped out.

At first sight, it might seem that one is done: Collect bids from agents who drop

out and estimate distributions basically by counting. From these, infer the empirical

virtual types of agents who have dropped out. Continue increasing the buyers’ clock and

decreasing the sellers’ clock until the first point at which the empirical virtual value and

virtual cost functions intersect. However, the problem with this intuitive idea is that the

empirical virtual type functions are volatile, and the more so the less efficient is an agent’s

type. Consequently, in large economies the first point of intersection between the empirical

virtual type functions is likely to occur close to the efficient quantity rather than at the

Bayesian optimal one. This is so despite the fact that distributions are estimated with a

high degree of accuracy as the number of agents becomes large. Intuitively, virtual type

functions are volatile because they depend not only on the cumulative distribution, which

will not vary much given a large number of observations, but also on the density, whose

straightforward estimate remains volatile. We show that this problem can be overcome

by appropriately smoothing the estimated virtual type functions using moving averages

of spacings between order statistics. As the number of agents becomes large, the number

of observations used in the estimation becomes large as well, but by letting the fraction of

neighboring spacings included go to zero, the density and hence the virtual type function

is accurately estimated at every point. Thereby, excessive volatility is eliminated, and the

mechanism converges to the Bayesian optimum as the market becomes large.

The prior-free double-clock auction can be extended to accommodate heterogeneous

groups of buyers and sellers, assuming that agents within each group draw their types

from the same distribution, by running a separate clock for each group. In this extended,

multi-clock auction, buyers and sellers in different groups face different prices, but those

prices are synchronized so that virtual valuations across all buyer groups and virtual

costs across all seller groups are the same. The multi-clock auction endows agents with

obviously dominant strategies, is privacy preserving, and scales with market size just

like the double-clock auction. It also preserves the property of envy-freeness, with the

qualification that, because of price discrimination, this requirement is confined to agents

within the same group.

Developing flexible two-sided exchanges that permit the reallocation of assets without

having to renege on contractual promises associated with them is desirable and bound

to become increasingly important because the accelerated pace of technological change

increases uncertainty about the best use of many valuable resources, including, for ex-

ample, radio spectrum and water-use rights. Trading on such exchanges will often be

one-off events, which means that neither the designer nor the participants can rely upon

past experiences or observations to gauge supply and demand or to formulate Bayesian
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optimal bidding strategies. This makes desirable the design of mechanisms that dispense

with Bayesian notions, both for the rules of trade and for the equilibrium strategies. Con-

sequently, for such novel environments and one-off reallocation problems for high-value

assets, mechanisms with dominant strategies will be important and valuable, and the

more so if the dominance property is transparent even to bidders with little or no prior

experience. This is true for double-clock and multi-clock auctions because they endow

agents with obviously dominant strategies in the sense defined by Li (2015).

Clock auctions also have the property of preserving the privacy of trading agents.

This is important in order to avoid ex post regret for the designer and, in many instances

with large sums at stake, for bidders to be willing to play their dominant strategies. For

example, absent privacy preservation, bidders may fear that the information provided

to the mechanism will be leaked to competitors or tax authorities, which may harm

them further down the track.4 As Milgrom and Segal (2015) observe, privacy preserving

mechanisms have the additional benefit that trading agents need not have exact estimates

of their valuations and costs, but need only know whether these are below or above some

thresholds.

The envy-freeness of the equilibrium outcomes of our double-clock and multi-clock

auctions is an important property in light of ubiquitous requirements for fair and nonar-

bitrary treatment of equals, in particular when the designer is Government.5 Even when

discrimination between certain groups of agents is permitted, designs may be subject to

challenge based on being “arbitrary and capricious.”6

Our double-clock auction allows a designer to delegate the setting of reserve prices,

which are important for generating revenue and reducing procurement costs, to the mech-

4McMillan (1994) provides an early account of an auction design that did not preserve the privacy
of bidders, which created political and public outcry about the money that was left on the table. See
Ausubel (2004), Ausubel and Milgrom (2006), Rothkopf (2007), and Brandt and Sandholm (2008) for
additional arguments for why privacy preservation matters.

5Regarding the provision of telecommunications services to schools and libraries, the U.S. Code of
Federal Regulations states: “All potential bidders must have access to the same information and must be
treated in the same manner.” (Title 47 Telecommunication Section 54.642(b)(3)) According to Florida
state law, the purpose of the bidding process, as asserted in the early landmark case of Wester v. Belote,
103 Fla. 976, 138 So. 721, 723-24 (1931), includes “to secure fair competition upon equal terms to all
bidders” and “to afford an equal advantage to all desiring to do business with the county, by affording
an opportunity for an exact comparison of bids.”

6Although it is accepted that the U.S. Federal Communications Commission’s spectrum license auc-
tions may discriminate between large, small, and very small bidders through a program of bid credits for
the small and very small bidders, the auctions have been challenged in U.S. courts in some instances based
on being “arbitrary and capricious.” (See “NAB Sues FCC Over Incentive Auction: Says FCC Auction
MethodologyMove was Illegal and Abuse of Discretion,” Broadcasting & Cable, August 18, 2014, available
at http://www.broadcastingcable.com/nab-sues-fcc-over-incentive-auction/133269, accessed February 24,
2015; and Rohde (2002, Chapter 1) regarding challenges raised to the FCC’s approach to promoting mi-
nority ownership of spectrum.)
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anism, which determines them as a function of the bid data. This addresses the challenge

of how to set reserves when evidence regarding the relevant distributions is lacking—a

challenge that is accentuated for government agencies that face requirements of nonarbi-

trary treatment and rules because any choice of distribution may be perceived as arbitrary.

Moreover, no additional commitment by the designer is required provided he can commit

to a double-clock auction and to the specific estimation that will be used by the mecha-

nism and will determine his expectations. In particular, we show that for any weight on

revenue in the designer’s objective, the estimator can be chosen in such a way that it is

self-enforcing for the designer to implement the optimal allocation rule when his expec-

tations are determined by this estimator. That is, no commitment to the allocation rule

is required.

Our double-clock auction and its multi-clock extension are flexible designs. They ac-

commodate alternative objective functions, such as a revenue threshold beyond which the

designer only cares about social surplus, and constraints such as caps on the number of

units a certain subset of bidders can acquire or sell. Both revenue thresholds and restric-

tions on participation have been issues in the design of the U.S. Federal Communications

Commission’s incentive auction.7 Our double-clock and multi-clock auctions also permit

real-time diagnostics that inform the designer at any given point in time about whether

revenue is more likely to increase or decrease if the procedure continues. Such feedback is

essential when the designer faces hard ex post revenue thresholds because the feasibility

of such thresholds is uncertain.

To address the question to what extent or in what sense our double-clock and multi-

clock auctions are “optimal,” we impose the constraint of privacy preservation of trading

agents. We distinguish between what a Bayesian mechanism designer can achieve who

faces the constraint of privacy preservation (and the usual incentive and individual ra-

tionality constraints), but can use his prior information about distributions, and what a

mechanism designer can achieve who faces the same constraint, but has not the luxury

of being endowed with a prior. This comparison is insightful for two reasons. First, as

argued, privacy preservation is an important consideration in many real-world, large-scale

allocation problems both for the participants and the designer. Second, as we show, pri-

vacy preservation is an operational constraint that can be imposed on allocation rules and

mechanisms, which permits meaningful comparisons between different mechanisms. This

is valuable because evaluating alternative designs in prior-free environments is inherently

7The incentive auction is required to raise revenue from buyers sufficient to cover pay-
ments to sellers plus certain other expenses (Public Law 112-96, Section 6403(c)(2)(B),
http://www.gpo.gov/fdsys/pkg/PLAW-112publ96/pdf/PLAW-112publ96.pdf). Restrictions on partic-
ipation by certain buyers has been raised by, among others, the U.S. Department of Justice, “Ex Parte
Submission of the United States Department of Justice,” WT Docket No. 12-269, April 11, 2013.
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difficult.

With this in mind, we show that implementation via a double-clock auction is pos-

sible if and only if there is a corresponding direct mechanism that endows agents with

dominant strategies, is envy free, and exhibits non-bossiness by trading agents, where

non-bossiness means that trading agents affect neither the payments nor the allocations

of other trading agents, conditional on trading. Because a direct mechanism that imple-

ments the efficient quantity, and more generally any Bayesian optimal quantity, violates

non-bossiness, it follows immediately that no mechanism can implement the efficient or

optimal quantity without violating privacy preservation. This impossibility result raises

the question of what is the best one can do in the Bayesian setup under the constraint of

privacy preservation. We answer this question by deriving the Bayesian optimal privacy

preserving mechanism and by showing that an augmented version of our double-clock

auction converges to the Bayesian optimum privacy preserving mechanism as estimation

errors vanish.

This paper is at the intersection of detail-free, robust, and Bayesian mechanism design.

It shares much of its motivation with Wilson (1987) and the subsequent literature on

robust mechanism design in the tradition of Bergemann and Morris (2005, 2009, 2012).8

It combines this with insights and elements from Bayesian mechanism design. Most

notably, it relates to the contributions on optimal mechanisms for two-sided exchanges by

Myerson and Satterthwaite (1983), Gresik and Satterthwaite (1989), and Williams (1999),

which build on Myerson (1981).

Within the literature on dominant strategy mechanisms, the paper owes much to the

contribution of McAfee (1992) and draws inspiration from Milgrom and Segal (2015). We

first generalize McAfee’s mechanism to accommodate Bayesian notions in the objective

function, then we adapt it to a prior-free environment and relate it to Bayesian optimal

privacy preserving mechanisms.9 In our two-sided setup, we explore and exploit many

of the same properties of double-cock auctions—such as privacy preservation, obviously

dominant strategies, and weak-group strategy proofness—that Milgrom and Segal (2015)

establish for clock auctions in one-sided environments. Although many of the distribution-

free properties in the two papers are the same, their scopes and purposes are different and

complementary. Milgrom and Segal develop one-sided deferred-acceptance auctions that

can handle a multitude of computationally challenging technological constraints, whereas

we develop a prior-free mechanism that is asymptotically Bayesian optimal and permits,

8Hagerty and Rogerson (1987) provide an additional, related motivation for detail-free mechanisms:
Environments are often subject to shocks while institutions that govern trade are longer-term in nature
and must therefore be robust with respect to the details of changing environments.

9Loertscher and Mezzetti (2015) provide a generalization of McAfee (1992) in a different direction by
allowing for buyers and sellers whose types are multi-dimensional because they have multi-unit demands
and supplies.
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among other things, real-time feedback as to whether revenue is likely to increase if the

double-clock auction continues.

Our paper also contributes to the literature on mechanism design with estimation.10

The two most important precursors to the current paper within this strand of literature

are Segal (2003) and Baliga and Vohra (2003). Segal derives an asymptotically Bayesian

optimal mechanism for one-sided setups when the designer is uncertain about the distri-

bution of types but has a prior belief regarding the distribution. Baliga and Vohra (2003)

define dominant-strategy prior-free mechanisms for one-sided and two-sided setups and

show that in the limit, with infinitely many traders, these mechanisms generate the same

revenue as the Bayesian optimal mechanisms. Baliga and Vohra divide agents on each

side of the market randomly into two groups and use reports from one group to estimate

the virtual type functions for the other group.11

There has also been an upsurge of interest in the computer science literature in

dominant-strategy prior-free mechanisms along the lines of Baliga and Vohra (2003).12

These mechanisms often have the desirable properties of convergence to the Bayesian op-

timal revenue and good worst-case performance relative to the benchmark of prior-free

mechanisms that approximate Bayesian optimality but are not incentive compatible.13

For example, Goldberg, Hartline, and Wright (2001) focus on dominant-strategy one-

sided auctions for a good with unlimited supply. They define a mechanism that is similar

to Baliga and Vohra’s, study its worst-case performance, and show that it is within a

constant factor of optimal single-price revenue.14 Working with random sampling mech-

anisms, Dhangwatnotai, Roughgarden, and Yan (2015) show that for one-sided setups,

even a randomly selected reserve price—set equal to the bid submitted by a randomly

selected bidder—achieves at least half of the optimal revenue.

The paper also relates to the large literature on micro-foundations for Walrasian equi-

librium, whose modern guise goes back to Arrow (1959), Vickrey (1961) and Hurwicz

10There is a vast literature on estimation in auctions, which is notionally also related. We refer the
reader to Athey and Haile (2007) and Guerre, Perrigne, and Vuong (2000) and the references therein.
In Appendix B.1, we show that a natural alternative to our estimation approach—a kernel estimator à
la Guerre, Perrigne, and Vuong (2000)—does not outperform our approach. In the small, it suffers from
excessive volatility.

11As described in Baliga and Vohra (2003, Remark 2), it is not sufficient merely to estimate each agent’s
virtual valuation function by dropping only the agent’s own report because then incentive compatibility
is violated.

12Baliga and Vohra (2003) refer to their mechanism, which uses reports from a sample of agents to
infer the distribution of types for other agents, as an “adaptive mechanism,” whereas Goldberg, Hartline,
and Wright (2001) and Goldberg et al. (2006), for example, refer to similar mechanisms as “random
sampling mechanisms.”

13See, e.g., Devanur, Hartline, and Yan (2015) on the formal definition of “approximate” in this sense.
14For additional work on benchmarks for evaluating the worst-case performance of two-sided mecha-

nisms, see Deshmukh, Goldberg, Hartline, and Karlin (2002) and Dütting, Roughgarden, and Talgam-
Cohen (2014).
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(1973). How can a market maker infer the data necessary to clear the market without

violating agents’ incentive and participation constraints at no cost to himself? The short

answer is that he cannot. However, one way of interpreting the results in McAfee (1992),

Rustichini, Satterthwaite, and Williams (1994), Satterthwaite, Williams, and Zachariadis

(2015) is that there are practical mechanisms that approximate full efficiency quickly as

the economy grows. The problem that we address of maximizing revenue, or any con-

vex combination of revenue and social surplus, is more complicated because the Bayesian

optimal quantity is not a distribution-free concept, whereas the efficient quantity is.

The key feature that sets our paper apart from the previous and concurrent literature

is that our mechanism is prior free and envy free for any market size and permits an im-

plementation via clock auctions, which have, as argued, a number of desirable properties.

Our methodological contribution is that we observe and exploit the connection between

spacings of order statistics, which is an empirical measure, and virtual types, which is

a theoretical concept. The direct empirical counterpart to virtual types depends only

on one spacing and is thus too volatile for practical purposes. However, we show how

excessive volatility can be overcome through appropriate averaging of spacings.

The remainder of this paper is organized as follows. In Section 2, we describe our setup

and define the baseline prior-free mechanism. Section 3 shows the asymptotic optimality

of the baseline prior-free mechanism. In Section 4, we turn to double-clock auctions,

privacy preservation, the augmented prior-free mechanism, and performance in the small.

In Section 5, we generalize the setup to allow for ex ante asymmetries among groups of

buyers and groups of sellers. Section 6 contains extensions, and Section 7 concludes. The

proofs are contained in Appendix A.

2 Model

In this section, we introduce the basic setup, review Bayesian mechanism design results

that are relevant for our analysis, and introduce the baseline prior-free mechanism.

2.1 Setup

We consider a setup with a set of buyers N with unit demands and a set of sellers M with

unit capacities. Throughout the paper, we denote the cardinality of a set X by lower-case

x. We assume n ≥ 2 and m ≥ 2. Each buyer draws his value v independently from the

distribution F, with support [v, v] and positive density f . Each seller draws her cost c
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from the distribution G, with support [c, c] and positive density g. Let

Φ(v) ≡ v − 1− F (v)

f(v)
and Γ(c) ≡ c+

G(c)

g(c)
(1)

denote the virtual value and virtual cost functions. We denote the buyers’ values ranked in

descending order by v(1) ≥ ... ≥ v(n), and we denote the sellers’ costs ranked in ascending

order by c[1] ≤ ... ≤ c[m], where ties are broken through randomization. Define v(0) ≡ ∞,

v(n+1) ≡ −∞, c[0] ≡ −∞, and c[m+1] ≡ ∞.

Each agent is privately informed about his type, but the types and distributions from

which they are drawn are unknown to the mechanism designer and the agents. The

designer only knows that buyers and sellers draw their types independently from the

same distributions, and that the distributions are such that the Bayesian design problem

is characterized by a unique local maximum. In Section 5, we generalize the setup to the

case in which there are different groups of buyers and sellers, with each group drawing

from a different distribution. For the clock implementation, we assume that the designer

knows a lower bound for v and an upper bound for c, which allows the designer to start

the clocks at prices that guarantee that all agents are active irrespective of their types.

Buyers, sellers, and the designer are risk neutral. A buyer’s payoff is zero if he does

not trade and is equal to his value minus the price he pays if he does trade. Similarly, a

seller’s payoff is zero if she does not trade and is equal to the payment she receives minus

her cost if she does trade.

We assume that the designer wants to maximize a weighted sum of expected revenue

and social surplus, with weight α ∈ [0, 1] on revenue, subject to agents’ incentive compat-

ibility and ex post individual rationality constraints. The case with α = 0 corresponds to

the objective of ex post efficiency, and the case with α = 1 corresponds to the objective

of revenue maximization. The weighted virtual types Φα(v) and Γα(c) are defined as

Φα(v) ≡ αΦ(v)+(1−α)v = v−α
1− F (v)

f(v)
and Γα(c) ≡ αΓ(c)+(1−α)c = c+α

G(c)

g(c)
.

By construction, when α = 0, the weighted virtual types correspond to true types, and

when α = 1, to the well-known concept of a buyer’s virtual valuation and the somewhat

less familiar concept of a seller’s virtual cost. As noted by Bulow and Roberts (1989), when

α = 1, the virtual values and virtual costs can be interpreted, respectively, as a buyer’s

marginal revenue and a seller’s marginal cost, treating the (change in the) probability of

trade as the (marginal change in) quantity. For α ∈ (0, 1), the weighted virtual values and

costs are convex combinations of the true and the virtual types, with weight α attached

to the virtual types. If the social shadow cost of taxation is known to be some λ ≥ 0, then
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α can be chosen to implement the socially optimal allocation by choosing α = λ/(1 + λ)

(see e.g. Norman (2004) or Loertscher, Marx, and Wilkening (forthcoming)).

2.2 Bayesian optimal mechanism benchmark

When distributions are known to the mechanism designer and the Bayesian design problem

has a unique local maximum, the designer’s objective is maximized by ranking buyers

in increasing order by their weighted virtual values and sellers in decreasing order by

their weighted virtual costs and having a pair trade if and only if the weighted virtual

value exceeds the weighted virtual cost for that pair (see, e.g., Gresik and Satterthwaite,

1989). We refer to the mechanism that maximizes the designer’s objective, conditional on

incentive compatibility and ex post individual rationality, as the α-optimal mechanism.

We say that a direct mechanism satisfies dominant strategies if truthful report-

ing is a best response for each agent for all possible reports of the other agents. In

the dominant strategy implementation of the α-optimal mechanism, each trading agent

pays/receives the worst report he could have made without affecting the allocation. Thus,

when there are q trades and virtual types are strictly increasing, trading buyers pay

max
{

v(q+1),Φ
−1
α

(

Γ(c[q])
)}

and trading sellers receive min
{

c[q+1],Γ
−1
α

(

Φα(v(q))
)}

.

2.3 Baseline prior-free mechanism

As mentioned, the key assumption in our setup is that the distributions are not known

to the mechanism designer or the agents. We now define a baseline prior-free mechanism

that approximates the performance of the α-optimal mechanism and satisfies other desired

properties.

Empirical virtual types and spacings between order statistics

Let F̂ be the empirical distribution of values as revealed by the buyers’ bids, with F̂ (j) ≡
n+1−j

n+1
. Correspondingly, define Ĝ(j) ≡ j

m+1
. The empirical weighted virtual value and

virtual cost for the jth highest value and jth lowest cost are

Φ̂α(j) ≡ v(j) − α
1− F̂ (j)
F̂ (j)−F̂ (j+1)
v(j)−v(j+1)

and Γ̂α(j) ≡ c[j] + α
Ĝ(j)

Ĝ(j+1)−Ĝ(j)
c[j+1]−c[j]

,

where we approximate f(v(j)) with the left-side derivative and g(c[j]) with the right-side

derivative based on the respective empirical distribution. Rewriting these expressions, we

see that the virtual type functions of the jth traders are related to spacings between the
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jth and j + 1st order statistics as follows:

Φ̂α(j) = v(j) − αj
(

v(j) − v(j+1)

)

and Γ̂α(j) = c[j] + αj
(

c[j+1] − c[j]
)

. (2)

The relationships in (2) connect the empirical concepts of order statistics with the the-

oretical construct of virtual type functions, which have been at the heart of Bayesian

mechanism design ever since Myerson’s path-breaking contribution.

Incentives

Let k be the efficient quantity and consider the following direct mechanism: trade the

quantity k − 1 and require buyers who trade to pay v(k) and pay c[k] to sellers who

trade. An important insight from McAfee (1992) is that this mechanism endows agents

with dominant strategies and respects their individual rationality constraints ex post.

Extending this idea to include revenue in the designer’s objective suggests using a similar

mechanism, but where k is the highest indexed pair (v(k), c[k]) such that Φ̂α(k) ≥ Γ̂α(k).

However, for any α > 0 this simple idea suffers from the feature that for large numbers of

buyers and sellers volatility in the empirical weighted virtual types is excessive. Because

the number of traders is identified by the largest index such that the empirical weighted

virtual value is greater than or equal to the empirical weighted virtual cost, with high

probability this mechanism allows significantly more trades than would be optimal.

Figure 1(a) illustrates this for the case of α = 1 (revenue maximization) and n =

m = 1000 agents on each side whose types are drawn from the Uniform distribution on

[0, 1]. As shown in the figure, the theoretical virtual types—which are derived from the

theoretical distributions F and G using (1)—indicate an optimal quantity of 250 trades.

However, the intersection of the empirical virtual types occurs at approximately twice as

large a quantity. Indeed, the volatility of the empirical virtual types pulls the quantity

traded based on the comparison of Φ̂α(k) and Γ̂α(k) towards the efficient quantity rather

than the α-optimal quantity.

As illustrated by Figure 1(a), the empirical weighted virtual types are correct on

average, but problematic to use because of their volatility. Based on this observation, we

define the baseline prior-free mechanism using the average of nearby spacings instead of

the single spacing that appears in the empirical weighted virtual types. In addition, as

described below, we adjust the coefficient multiplying the spacing so that the mechanism

based on the smoothed virtual types is self-enforcing and deficit free.
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(a) Empirical virtual types (b) Smoothed virtual types

Figure 1: Panel (a): Theoretical virtual types Φ and Γ and empirical virtual types Φ̂ and
Γ̂. Panel (b): Adds smoothed virtual types Φ̃ and Γ̃. Both panels are based on 1000
values and 1000 costs drawn from the Uniform distribution on [0, 1].

Definition of the baseline prior-free mechanism

For j ∈ {1, ..., n} we define the jth smoothed weighted virtual value and for j ∈ {1, ..., m}
we define the jth smoothed weighted virtual cost as follows:

Φ̃α(j) ≡ v(j) − χα(j)σ
v
j and Γ̃α(j) ≡ c[j] + χα(j)σ

c
j,

where the coefficient χα(j) is

χα(j) ≡ max {0, α(j − 2)− (1− α)}

and σv
j and σc

j are estimates of the spacing between values at v(j) and the spacing between

costs at c[j], respectively, based on the average of nearby spacings:

σv
j ≡

{

v(j)−v(j+min{rn,n−j})

min{rn,n−j}
, if j < n

1
n+1

, otherwise
and σc

j ≡
{

c[j+min{rm,m−j}]−c[j]

min{rm,m−j}
, if j < m

1
m+1

, otherwise,
(3)

where rx is
√
x rounded to the nearest integer.15 As explained in Section 2.4 below,

the construction of χα(j) is such that the mechanism is self-enforcing and deficit free.

The choice of rx such that limx→∞ rx = ∞ and limx→∞
rx
x

= 0, along with continuity

assumptions, ensures that σv
j converges in probability to E[v(j) − v(j+1)] as n grows large

and σc
j to E[c[j+1] − c[j]] as m grows large. Combining these properties with the facts

that E
[(

1− F (v(j))
)

/f(v(j))
]

= jE[v(j)−v(j+1)] and E
[

G(c[j])/g(c[j])
]

= jE[c[j+1]− c[j]],

15Alternatively, rx could be defined such that for some finite x̄ and β, β′ ∈ (0, 1) with β < β′, for all
x ≥ x̄, rx ∈ (xβ , xβ′

).
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and that the coefficient χα(j) is of order j for α > 0, gives us asymptotic optimality (see

Section 3).

The baseline prior-free mechanism is defined as a direct mechanism in which all

agents report their types. Its allocation and pricing rules are defined algorithmically as

follows. For indices t ∈ {0, 1, ...}, define the state to be ωt = (et, kt), with et ∈ {0, 1}
and kt ∈ {0, 1, ...}. Initialize the algorithm with e0 ≡ 0 and kt = min {n,m}. The

allocation and pricing rules are determined by the lowest index t̃ such that et̃ = 1, with

the kt̃−1 highest valuing buyers and lowest cost sellers trading at prices v(kt̃) and c[kt̃]. The

transition from state ωt to ωt+1 is defined by comparing the smoothed weighted virtual

types. If kt = 0 or Φ̃α(kt) ≥ Γ̃α(kt), then ωt+1 = (1, kt) and otherwise ωt+1 = (0, kt − 1).

Thus, the baseline prior-free mechanism trades k̃ − 1 units, where k̃ is the largest index

such that Φ̃α(k̃) ≥ Γ̃α(k̃), and the buyers who trade pay v(k̃) and the sellers who trade are

paid c[k̃].

As illustrated in Figure 1(b), the smoothed virtual types provide a good approximation

to the theoretical virtual types in that example, and as shown below, the trading set

defined by the smoothed virtual types approaches the trading set defined by the theoretical

virtual types as the number of agents grows large. In Online Appendix B.1, we provide

results using kernel-based weighted virtual types. The kernel-based mechanism considered

there is also asymptotically optimal, but simulations suggest that it does not perform as

well in the small as the baseline prior-free mechanism defined above.

2.4 Properties

The baseline prior-free mechanism is ex post individually rational and satisfies dominant

strategies by the usual second-price logic. A trading agent’s report does not affect the price

he pays, and a nontrading agent cannot profitably deviate from truthful bidding because

the resulting price would make trade unprofitable to any agent who would become a trader

after a deviation when he would not trade under truthful bidding.

In addition, because an agent’s bid does not affect the smoothed virtual types of lower

indexed agents, the mechanism is non-bossy in the sense that no trading agent can, by

changing his bid, affect the price or allocation of any other agent while still remaining

an active trader.16 Because all buyers pay the same price and all sellers pay the same

price and those prices are determined by the value or cost of the most efficient nontrading

agent, the mechanism is envy free in the sense that no agent prefers the allocation and

price of another agent to his own. Because Φ̃α(j) ≥ Γ̃α(j) implies v(j) ≥ c[j], the payments

made by buyers exceed payments to sellers, so the mechanism is deficit free in the sense

16If a mechanism is non-bossy, then for generic types the TDI condition of Marx and Swinkels (1997)
is satisfied for trading agents.
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that the market maker never runs a deficit for any vector of types (or reports).

Like McAfee’s mechanism, our baseline prior-free mechanism can be implemented via

a double-clock auction that consists of an increasing buyers’ clock and a decreasing

sellers’ clock and endows agents with dominant strategies. The starting prices of the two

clocks are chosen so that initially all agents are active. Whenever the number of active

buyers and sellers is not the same, only the clock on the long side of the market moves

until the market is balanced. Agents’ exit prices are used to determine smoothed virtual

types Φ̃α and Γ̃α, and the double-clock auction stops when the number of remaining

active agents on each side of the market is k̃− 1, where k̃ is such that Φ̃α(k̃) ≥ Γ̃α(k̃) and

Φ̃α(k̃ + 1) < Γ̃α(k̃ + 1). The implementation via a double-clock auction has a number of

advantages over the direct mechanism as discussed in detail in Section 4, where we also

provide a more formal definition of a double-clock auction. We only highlight two benefits

of clock implementation here.

As is well-known, second-price auctions suffer from the problem that the bidders may

not trust the designer that the prices they are charged or offered are truly the most

competitive losing bids.17 Provided a designer can commit to publicly observable clocks

with monotone prices and activity rules, clock auctions and double-clock auctions provide

a means of solving this credibility problem.

Moreover, if the designer can fix the methodology for estimating spacings based on

the exit prices of agents who have dropped out, this may be all the commitment that

is required because our prior-free double-clock auction is self-enforcing in the following

sense.18 Assume that the double-clock auction has proceeded to a point where k−1 agents

remain active with the current clock prices being v(k) and c[k]. To evaluate whether the

market maker should stop the auction at these prices or continue to induce one additional

exit on each side, he needs an estimate or predictor of the next exit prices. Given the

spacings-based estimation procedure, the predicted prices are v̂(k−1) ≡ v(k) + σv
k and

ĉ[k−1] ≡ c[k] − σc
k. The estimated change in the weighted objective, denoted ∆Ŵk−1, from

continuing is thus the weighted sum of, first, the estimated increase in revenue from the

k − 2 trades that continue to occur minus the revenue from the one trade that no longer

occurs and, second, the estimated loss in social surplus from the one trade that no longer

17See Lucking-Reiley (2000) for a colorful example.
18While alternative estimation procedures exist that could be applied to our problem, sticking to a

given procedure does not appear to require much commitment unless it can be shown to be inferior to an
alternative procedure. It is one thing to “commit” to something that has not been shown to be inferior
and something else to commit to a policy that is obviously inferior ex post, such as charging five dollars
instead of $9.99 in a second-price auction when the second-highest bid was five and the highest was ten
dollars.
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occurs:

∆Ŵk−1 = α
(

(k − 2) (σv
k + σc

k)−
(

v(k) − c[k]
))

− (1− α)(v(k) + σv
k − c[k] + σc

k).

For k ≥ 1+α
α

, we have ∆Ŵk−1 = −
(

Φ̃α(k)− Γ̃α(k)
)

, and for k < 1+α
α

, we have ∆Ŵk−1 =

−
(

Φ̃α(k)− Γ̃α(k)
)

+ (α(k − 2)− (1− α)) (σv
k + σc

k). Therefore, Φ̃α(k) ≥ Γ̃α(k) implies

∆Ŵk−1 ≤ 0, and Φ̃α(k) < Γ̃α(k) implies ∆Ŵk−1 > 0 for k ≥ 1+α
α

and v(k) < c[k] otherwise.

That is, if a designer has a preference parameter α and is constrained not to run a deficit,

the allocation rule “trade k − 1,” where k the largest index such that Φ̃α(k) ≥ Γ̃α(k), is

self-enforcing (i.e. “sequentially rational” with expectations given by the mechanism).19

We summarize these and the previously observed properties in the following proposi-

tion.

Proposition 1 The baseline prior-free mechanism is ex post individually rational, dom-

inant strategy incentive compatible, non-bossy, envy free, and deficit free. It permits an

implementation via a double-clock auction that is self-enforcing.

Observe that the baseline prior-free mechanism is defined without reference to any

distributional assumptions. All the properties summarized in Proposition 1 thus hold

regardless of distributional properties.

3 Asymptotic optimality

We now show that the baseline prior-free mechanism is asymptotically optimal in the

sense that, as the numbers of buyers and sellers go to infinity, the ratio of the value of the

objective function under the mechanism to the value of the objective function under the

α-optimal mechanism converges in probability to one. We now employ the assumption

mentioned above that the virtual type functions defined in (1) are such that the Bayesian

design problem is characterized by a unique local maximum. We also assume that the

virtual type functions are continuous and that v ≤ c. We prove the following result.

Proposition 2 The baseline prior-free mechanism is asymptotically optimal.

19The intuition for this self-enforcement is that the designer’s expectations (“beliefs”) are built into
the mechanism and determined by the data and by the way spacings are estimated and weighted. With
χα(k) as the coefficient used in the smoothed virtual types, the objective is aligned with the predicted
prices v̂(k−1) and ĉ[k−1].
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We illustrate the convergence result in Figure 2, which shows the ratio of baseline

prior-free to optimal expected revenue for a variety of distributions and for n buyers and

sellers, with n varying from 2 to 100.20

Figure 2: Ratio of baseline prior-free to optimal expected revenue for various numbers of
symmetric agents based on Monte Carlo simulation (5000 auctions) with buyers’ values
and sellers’ costs drawn from the distributions indicated.

To prove Proposition 2, we begin by showing in Lemma 1 that uniform bounds exist

for the variance (denoted V [·]) of χα(j)σ
v
j and χα(j)σ

c
j away from the boundary. Lemma

2 then shows that the difference between the theoretical and smoothed virtual values is

uniformly convergent in probability to zero away from the boundary. Finally, Lemma 3

uses the preceding lemmas to show that the number of trades in the baseline prior-free

mechanism approaches that in the optimal mechanism. Intuitively, if Φ̃α and Γ̃α stay

close to Φα and Γα, then the first intersection point of Φ̃α and Γ̃α cannot be far from

the intersection of Φα and Γα. Proposition 2 then follows from the fact that in both the

optimal and the baseline prior-free mechanism it is the highest-valuing buyers and lowest-

cost sellers that trade, and that in both cases the payments are in an interval bounded by

the trading agent with the worst type and the nontrading agent with the best type and

so differ by at most one spacing.

Lemma 1 Given ρ ∈ (0, 1), there exist uv(ρ, n) and uc(ρ,m) that are increasing in ρ and

converge to zero as n and m increase to infinity such that for all n and m sufficiently

large and all ρ ∈ [0, ρ], V
[

χα(ρn)σ
v
ρn

]

≤ uv(ρ, n) and V
[

χα(ρm)σc
ρm

]

≤ uc(ρ,m).

20To provide a sense of the error rate for our simulation results, for the case with n = 5 and values
and costs drawn from the Uniform distribution on [0,1], simulations based on 5000 auctions generate a
95% confidence interval for the ratio of prior-free to optimal expected revenue that is plus or minus 1%
of the mean.
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Given Lemma 1, we can prove uniform convergence in probability of the theoretical

and smoothed virtual types.

Lemma 2 Given ρ ∈ (0, 1), the difference between the theoretical and smoothed virtual

values, Φα(v(j))− Φ̃α(j), on [v−ρ(v−v), v] is uniformly convergent in probability to zero.

Similarly, on [c, c + ρ(c − c)] the difference Γα(c[j]) − Γ̃α(j) is uniformly convergent in

probability to zero.

Finally, given Lemma 2, we can now show that the number of trades in the baseline

prior-free mechanism approaches that in the optimal mechanism.

Lemma 3 As the number of agents goes to infinity, the share of agents that trade in

the baseline prior-free mechanism converges in probability to the share in the optimal

mechanism.

For a discussion and evidence related to a rate of convergence on the order of 1/min {m,n},
see Online Appendix B.2.

4 Augmentation and Clock Implementation

That the baseline prior-free mechanism is asymptotically optimal and satisfies the desir-

able properties summarized in Proposition 1 is welcome news. However, it also raises

the questions of how well the mechanism performs in the small and to what extent, or

in what sense, the baseline prior-free mechanism or a variant thereof is optimal. In this

section, we address both questions. We derive a benchmark, the Bayesian optimal pri-

vacy preserving mechanism, against which prior-free mechanisms can be evaluated, and

we show that an augmented version of our mechanism achieves this benchmark except

for the inevitable estimation errors. Then we show, using both simulations and analytical

results, that this augmented prior-free mechanism performs well in the small. Because

clock auctions preserve the privacy of trading agents, we begin by defining double-clock

auctions formally. Then we relate double-clock auctions to non-bossiness and other prop-

erties of direct mechanisms. For the purposes of this section, we assume that virtual types

are increasing and differentiable. The results can be generalized at the cost of additional

complexity.

4.1 Preliminaries

To formally define a double-clock auction, we adapt the definition of a clock auction in

Milgrom and Segal (2015) to our two-sided setting, in which one needs to ensure that
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the number of active buyers and sellers is the same at the time the procedure ends. In

a double-clock auction, active agents may exit as the buyer clock price increases and the

seller clock price decreases, but agents who exit remain inactive forever after exiting.

At period t ∈ {0, 1, ...} of a double-clock auction, the state is ωt = (et,ω
B
t ,ω

S
t )

where et ∈ {0, 1} specifies whether the double-clock auction has ended (et = 1) or not

(et = 0), and ω
B
t = (NA,xB, pB) and ω

S
t = (MA,xS, pS) are buyer and seller states. The

components of the buyer state are: the set of active buyers N
A ⊆ N with cardinality

nA, the vector of exit prices for nonactive buyers xB ∈ Rn−nA

, and the buyer clock price

pB ∈ R. The seller state has an analogous structure. Let Ω be the set of all possible

states. A double-clock auction starts in state ω0 ≡ (0,ωB
0 ,ω

S
0 ), where ω

B
0 = (N, ∅, pB)

and ω
S
0 = (M, ∅, pS) with pB ≤ v and pS ≥ c.

A double-clock auction is defined by comparison functions φ : R × Ω → R and

γ : R× Ω → R and a target function τ : Ω → R. The comparison and target functions

determine the transition from state ωt to ωt+1. A double-clock auction continues until a

state is reached that has a first component equal to 1, at which point the active buyers

and sellers trade, with the active buyers paying the buyers’ clock price and the active

sellers receiving the sellers’ clock price.

For t ∈ {0, 1, ...}, if ωB
t = (NA,xB,pB), ωS

t = (MA,xS, pS), and et = 0, then ωt+1 is

determined as follows:

If nA = mA: If nA = 0 or φ(pB,ωt) ≥ γ(pS,ωt), then ωt+1 = (1,ωB
t ,ω

S
t ). Otherwise,

proceed as follows (the choice of which clock to adjust first is arbitrary; clocks can

also be adjusted simultaneously): Increase the buyer clock from pB until either a

buyer i exits at clock price p̂B, in which case ω
B
t+1 = (NA\i, (xB, p̂B), p̂B), or the

buyer clock reaches p̃B such that φ(p̃B,ωt) = τ(ωt) with no exit, in which case

ω
B
t+1 = (NA,xB, p̃B). Decrease the seller clock from pS until either a seller j exits

at p̂S, in which case ω
S
t+1 = (MA\j, (xS, p̂S), p̂S), or the seller clock reaches p̃S such

that γ(p̃S,ωt) = τ (ωt) with no exit, in which case ω
S
t+1 = (MA,xS, p̃S). If both

targets are reached with no exit, then et+1 = 1; otherwise et+1 = 0.

If nA > mA, increase the buyer clock from pB until a buyer i exits at p̂B. Set ω
B
t+1 =

(NA\i, (xB, p̂B), p̂B), ωS
t+1 = ω

S
t , and et+1 = 0.

If nA < mA, decrease the seller clock from pS until a seller j exits at p̂S. Set ωB
t+1 = ω

B
t ,

ω
S
t+1 = (MA\j, (xS, p̂S), p̂S), and et+1 = 0.

Properties of double-clock auctions

A double-clock auction is privacy preserving for agents who trade insofar as their

types are never revealed to the mechanism (or any outside observer for that matter). As
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discussed in the introduction, privacy preservation is an important attribute in practice,

particularly for large-scale, one-off allocation problems.

In our environment with unit demands and unit supplies, double-clock auctions also

have obviously dominant strategies as defined by Li (2015): the maximum payoff

obtained by deviating from a dominant strategy at given price is never more than the

minimum payoff obtained by sticking to the dominant strategy. Robustness with respect

to the fine details of the environment makes it desirable for mechanisms to endow agents

with dominant strategies. Because endowing agents with dominant strategies and having

agents recognize their dominant strategies are two distinct things in practice, the obvious-

ness of the dominant strategies in clock auctions is another powerful argument for their

use and for focusing on direct mechanisms that can be implemented via clock auctions.

In addition, a double-clock auction is weakly group strategy-proof : for every

profile of types, every subset of agents, and every deviant strategy profile for these agents,

at least one agent in the subset has a weakly higher payoff from exiting when the clock

price reaches the agent’s type than from the deviant strategy profile.21 This property

implies that, in the absence of transfers, collusion among a subset of agents cannot be

strictly profitable for all of the colluding bidders.

Like the baseline prior-free mechanism, double-clock auctions are non-bossy. Non-

bossiness is a restriction on direct and indirect mechanisms, whereas privacy preservation

can only be satisfied by a subset of indirect mechanisms. The connection between the

two properties is that an indirect mechanism is privacy preserving if and only if the

equivalent direct mechanism satisfies non-bossiness, where “equivalent” means that for

any given realization of types it makes the same transfers and induces the same allocation

in equilibrium.

We summarize key properties of a double-clock auction and their relation to properties

of direct mechanisms in the following proposition.

Proposition 3 A direct mechanism satisfies dominant strategies, non-bossiness, and envy-

freeness if and only if it can be implemented via a double-clock auction. Further, a double-

clock auction is privacy preserving, endows agents with obviously dominant strategies, and

is weakly group strategy-proof.

The following proposition, which provides an impossibility result, follows from Propo-

sition 3 and the fact that any α-optimal mechanism depends on the types of the marginal

trading agents and so violates non-bossiness.22

21On weak group strategy-proofness in a one-sided clock auction, see Milgrom and Segal (2015). On
the connection between individual and group strategy-proofness, see Barberà, Berga, and Moreno (2014).

22To see this, fix (v, c) and note that the α-optimal mechanism trades a quantity qα(v, c) such that

Φα(v(qα(v,c))) ≥ Γα(c[qα(v,c)]) and Φα(v(qα(v,c)+1)) < Γα(c[qα(v,c)+1]),
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Proposition 4 No α-optimal mechanism can be implemented while preserving the privacy

of trading agents.

Because α-optimal mechanisms violate non-bossiness, Propositions 3 and 4 imply that

in the two-sided setting no α-optimal mechanism can be implemented as a double-clock

auction. By setting α = 0, Proposition 4 also establishes the impossibility of ex post

efficient trade from a different and, to our knowledge, novel angle: If one insists on

preserving the privacy of agents who trade, then it is impossible to always trade the

efficient quantity in a two-sided setup provided only that full trade is sometimes but not

always efficient. This contrasts with setups with private information only on one side of

the market, where the English auction and its extension to multiple units by Ausubel

(2004) permit ex post efficiency under privacy preservation. The conditions under which

the impossibility result of Proposition 4 holds are remarkably general compared to the

conditions for ex post efficiency to be possible or impossible for general two-sided trading

environments (see Williams (1999) for a characterization for such environments). It only

requires overlapping supports for the buyers’ and the sellers’ distributions, and it is not

restricted to ex post efficiency.23 It is also noteworthy that this impossibility has nothing

to do with individual rationality constraints (be they ex ante, interim, or ex post), which

are key for existing impossibility results.

Because impossibility results and non-achievable benchmarks feature prominently in

the related computer science literature, it is useful to highlight the main differences be-

tween the two approaches and the results they generate. As mentioned, the focus of the

computer science literature is on worst-case performance relative to non-incentive compat-

ible benchmarks. Accordingly, this literature evaluates mechanisms based on their ability

to perform within a constant factor of those benchmarks. For example, Deshmukh, Gold-

berg, Hartline, and Karlin (2002) compare revenue from prior-free, dominant strategy,

two-sided mechanisms to the benchmark of the maximum revenue that could be achieved

by an omniscient designer who knows the bidders’ types and uses a single buyer price and

a single seller price, subject to ex post individual rationality (but not incentive compat-

ibility).24 In contrast, we examine dominant-strategy incentive compatible mechanisms

which is unique almost surely when types are continuously distributed. Dropping the dependence
of qα on the profile of reports for notational ease, then given qα, buyer i trades if and only if
vi ≥ max

{

v(qα+1),Φ
−1
α

(

Γα(c[qα])
)}

. But the right side depends on the report of the trading seller
with type c[qα]. Thus, the α-optimal quantity cannot be implemented without violating non-bossiness.

23Again, this contrasts with the one-sided setting. For example, with n ex ante symmetric buyers who
draw their types independently from a known distribution satisfying Myerson’s regularity condition and
k < n items for sale of zero value to the seller, the clock would be initialized at the price at which the
weighted virtual value is zero and then increased until n− k buyers have dropped out.

24Dütting, Roughgarden, and Talgam-Cohen (2014) examine the worst-case efficiency of two-sided
mechanisms satisfying various properties, including dominant strategies, deficit freeness, and weak group

20



that preserve the privacy of agents who trade. As just argued, α-optimal mechanisms of

this form exist for one-sided setups but not for two-sided environments.

To develop a benchmark for our mechanism, we next analyze what is the best a

Bayesian mechanism designer can achieve subject to privacy preservation, and then com-

pare the performance of a prior-free mechanism to this Bayesian optimal benchmark.

4.2 Optimal privacy preserving mechanisms

Given that any α-optimal mechanism violates privacy preservation, we now characterize

the optimal mechanism for a designer with preference parameter α who is endowed with a

correct prior F and G but, in addition to individual rationality and incentive constraints,

has to respect the privacy of agents who trade.

Bayesian optimal privacy preserving mechanism

A good starting point is McAfee (1992), whose focus is on ex post efficiency. Letting

k be the largest integer such that v(k) ≥ c[k], his mechanism trades k units at the price

p =
v(k+1)+c[k+1]

2
if v(k) ≥ p ≥ c[k], and otherwise k − 1 units at prices pB = v(k+1)

and pS = c[k+1]. This mechanism thus trades one more unit than the baseline prior-

free mechanism in some circumstances. Importantly, it permits a double-clock auction

implementation that respects the privacy of the agents who trade. This example shows

that, for α = 0, the baseline prior-free mechanism is not optimal in the domain of privacy

preserving mechanisms.

In light of Proposition 4, it is natural to ask what is the best one can do subject

to preserving the privacy of trading agents. To address this question, we temporarily

stipulate that the designer knows F and G, but is restricted to preserve the privacy of

trading agents, and we derive the mechanism that, conditional on Φα(v(j)) ≥ Γα(c[j]),

maximizes the probability that the quantity traded is j given that the types v(j+1), ..., v(n)
and c[j+1], ..., c[m] have been revealed and are precluded from trading and that no other

types have been revealed. We refer to such a mechanism as the Bayesian optimal

privacy preserving (BOPP) mechanism (which also satisfies dominant strategies).

Given v(j+1), ..., v(n), c[j+1], ..., c[m], and Φα(v(j+1)) < Γα(c[j+1]), any BOPP mechanism

must maximize the probability that, conditional on Φα(v(j)) ≥ Γα(c[j]), the quantity

traded is j. This boils down to choosing, for all j, the target θ∗j ∈ [Φα(v(j+1)),Γα(c[j+1])]

that maximizes the probability that Γα(c[j]) ≤ θ∗j ≤ Φα(v(j)). A double-clock auction can

determine whether Γα(c[j]) ≤ θ∗j ≤ Φα(v(j)) in a privacy preserving way by stopping the

strategy-proofness, relative to the efficient outcome and provide bounds on the constant factor that can
be achieved. For related work in the one-sided setup, see Chen, Gravin, and Lu (2014) and Devanur,
Hartline, and Yan (2015).
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procedure if the buyer clock reaches pB such that Φα(p
B) = θ∗j and the seller clock reaches

pS such that Γα(p
S) = θ∗j before the jth buyer and seller exit. As shown in the proof of

Proposition 5, the optimal choice for θ∗j is

θ∗j ≡











Γα(c[j+1]), if J(θ) < 0 for all θ ∈ [Φα(v(j+1)),Γα(c[j+1])]

θ∗, if J(θ∗) = 0 for some θ∗ ∈ [Φα(v(j+1)),Γα(c[j+1])]

Φα(v(j+1)), if J(θ) > 0 for all θ ∈ [Φα(v(j+1)),Γα(c[j+1])],

(4)

where

J(θ) ≡ 1− F (Φ−1
α (θ))

f(Φ−1
α (θ))

1

Φ−1′
α (θ)

− G(Γ−1
α (θ))

g(Γ−1
α (θ))

1

Γ−1′
α (θ)

.

Any BOPP mechanism is then defined by comparison and target functions given by

φ(pB,ωt) = Φα(p
B) and γ(pS,ωt) = Γα(p

S) and τ (ωt) = θ∗nA.

Proposition 5 Any BOPP mechanism is characterized by a target function τ (ωt) = θ∗nA,

where θ∗nA is defined in (4).

Proposition 5 has an intuitive explanation. The closest analog is the problem faced

by a market maker who makes take-it-or-leave-it price offers pB and pS to a buyer and a

seller—in our case, these are the nA most efficient agents on each side—who draw their

types from distributions H and L. Trade occurs if and only if both the buyer and the

seller accept. Under quasiconcavity, the probability of trade is maximized when

L(pS)

l(pS)
=

1−H(pB)

h(pB)
.

This equates the semi-elasticity of supply l/L with the semi-elasticity of demand h/(1 −
H). In our setup, the prices pB and pS are required to satisfy pB = Φ−1

α (θ) and

pS = Γ−1
α (θ) with θ ∈ [Φα(v(nA+1),Γα(c[nA+1])], which explains the additional derivatives

that multiply the semi-elasticities in the first-order condition defining θ∗. For exam-

ple, for F uniform on [v, v] and G uniform on [c, c],25 we have θ∗ = v−c

2
, so τ (ωt) =

min
{

Γα(c[nA+1]),max
{

Φα(v(nA+1)),
v−c

2

}}

.

Augmented prior-free mechanism

Guided by the BOPP mechanism, we now augment the baseline prior-free mechanism to

allow an additional trade under certain circumstances. To define this augmented prior-

free mechanism, it will be useful to identify the reliance of the jth smoothed weighted

25In this case, Φα(x) = x(1 + α)− αv and Γα(x) = (1 + α)x− αc.
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virtual types on the jth value or cost separately from their reliance on the index j, so we

will sometimes write the smoothed weighted virtual types as

Φ̃α(j; p) ≡ p− χα(j)σ
v
j and Γ̃α(j; p) ≡ p+ χα(j)σ

c
j .

The augmented prior-free double-clock auction is defined by comparison and target func-

tions given by

φ(pB,ωt) = Φ̃α(n
A + 1; pB) and γ(pS,ωt) = Γ̃α(m

A + 1; pS) and τ(ωt) = θ̃
∗

nA,

where θ̃
∗

j ≡ 0 for j = min{n,m} and otherwise

θ̃
∗

j ≡











Γ̃α(j + 1), if J̃(θ) < 0 for all θ ∈ [Φ̃α(j + 1), Γ̃α(j + 1)]

θ̃, if J̃(θ̃) = 0 for some θ̃ ∈ [Φ̃α(j + 1), Γ̃α(j + 1)]

Φ̃α(j + 1), if J̃(θ) > 0 for all θ ∈ [Φ̃α(j + 1), Γ̃α(j + 1)],

where

J̃(θ) ≡ θ − Φ̃α(j + 1)

(1 + α)σv
j+1

− Γ̃α(j + 1)− θ

(1 + α)σc
j+1

.

Intuitively, θ̃
∗

j equates the change in smoothed weighted virtual types required to get the

virtual value up to θ̃
∗

j and the virtual cost down to θ̃
∗

j , adjusted for the estimated change

in virtual types between order statistics, (1 + α)σv
j+1 and (1 + α)σc

j+1.

As with the baseline prior-free mechanism, the allocation and prices depend only

on reports of agents who do not trade. Thus, like the baseline prior-free mechanism, the

augmented prior-free mechanism satisfies the properties of Proposition 1. As we elaborate

in more detail below, it has the advantage of performing well in the small. As a corollary

of Proposition 3, it has a privacy preserving, obviously dominant strategies, weak group

strategy-proof implementation as a double-clock auction that is self-enforcing in the same

way as the baseline prior-free mechanism.

Proposition 6 The augmented prior-free mechanism is asymptotically optimal and sat-

isfies the properties of the baseline prior-free mechanism stated in Proposition 1.

Absent knowledge of the underlying distributions, it is not a priori clear how to com-

pare alternative mechanisms that are prior free and satisfy all the other desirable criteria.

Moreover, alternative mechanisms may vary in how they estimate distributions and vir-

tual types. For example, we could use a moving average that assigns differential rather

than uniform weights to the observations it uses. Accordingly, the performance of alter-

native mechanisms may vary with the underlying distributions because they use different
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estimation procedures.26 In evaluating alternative designs, it is therefore useful to distin-

guish between how a mechanism performs with and without the estimation errors that

are unavoidable in any prior-free mechanism. The augmented prior-free mechanism would

achieve the outcomes of the BOPP mechanism were it not for estimation error.

4.3 Performance in the small

Although the augmentation provided by an optimally chosen target function does not af-

fect the asymptotic properties of the mechanism, it can be significant in small markets. To

see the impact of an optimally chosen target function in the small, define the fixed-target

BOPP mechanism to be the same as the BOPP mechanism, but with the suboptimally

chosen target function defined by θj ≡
(

Φα

(

v(j+1)

)

+ Γα

(

c[j+1]

))

/2. This is a generaliza-

tion of the mechanism proposed by McAfee (1992) to weighted virtual types. As shown in

Proposition 7, the probability that an optimally chosen θj results in the efficient number

of trades, whereas the fixed-target version comes up short by one, can be as large as

1/4 when the support of the value distribution extends sufficiently above that of the cost

distribution. In the following proposition, we say that a distribution H(x) with support

[0, 1] is symmetric if H(x) = 1−H(1− x) holds for all x ∈ [0, 1].

Proposition 7 Assume α = 0. Let G and F be symmetric distributions on [0, 1]. If

costs are drawn from G and values from F (·/v) with support [0, v], then as v increases,

the probability that the BOPP mechanism is efficient but the fixed-target BOPP mechanism

is not goes to 1
2min{n,m} .

Figure 3(a) shows the performance of the baseline and augmented prior-free mechanism

for α = 0 relative to the optimal mechanism and the BOPP mechanism. The figure

illustrates the performance enhancement achieved using the augmentation to execute an

additional trade when possible while still maintaining privacy preservation. It also shows

that the augmented prior-free mechanism achieves 87% or more of the BOPP outcomes,

even when there are as few as 2 buyers and 2 sellers.

For the case of α = 1, we have already seen in Figure 2 that for a range of distributions,

average revenue of the baseline prior-free mechanism is at least 90% of optimal expected

revenue when there are 30 or more buyer-seller pairs. To illustrate results for small markets

with α away from the extremes, Figure 3(b) shows the augmented prior-free mechanism’s

performance relative to the α-optimal mechanism for various α. As shown in Figure 3(b),

generally speaking, the smaller is α, the smaller is the impact of estimation error, and

so the better is the performance of the augmented prior-free mechanism. However, the

26Other methods of estimation include kernel density estimation (see Online Appendix B.1).
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(a) Relative performance of mechanisms for α = 0 (b) Effects of α on the baseline prior-free

Figure 3: Panel (a): Ratio of the prior-free to the optimal and BOPP outcomes for α = 0.
Panel (b): Ratio of the baseline prior-free to the α-optimal expected weighted objective for
various weights α on revenue. Both panels assume n = m and are based on Monte Carlo
simulation (5000 auctions) with values and costs drawn from the Uniform distribution on
[0, 1].

augmented prior-free mechanism’s use of the first buyer and seller exits for estimation

is a greater disadvantage relative to the optimal mechanism when the number of agents

is small. Thus, for small numbers of agents, the relative performance of the augmented

prior-free mechanism can be better for larger α.

We provide a characterization of how the augmented prior-free mechanism relates to

the BOPP mechanism for small markets in Proposition 8.

Proposition 8 Assume α = 0. Given any type realization, the number of trades in

the augmented prior-free mechanism is within one of the number of trades in the BOPP

mechanism, and if v < c, for a positive measure set of type realizations, the augmented

prior-free mechanism produces greater social surplus than the BOPP mechanism.

For very small numbers of agents (n = m = 2), Table 1 provides results for alternative

distributions and mechanisms for α = 0 by comparing outcomes under the baseline prior-

free, augmented prior-free, BOPP, and optimal mechanisms. The higher values for the

augmented prior-free mechanism relative to the baseline prior-free mechanism illustrate

the value of augmentation.

Because the efficient quantity is a distribution-free concept, it seems natural to con-

jecture that estimation only matters for α > 0. Interestingly, this is not the case. As we

illustrate in Online Appendix B.3, estimation can improve outcomes because it allows the

target function to vary with observable details, which is relevant even with α = 0.27

27Intuitively, for α = 0 the target function plays the role of the posted price in Hagerty and Rogerson
(1987). With estimation, this posted price becomes a function of the distributions.
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Table 1: Performance in the small (n = m = 2): Comparison of baseline prior-free, aug-
mented prior-free, BOPP, and optimal mechanisms with α = 0 for different distributions.

5 Generalization to heterogeneous groups

In this section, we show that the augmented prior-free mechanism can be extended to

accommodate known ex ante asymmetries among buyers and among sellers. As in the

previous section, we assume that virtual types are increasing and differentiable, although

the results can be generalized at the cost of additional complexity.

5.1 Setup

As before, we let N and M denote the sets of buyers and sellers with cardinalities n and

m. We now allow, without requiring, the possibility that agents have characteristics that

are observable to the designer, so that the designer can a priori place subsets of agents

into groups of symmetric agents while allowing for asymmetries across different groups.

For example, traders of carbon emission permits might be identifiable as either power

plants, cement manufacturers, or other manufacturers, with traders within a group being

symmetric, but with the possibility of asymmetries across groups. Let ZB and Z
S be the

sets of group labels for buyers and sellers. We refer to the setup in which |ZB| = |ZS| = 1

studied thus far as the symmetric setup. Let nb ≥ 1 be the number of buyers in buyer

group b and let ms ≥ 1 be the number of sellers in group s, where n =
∑

b∈ZB nb and

m =
∑

s∈ZS ms. We assume that at least one buyer group and at least one seller group

has 2 or more members. The group membership of each buyer and seller is common

knowledge.

Each buyer in group b draws a value from the distribution F b with support [vb, vb]

and positive density f b, and each seller in group s draws a cost from the distribution

Gs with support [cs, cs] and positive density gs. Each agent is privately informed about

his type, but the types and distributions from which they are drawn are unknown to the

mechanism designer and the agents. The designer only knows the group identity of each

buyer and seller, that agents in the same group draw their types independently from the
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same distribution, and that the virtual types

Φb(v) ≡ v − 1− F b(v)

f b(v)
and Γs(c) ≡ c+

Gs(c)

gs(c)

are increasing in their arguments for each buyer and seller group. For the dynamic

implementation, we assume that the designer knows a lower bound for minb∈ZB{vb} and

an upper bound for maxs∈ZS{cs}, which allows the designer to start the clocks at prices

that guarantee that all agents are active irrespective of their types.

Group-specific weighted virtual types are given by

Φb
α(v) ≡ αΦb(v)+(1−α)v = v−α

1− F b(v)

f b(v)
and Γs

α(c) ≡ αΓs(c)+(1−α)c = c+α
Gs(c)

gs(c)
.

Under the stipulated assumptions, the Bayesian optimal mechanism induces trade by

those agents who belong to the Walrasian set defined with respect to the weighted virtual

types
(

Φb
α(vi)

)

i∈N
and (Γs

α(cj))j∈M. Group-specific smoothed weighted virtual types are

given by Φ̃b
α(j) ≡ vb(j) − χα(j)σ

b
j and Γ̃s

α(j) ≡ cs[j] + χα(j)σ
s
j, where σb

j and σs
j are spacing

estimates for each group defined analogously to the symmetric setup.

5.2 Mechanisms

We first extend the definition of a double-clock auction to a multi-clock auction, and then

generalize the BOPP and augmented prior-free mechanisms.

Multi-clock auction

For the setup with heterogeneous groups, we define a multi-clock auction with separate

price clocks for each buyer group and each seller group. Compared to the double-clock

auction in the symmetric setup, the buyer and seller state in period t is extended to ω
B
t =

(ωb
t)b∈ZB and ω

S
t = (ωs

t )s∈ZS , where the group states ωb
t and ω

s
t are defined analogously

to before. With this adjusted notation at hand, the state in period t is still given as

ωt = (ei,ω
B
t ,ω

S
t ). The comparison functions φb and γs are defined for each group. For

t ∈ {0, 1, ...}, if for b ∈ Z
B, ωb

t = (NAb

,xb,pb), for s ∈ Z
S, ωs

t = (MAs

,xs, ps), and et = 0,

then ωt+1 is determined as follows:

If
∑

b∈ZB nAb

=
∑

s∈ZS mAs

: If
∑

b∈ZB nAb

= 0 or minb∈ZB φb(pb,ωt) ≥ maxs∈ZS γs(ps,ωt),

then ωt+1 = (1,ωB
t ,ω

S
t ). Otherwise, proceed as follows (the order in which clocks

on either side of the market are moved is again immaterial):

Increase the vector of buyer clock prices from p
B = (pb)b∈ZB by increasing the clocks

for the smallest number of buyer groups possible so as to increase minb∈ZB φb(·,ωt)
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(or by increasing the clock of only one buyer group if minb∈ZB φb(·,ωt) is nonin-

creasing) until either there is an exit by a group b̂ buyer i at clock price vector p̂B,

in which case ω
b̂
t+1 = (NAb̂\i, (xb, p̂b̂), p̂b̂) and for b 6= b̂, ωb

t+1 = (NAb

,xb, p̂b), or the

buyer clock prices reach p̃B such that minb∈ZB φb(p̃b,ωt) = τ(ωt) with no exit, in

which case for all b, ωb
t+1 = (NAb

,xb, p̃b).

Decrease the vector of seller clock prices from p
S = (ps)s∈ZS by decreasing the clocks

for the smallest number of seller groups possible so as to decrease maxs∈ZS γs(·,ωt)

(or by decreasing the clock of only one seller group if maxs∈ZS γs(·,ωt) is nonin-

creasing) until either there is an exit by a group ŝ seller j at clock price vector p̂S,

in which case ω
ŝ
t+1 = (MAŝ\j, (xs, p̂ŝ), p̂ŝ) and for s 6= ŝ, ωs

t+1 = (MAs

,xs, p̂s), or

the seller clock prices reach p̃S such that maxs∈ZS γs(p̃s,ωt) = τ (ωt) with no exit,

in which case for all s, ωs
t+1 = (MAs

,xs, p̃s).

If both targets are reached with no exit, then et+1 = 1; otherwise et+1 = 0.

If
∑

b∈ZB nAb

>
∑

s∈ZS mAs

, increase only the buyer clock prices as above until there is

an exit, and similarly for sellers if
∑

b∈ZB nAb

<
∑

s∈ZS mAs

. The states transition

analogously to the symmetric case.

Group BOPP mechanism

Given the numbers of active buyers and sellers in each group, j ≡ (j1, ..., jz
B

, ̂1, ..., ̂z
S

)

(recall that zB is the number of buyer groups and zS is the number of seller groups) and

letting Ij ≡ [minb s.t. jb>0Φ
b
α(p

b),maxs s.t. ̂s>0 Γ
s
α(p

s)], define

θ̂
∗

j ≡











maxs s.t. ̂s>0 Γ
s
α(p

s), if Ĵ(θ) < 0 for all θ ∈ Ij

θ̂, if Ĵ(θ̂) = 0 for some θ̂ ∈ Ij

minb s.t. jb>0Φ
b
α(p

b), if Ĵ(θ) > 0 for all θ ∈ Ij,

(5)

where

Ĵ(θ) ≡
∑

b∈ZB

jb
1− F b(Φb−1

α (θ))

f b (Φb−1

α (θ)) Φb−1′
α (θ)

−
∑

s∈ZS

̂s
Gs(Γs−1

α (θ))

gs (Γs−1

α (θ)) Γs−1′
α (θ)

.

Proposition 9 characterizes the group Bayesian optimal privacy preserving (G-

BOPP) mechanism, which based on types of agents who do not trade, maximizes the

probability that nA = mA trades occur, conditional on nA trades being optimal.

Proposition 9 Any G-BOPP mechanism is characterized by the target function τ (ωt) =

θ∗(nA,mA), where nA ≡ (nA1
, ..., nAzB

), mA ≡ (mA1
, ..., mAzS

), and θ∗(nA,mA) is defined in
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(5), and comparison functions

φb(pb,ωt) =

{

Φb
α(p

b), if nAb

> 0

∞, otherwise
and γs(ps,ωt) =

{

Γs
α(p

s), if mAs

> 0

−∞, otherwise.

Group augmented prior-free mechanism

We now construct the group augmented prior-free mechanism, which is a prior-free

approximation to the G-BOPP mechanism using comparison and target functions given

by

φb(pb,ωt) =

{

Φ̃b
α(n

Ab

+ 1; pb), if nAb

> 0

∞, otherwise,
and γb(ps,ωt) =

{

Γ̃s
α(m

As

+ 1; pS), if mAs

> 0

−∞, otherwise,

and τ(ωt) = θ̃
∗
defined analogously to above, with an interior solution satisfying

max
b∈ZB s.t. φb(pb,ωt)≤θ̃

∗

θ̃
∗ − Φ̃b

α(n
Ab

+ 1; pb)

σb
j+1

= max
s∈ZS s.t. γb(ps,ωt)≥θ̃

∗

Γ̃s
α(m

As

+ 1; ps)− θ̃
∗

σs
j+1

.

In words, the target virtual type θ̃
∗
is chosen to equalize the maximum changes required in

the smoothed weighted virtual values and in the smoothed weighted virtual costs (adjusted

for the estimated change in virtual types between order statistics) in order to have those

virtual values above the virtual costs for all the active buyers and sellers.

5.3 Results

Using the arguments in the proof of Proposition 2, one can show that the results on

asymptotic optimality extend to heterogeneous groups if the number of buyers and sellers

in each group goes to infinity in fixed proportions: for all b ∈ Z
B and s ∈ Z

S, limn,m→∞
nb

n

and limn,m→∞
ms

n
are positive and finite.

With the qualification that with heterogeneous groups a mechanism is envy free if

there is no envy within groups,28 the following corollary summarizes the properties of the

group augmented prior-free mechanism:

Corollary 1 The group augmented prior-free mechanism is asymptotically optimal, ex

post individually rational, dominant strategy incentive compatible, non-bossy, envy free,

28Of course, because the allocation is based on virtual types, whose ranking will not coincide with the
ranking of true types with asymmetric groups, buyers or sellers from one group may envy those from
another.
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and deficit free. It permits an implementation via a multi-clock auction that is self-

enforcing.

6 Extensions

Thus far, we have focused on a designer whose objective is the weighted sum of revenue

and social surplus. However, our design is flexible enough to incorporate a variety of

alternative objectives and additional constraints. In particular, we can incorporate any

constraint that can be stated in terms of adjustments to the comparison and target func-

tions for a double or multi-clock auction. Such constraints may restrict the ability of

members of particular subsets of agents to trade, or consist of minimum revenue thresh-

olds. Alternative objectives could include the maximization of the weighted objective

subject to achieving an ex post revenue threshold or favoritism towards subsets of agents.

We now briefly discuss each of these modifications.

6.1 Real-time diagnostics and ex post revenue thresholds

In practice, mechanism designers may face “hard” revenue constraints ex post. For ex-

ample, the FCC’s incentive auction faces a revenue constraint.29 In a prior-free setup,

there is of course no guarantee that generating a given amount of revenue is feasible in

expectation, let alone ex post. To avoid the disastrous outcome in which the double-clock

auction continues until no trade occurs, the mechanism needs to provide real-time feed-

back as to whether achieving the revenue threshold is feasible. If it is not feasible, then

it is certainly preferable to stop the auction when the maximum revenue is achieved. An

advantage our double-clock and multi-clock auctions is that they permit the provision of

such real-time diagnostics.

As an illustration, consider the symmetric case with values and costs drawn from the

Uniform distribution as displayed in Table 2. If the designer’s revenue threshold is, for

example, 0.5, the double-clock auction would end with four active buyers and sellers and

prices pB = 0.59 and pS = 0.25. In this case, the revenue threshold is feasible ex post.

In contrast, if the threshold were, say, 1.2, the double-clock auction would end with three

trades and a revenue of 1.02 because with three active pairs Φ̃1 exceeds Γ̃1, indicating

that revenue decreases if the auction continues. Although this outcome fails to achieve

the revenue threshold ex post, it is preferred to continuing the auction both with regards

29As stated by Milgrom and Segal (2015, p.42), “In the incentive auction, revenues for the forward
auction portion must be sufficient to pay the costs the broadcasters incur in moving to new broadcast
channels, as well as meeting certain other gross and net revenue goals, so the possibility of including a
cost target in the scoring rule is necessary to make the whole design feasible.”
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Table 2: Real-time diagnostics for a double-clock auction with 10 buyer-seller pairs with
values and costs drawn from U [0, 1].

to the revenue and social surplus that is generated.

With slight modifications, the mechanism can also be extended to account for a hybrid

objective function that consists of first achieving a revenue target and, conditional on this

being achieved, puts weight α on revenue and weight 1− α on social surplus.

6.2 Alternative objectives and additional constraints

Caps and group-specific revenue constraints

A multi-clock auction can incorporate other constraints too. For example, a designer

or regulator may want to cap the number of units a subset of buyers acquires. Within

a multi-clock auction, this can be done by treating that set of bidders as a group and

starting the procedure by advancing the clock for that group until the number of active

agents in the group is reduced to the number eligible to trade. This is implemented by

letting that group’s comparison function be −∞ if they are buyers, or ∞ if they are

sellers, as long as the number of active members of the group remains above the cutoff.

The multi-clock auction can also accommodate the requirement that members of some

buyer group b̂ contribute payments of at least R in order for any members of that group

to trade, in which case the designer adjusts the comparison function for group b̂ buyers

to be

φb̂(pb̂,ωt) =











−∞, if nAb̂

> 0 and R < pb̂nAb̂

Φ̃b̂
α(n

Ab̂

+ 1; pb̂), if nAb̂

> 0 and R ≥ pb̂nAb̂

∞, otherwise.
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Favoring groups of agents

The multi-clock auction is also flexible enough to allow the designer to favor a particu-

lar subset of agents over other agents.30 This can be accomplished using a multi-clock

auction that assigns favored and nonfavored agents to separate groups, evaluates nonfa-

vored agents using virtual types that incorporate the designer’s unconstrained weight α

on revenue, and evaluates favored agents using virtual types with weight αf on revenue.

Favoritism then simply means αf < α. In the multi-clock auction, nonfavored buyers

have comparison function defined in terms of Φ̃α, and favored buyers have comparison

function defined in terms of Φ̃αf , and similarly for sellers. The target function is defined

as before, but uses the different weights on revenue for the different groups.

6.3 Equivalence to full-information first-price auctions

The algorithmic structure and pricing rule of the augmented prior-free mechanism means

that the outcome of the dominant strategy equilibrium in this mechanism has a payoff

equivalent outcome in a first-price double auction in which agents are completely informed

about each others’ types. Thus, under complete information, we have revenue equivalence

between a first-price double auction and our second-price double auction. Proposition 6

in Milgrom and Segal (2015), which inspired this thought experiment, provides a similar

equivalence result for a one-sided auction.

To elaborate only briefly, consider the symmetric setup in which virtual types are

increasing. Let the type realizations be such that the BOPP mechanism induces the

quantity traded k, in which case prices are v(k+1) and c[k+1] if Φα(v(k+1)) ≥ Γα(c[k+1])

and otherwise prices are Φ−1
α (θ∗k) and Γ−1

α (θ∗k), where θ∗k ∈ [Φα(v(k+1)),Γα(c[k+1])] is as

defined in Proposition 5. The full-information first-price auction with the corresponding

allocation rule has an equilibrium in which all losing traders bid their types and all trading

agents bid the BOPP prices.

In the prior-free setup when distributions are not known by any participants or the

designer, the designer announces the allocation rule corresponding to the augmented prior-

free mechanism, which is a function of the losing bids. Agents who lose still bid their types

in this equilibrium, and agents who trade submit the minimal or maximal bids that allow

them to trade, given the allocation rule.

30For example, in the case of U.S. federal acquisitions, the “Buy American Act” specifies favoritism
for domestic bidders and domestic small business bidders. (U.S. Federal Acquisition Regulation, FAR
25.105(b))
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6.4 Nonparametric versus parametric approaches

Our nonparametric approach for estimation works well when the underlying Bayesian

design problem does not require ironing, but not necessarily otherwise because in a non-

parametric approach one cannot detect nonmonotonicities that occur after the first time

the weighted virtual type functions cross. In contrast, if parametric assumptions are

imposed on the distributions F and G, then one could make out-of-sample predictions

for the virtual types of the inframarginal agents. This would allow the mechanism to

continue decreasing the quantity traded even after the first point of intersection of the

estimated virtual types if the estimated parameters indicates that the underlying problem

is nonmonotone and requires ironing.

In this sense, the question of whether a unique local maximum is a reasonable assump-

tion is intertwined with the question of whether one is willing to impose some parametric

restrictions on the distributions. For example, one could follow the approach in Loertscher

and Niedermayer (2015), according to which the virtual type functions are modelled as

Chebychev polynomials. As noted by Loertscher and Niedermayer, this approach has

the benefits that it is flexible, permits testing for regularity with a simple parameter

restriction, and by incorporating sufficiently many polynomial terms, permits accurate

extrapolation. Whether the assumption of a unique local maximum or of a particular

parameterization is more restrictive is, obviously, an empirical question. At least in prin-

ciple, it could be answered based on practical implementation of the augmented prior-free

mechanism as a direct mechanism because that would allow one to detect the need for

ironing ex post, that is, after the mechanism has been run and trades and payments have

occurred.

7 Conclusions

We develop a prior-free double-clock auction that is asymptotically optimal, endows agents

with obviously dominant strategies to bid truthfully, preserves the privacy of trading

agents, and performs well relative to the optimal mechanism even when the number of

buyers and sellers is small. The mechanism has the additional desirable properties that

it never runs a deficit, is envy free and weakly group strategy-proof, requires only limited

commitment by the designer, respects agents’ individual rationality constraints ex post,

and its equilibrium outcome remains an equilibrium outcome in a full-information first-

price double auction. Properties such as these seem important for market design to

move forward towards practical implementation in environments in which both buyers

and sellers are privately informed about their types.

Methodologically, we exploit the connection between the empirical measure of spacings
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of order statistics and the theoretical construct of virtual types. Although the direct

empirical counterpart to virtual types based on one spacing is too volatile to provide

useful guidance, we show that excessive volatility can be overcome through appropriate

smoothing of spacings without any cost for asymptotic optimality.

Privacy preservation restricts what can be achieved even in a Bayesian setup where

distributions are known by the designer. We establish the impossibility of ex post efficient

privacy preserving trade under the mild condition that full trade is sometimes but not

always optimal and provide a Bayesian benchmark for what can optimally be achieved

subject to privacy preservation when the designer knows the distributions.

Many features of the mechanisms we develop, such as prior-freeness, real-time diagnos-

tics, and the flexibility to accommodate various constraints and to pursue a combination

of revenue and surplus goals, may prove useful in a number of setups and applications,

including internet platforms and one-sided allocation problems.

A Appendix: Proofs

Proof of Lemma 1. We show the result for costs. The result for values follows analo-

gously. In this proof and those that follow, where we use notation such as ρm as an

index, e.g., c[ρm], we mean the greatest integer less than or equal to ρm. Recall that

χα(j) ≡ max {0, α(j − 2)− (1− α)}. Because χ0(ρm) = 0, the result holds for α = 0,

so assume α > 0. Because ρ < 1, we are away from the boundary and can focus on

σc
ρm =

c[ρm+rm]−c[ρm]

rm
(σc

ρm is defined differently close to the boundary, i.e., for ρm > m−rm).

To show that V (χα(ρm)σc
ρm) goes to zero with m, it is sufficient (given assumptions of

continuity on a bounded support) to show that χα(ρm)2V
[

G(c[ρm+rm])−G(c[ρm])

rm

]

goes to

zero, and because the cdf of an order statistic is itself a uniform order statistic, it is

sufficient to show that χα(ρm)2V
[

u[ρm+rm]−u[ρm]

rm

]

goes to zero, where u[i] is the ith order

statistic out of m draws from U [0, 1].

Results for uniform order statistics imply that V
[

u[i]

]

= i(m+1−i)
(m+1)2(m+2)

and Cov
[

u[i]u[j]

]

=
i(m+1−j)

(m+1)2(m+2)
, so for i < j, we have

V

(

u[i+rm] − u[i]

rm

)

=
1

r2m
V
(

u[i+rm] − u[i]

)

=
1

r2m

(

V (u[i+rm]) + V (u[i]

)

− 2Cov
(

u[i]u[i+rm]

)

=
m+ 1− rm

(m+ 1)2(m+ 2)rm
.

It follows that χα(ρm)2V
[

u[ρm+rm]−u[ρm]

rm

]

= χα(ρm)2 m+1−rm
(m+1)2(m+2)rm

, which is nondecreasing

in ρ. Taking the limit of the above expression, we have limm→∞ χα(ρm)2 m+1−rm
(m+1)2(m+2)rm

=
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limm→∞
χα(ρm)2

m2
1
rm

= 0, where the first equality uses limm→∞
rm
m

= 0 and the second

equality uses limm→∞ rm = ∞ and the fact that χα(ρm) is of order m. This gives us the

existence of a uniform bound. Q.E.D.

Proof of Lemma 2. Again, we show the result for virtual costs, with the result for virtual

values following analogously. Also as above, where we use ρm as an index, we mean the

greatest integer less than or equal to ρm. Three auxiliary results will be useful. First, for

j ∈ {1, ..., m− 1}, using the fact that the density of the jth lowest order statistic out of

m draws from distribution G is m!
(j−1)!(m−j)!

Gj−1(x)(1−G(x))m−jg(x), it follows that

Ec

[

G(c[j])

g(c[j])

]

=

∫ c

c

G(x)

g(x)

m!

(j − 1)!(m− j)!
Gj−1(x)(1−G(x))m−jg(x)dx

=

∫ c

c

m!

(j − 1)!(m− j)!
Gj(x)(1−G(x))m−jdx

= (m− j)

∫ c

c

m!

(j − 1)!(m− j)!
xGj(x)(1−G(x))m−j−1g(x)dx

−j

∫ c

c

m!

(j − 1)!(m− j)!
xGj−1(x)(1−G(x))m−jg(x)dx (6)

= j

∫ c

c

m!

j!(m− j − 1)!
xGj(x)(1−G(x))m−j−1g(x)dx

−j

∫ c

c

m!

(j − 1)!(m− j)!
xGj−1(x)(1−G(x))m−jg(x)dx

= jEc[c[j+1] − c[j]],

where the first equality uses the definition of the expectation, the second rearranges,

the third uses integration by parts, the fourth rearranges, and the fifth again uses the

definition of the expectation.

Second, one can show that for ρ ∈ (0, 1),

lim
m→∞

ρmEc

[

c[ρm+1] − c[ρm] −
c[ρm+rm] − c[ρm]

rm

]

= 0. (7)

To see this, note that given ρ ∈ (0, 1) and m sufficiently large, ρm + rm ≤ m, so the

expression in (7) is well defined. We can then write the expression inside the limit in (7)
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as

ρmEc

[

c[ρm+1] − c[ρm] −
c[ρm+rm] − c[ρm]

rm

]

= ρmEc

[

c[ρm+1] − c[ρm] −
rm
∑

i=1

c[ρm+i] − c[ρm+i−1]

rm

]

= ρmEc

[

1

ρm

G(c[ρm])

g(c[ρm])
−

rm
∑

i=1

1

(ρm+ i− 1)rm

G(c[ρm+i−1])

g(c[ρm+i−1])

]

= ρmEu

[

1

ρm

u[ρm]

g(G−1(u[ρm]))
−

rm
∑

i=1

1

(ρm+ i− 1)rm

u[ρm+i−1]

g(G−1(u[ρm+i−1]))

]

= Eu

[

u[ρm]

g(G−1(u[ρm]))
−

rm
∑

i=1

ρm

rm

ρm+ i− 1

u[ρm+i−1]

g(G−1(u[ρm+i−1]))

]

=
ρm

m+1

g(G−1( ρm

m+1
))

−
rm
∑

i=1

ρm

rm

ρm+ i− 1

ρm+i−1
m+1

g(G−1(ρm+i−1
m+1

))
,

where the first equality writes c[ρm+rm] − c[ρm] as the sum of rm spacings, the second

equality uses (6), the third equality uses the fact that a cdf evaluated at an order statistic

is itself a uniform order statistic, with u[j] denoting the jth order statistic out of m draws

from U [0, 1], the fourth equality rearranges, and the fifth equality uses Eu

[

u[j]

]

= j

m+1
.

Taking the limit of the above expression as m goes to infinity, we get

lim
m→∞

ρmEc

[

c[ρm+1] − c[ρm] −
c[ρm+rm] − c[ρm]

rm

]

= lim
m→∞

ρm

m+1

g(G−1( ρm

m+1
))

−
rm
∑

i=1

ρm

rm

ρm+ i− 1

ρm+i−1
m+1

g(G−1(ρm+i−1
m+1

))

=
ρ

g(G−1(ρ))
− ρ

g(G−1(ρ))
lim

m→∞

rm
∑

i=1

ρm

rm

ρm+ i− 1
= 0,

where the final equality follows from the fact that limm→∞

∑rm
i=1

ρm
rm

ρm+i−1
= 1. (To see this,

note that
∑rm

i=1

ρm
rm

ρm+i−1
≤ 1 and that

∑rm
i=1

ρm
rm

ρm+i−1
≥ ρ

ρ+ rm
m

− 1
m

→m→∞ 1, where the limit

uses limm→∞
rm
m

= 0 and limm→∞
1
m

= 0.)

Third, given ρ ∈ (0, 1),

lim
m→∞

sup
ρ∈[0,ρ]

Vc

[

G(c[ρm])

g(c[ρm])

]

= 0. (8)

To see this, let Uj be the distribution of the jth lowest order statistic out of m draws
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from U [0, 1]. Using the fact that the cdf of an order statistic is a uniform order statistic

with the notation above, we have

Vc

[

G(c[ρm])

g(c[ρm])

]

= Vu

[

u[ρm]

g(G−1(u[ρm]))

]

= Eu

[

(

u[ρm]

g(G−1(u[ρm]))

)2
]

−
(

ρm
m+1

g(G−1( ρm
m+1))

)2

=
∫ 1

0

(

x
g(G−1(x))

)2

dUρm(x)−
(

ρm
m+1

g(G−1( ρm
m+1))

)2

.

Taking the limit, we have

limm→∞ Vc

[

G(c[ρm])

g(c[ρm])

]

= limm→∞

∫ 1

0

(

x
g(G−1(x))

)2

dUρm(x)−
(

ρ

g(G−1(ρ))

)2

= 0,

where the final equality follows because ( x
g(G−1(x))

)2 is bounded on [0, 1] and, in the limit

as m goes to infinity, Uρm places point mass on ρ.

With these three auxiliary results in hand, we now proceed with the proof of Lemma

2. Denote the difference between theoretical and smoothed virtual costs as

Yj ≡ Γα(c[j])− Γ̃α(j) = α
G(c[j])

g(c[j])
− χα(j)σ

c
j.

For j away from the boundary, σc
j =

c[j+rm]−c[j]

rm
, so Yj = α

G(c[j])

g(c[j])
− χα(j)

c[j+rm]−c[j]

rm
and

Ec [Yj] = αEc

[

G(c[j])

g(c[j])

]

− χα(j)Ec

[

c[j+rm]−c[j]

rm

]

= αjEc[c[j+1] − c[j]]− χα(j)Ec

[

c[j+rm]−c[j]

rm

]

,

where the final equality uses (6).

Given ρ ∈ (0, 1), for all ρ ∈ (0, ρ), there exists m sufficiently large such that for

all m > m, ρm + rm ≤ m (implying that the expression above is well defined and

σc
ρm =

c[ρm+rm]−c[ρm]

rm
) and χα(ρm) = α(ρm− 2)− (1− α). It follows that

Ec [Yρm] = αρmEc[c[ρm+1] − c[ρm]]− (α(ρm− 2)− (1− α))Ec

[

c[ρm+rm]−c[ρm]

rm

]

= αρmEc

[

c[ρm+1] − c[ρm] − c[ρm+rm]−c[ρm]

rm

]

+ (1 + α)Ec

[

c[ρm+rm]−c[ρm]

rm

]

.

Taking the limit, we have

lim
m→∞

Ec [Yρm] = lim
m→∞

αρmEc

[

c[ρm+1] − c[ρm] −
c[ρm+rm] − c[ρm]

rm

]

= 0,

where the first equality uses limm→∞Ec

[

c[ρm+rm]−c[ρm]

rm

]

= 0 (the numerator is bounded by
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c− c and rm goes to infinity with m) and the second equality uses (7).

Turning to the variance of Yρm, we can write Vc [Yρm] as

Vc [Yρm] = α2Vc

[

G(c[ρm])

g(c[ρm])

]

+ Vc

[

χα(ρm)σc
ρm

]

+ covariance term.

By (8), limm→∞ supρ∈[0,ρ] Vc

[

G(c[ρm])

g(c[ρm])

]

= 0. By Lemma 1, form sufficiently large, Vc[χα(ρm)σc
ρm]

≤ uc(ρ,m) ≤ uc(ρ,m), where limm→∞ uc(ρ,m) = 0. Thus, limm→∞ supρ∈[0,ρ] Vc

[

χα(ρm)σc
ρm

]

=

0. It follows then by the Cauchy-Schwarz inequality, that the limit of the covariance terms

is also zero. Thus,

lim
m→∞

sup
ρ∈[0,ρ]

Vc [Yρm] = 0. (9)

Using Markov’s Theorem, for all ε > 0,

lim
m→∞

Pr

(

sup
ρ∈[0,ρ]

|Yρm| ≥ ε

)

≤ lim
m→∞

sup
ρ∈[0,ρ]

Ec

[

Y 2
ρm

]

ε2
= lim

m→∞
sup
ρ∈[0,ρ]

Vc [Yρm]

ε2
= 0,

where the first equality uses limm→∞Ec [Yρm] = 0 and the second equality uses (9). This

establishes uniform convergence in probability to zero. Q.E.D.

Proof of Lemma 3. By the assumption of a unique local maximum, in the limit as n

and m go to infinity, the optimal mechanism is a price posting mechanism such that

buyers are charged the price v∗ and trading sellers are paid c∗, with cutoff types v∗ and

c∗ defined by Φα(v
∗) = Γα(c

∗) and n(1 − F (v∗)) = mG(c∗) (see, for example, Loertscher

and Niedermayer (2013)). If α = 0, then the result follows from McAfee (1992), so we

consider the case with α > 0, which together with our assumption that v ≤ c, implies

that v∗ ∈ (v, v) and c∗ ∈ (c, c). It follows that there exists ρ ∈ (0, 1) sufficiently large such

that v∗ ∈ (v − ρ(v − v), v) and c∗ ∈ (c, c+ ρ(c− c)), which will allow us to use Lemma 2.

For ε > 0 sufficiently small, we define vε and cε to be the cutoff types if the virtual

value function were increased to Φα + ε and virtual cost function were reduced to Γα − ε,

i.e., Φα(v
ε)+ε = Γα(c

ε)−ε and 1−F (vε) = G(cε). We can define v−ε and c−ε analogously:

Φα(v
−ε)− ε = Γα(c

−ε) + ε and 1− F (v−ε) = G(c−ε). Because Φα and Γα are continuous

functions on compact supports, and so uniformly continuous, it follows that

lim
ε→0

vε = v∗, lim
ε→0

v−ε = v∗, lim
ε→0

cε = c∗, and lim
ε→0

c−ε = c∗. (10)

This is illustrated in Figure 4 (note that values are decreasing and costs are increasing

along the horizontal axis).

By Lemma 2, for all ε > 0, limm→∞ Pr
(

supρ∈[0,ρ]

∣

∣

∣
Γα(c[ρm])− Γ̃α(ρm)

∣

∣

∣
≥ ε
)

= 0,which
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Figure 4: Illustration of vε < v∗ < v−ε and c−ε < c∗ < cε and convergence to v∗ and c∗.

says that in the limit, the probability that for any ρ ∈ [0, ρ], Γ̃α(ρm) lies outside of the

interval [Γα(c[ρm])− ε,Γα(c[ρm]) + ε] is zero, and similarly for Φ̃α(ρn). Thus, in the limit,

the probability that the smoothed virtual types intersect at a value ṽn,m and cost c̃n,m not

bounded by [vε, v−ε] and [c−ε, cε] is zero: for all ε ∈ (0, ε),

lim
n→∞,m→∞

Pr
(

ṽn,m /∈ [vε, v−ε]
)

= 0 and lim
n→∞,m→∞

Pr
(

c̃n,m /∈ [c−ε, cε]
)

= 0.

Thus, using (10), for all ε > 0,

lim
n→∞,m→∞

Pr (|c̃n,m − c∗| ≥ ε) = 0 and lim
n→∞,m→∞

Pr (|v∗ − ṽn,m| ≥ ε) = 0,

which completes the proof. Q.E.D.

Proof of Proposition 3. That double-clock auctions satisfy dominant strategies (DS),

non-bossiness (NB), and envy-freeness (EF) is obvious. Therefore, we show that DS,

NB, and EF permit implementation via double-clock auction. DS implies that every

agent faces a price that does not depend on his report, and EF implies that all buyers

and all sellers face the same prices. NB implies that these prices do not vary with the

reports of agents who trade, and hence can only be functions of reports of agents who do

not trade. DS and EF imply that the buyers’ price must increase and the sellers’ price

must decrease as the quantity traded decreases. This permits a double-clock auction

implementation: Assume that the quantity traded in the direct mechanism satisfying

DS, NB, and EF when the reports are (v, c) is q. Because of DS and NB, the buyers’

price pB can be written as pB = pB(v(q+1), .., v(n), c[q+1], .., c(m)) and the sellers’ price

pS as pS = pS(v(q+1), .., v(n), c[q+1], .., c[m]). In the double-clock auction, v(n), .., v(q+1) and

39



c[m], .., c[q+1] would be the exit prices of the n−q buyers with smallest values and the m−q

sellers with the largest costs. The designer can end the procedure when the clock prices

reach pB(v(q+1), .., v(n), c[q+1], .., c(m)) and pS(v(q+1), .., v(n), c[q+1], .., c(m)), establishing that

a double-clock auction implementation exists.

We omit the proof that a double-clock auction satisfies privacy preservation and en-

dows agents with obviously dominant strategies. We show that it satisfies weak group

strategy-proofness. A bidder that exits when the clock price reaches its type achieves a

payoff of at least zero. Consider the first clock prices at which the double-clock auction

is affected by a group deviation. A bidder cannot benefit by a deviation that results in

its losing and getting a deviation payoff of zero, so the first deviation must be made by

a buyer who chooses not to exit when the buyer clock price reaches his value, and who

becomes winning, or by a seller who chooses not to exit when the seller clock price reaches

his cost, and who becomes winning. In the case of a buyer, the buyer’s price must then

be greater than his value, so that buyer loses from the group deviation, and in the case

of a seller, the seller’s price must then be less than his cost, so that seller loses from the

group deviation. Q.E.D.

Proof of Proposition 5. For a mechanism to be the BOPP mechanism, we require that

θ be chosen to maximize the probability of achieving the nAth trade. This probability

is (1−HnA (Φ−1
α (θ)))Lj (Γ

−1
α (θ)) , where HnA(v) is the probability that the nAth highest

draw of a buyer is no more than v conditional on the nA + 1st highest draw and LnA(c)

is the probability that the nAth lowest cost draw is no more than c conditional on the

nA + 1st lowest draw. Denote the associated densities by hnA and ℓnA. The first-order

condition is
1−HnA(Φ−1

α (θ))

hnA(Φ−1
α (θ))

1

Φ−1′
α (θ)

=
LnA(Γ−1

α (θ))

ℓnA(Γ−1
α (θ))

1

Γ−1′
α (θ)

. (11)

Using 1 − HnA(v) =
(

1−F (v)
1−F (v

(nA+1)

)nA

for v > v(nA+1) and LnA(c) =
(

G(c)
G(c

[nA+1]
)

)nA

for

c < c[nA+1], the result follows. Q.E.D.

Proof of Proposition 6. The first two statements of the proposition follow from Propo-

sitions 1 and 3. Suppose Φ̃α(j) < Γ̃α(j). If v̂(j−1) < ĉ[j−1], then trade at prices v̂(j−1)

and ĉ[j−1] violates the constraint not to run a deficit, so suppose v̂(j−1) ≥ ĉ[j−1]. The

incremental weighted objective from the trade of j − 1 units at pB and pS rather than
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j − 2 units at the predicted prices v̂(j−1) = v(j) + σv
j and ĉ[j−1] = c[j] − σc

j is

α(j − 1)(pB − pS)− α(j − 2)
(

v(j) + σv
j − c[j] + σc

j

)

+ (1− α)
(

v(j) + σv
j − c[j] + σc

j

)

=

{

α(j − 1)
(

Φ̃α(j; p
B)− Γ̃α(j; p

S)
)

− χα(j)
(

Φ̃α(j)− Γ̃α(j)
)

, if j ≥ 1+α
α

α(j − 1)(pB − pS)− (α(j − 1)− 1)
(

v̂(j−1) − ĉ[j−1]

)

, otherwise,

which is nonnegative if Φ̃α(j; p
B) ≥ Γ̃α(j; p

S) given the suppositions that Φ̃α(j) < Γ̃α(j)

and v̂(j−1) ≥ ĉ[j−1] (note that j < 1+α
α

implies that α(j − 1)− 1 < 0). Q.E.D.

Proof of Proposition 7. Fix min {n,m}. As v increases, the probability that min{n,m}
trades is efficient goes to one. In the fixed-target BOPP mechanism, θmin{n,m} = 1/2,

which implies that min{n,m} trades occur if and only if the min {n,m} lowest costs are

less than 1/2 and the min {n,m} highest values are greater than 1/2, which occurs with

probability Gmin{n,m}(1
2
)(1 − F (1

2
/v))min{n,m}, which (using G(1

2
) = 1

2
by symmetry) goes

to 1
2min{n,m} as v increases. In the BOPP mechanism, as v increases θ∗min{n,m} goes to 1,

which implies that min {n,m} trades occur with probability (1− F (1
2
/v))min{n,m}, which

goes to 1 as v increases. Q.E.D.

Proof of Proposition 8. For a given type realization, if the BOPP mechanism has k >

0 trades, then v(k) ≥ c[k], which implies that Φ̃0(k) ≥ Γ̃0(k), and so the augmented

prior-free mechanism has at least k − 1 trades. For the second part of the proposition,

assume v < c. The augmented prior-free mechanism has min{n,m} − 1 trades when

v(min{n,m}) < c[min{n,m}] and c[min{n,m}−1] ≤ (v(min{n,m})+c[min{n,m}])/2 ≤ v(min{n,m}−1), which

occurs with positive probability. When, in addition, it is not the case that c[min{n,m}−1] ≤
θ∗min{n,m}−1 ≤ v(min{n,m}−1), the BOPP mechanism has only min {n,m}−2 trades. Because

θ∗min{n,m}−2 does not depend on the type realizations, except for bounds, it differs from

(v(min{n,m})+c[min{n,m}])/2 with probability one, and so with positive probability the stated

conditions hold. Q.E.D.

Proof of Proposition 9. The optimization problem is to choose θ to maximize

∏

b∈ẐB

(

1−Hb

nAb (Φ
b−1

α (θ))
)

∏

s∈ẐS

Ls
mAs

(

Γs−1

α (θ)
)

.

The first-order condition can be written as

∑

b∈ẐB

hb

nAb
(Φb−1

α (θ))

1−Hb

nAb
(Φb−1

α (θ))
Φb−1′

α (θ) =
∑

s∈ẐS

ℓs
mAs

(

Γs−1
α (θ)

)

Ls

mAs (Γs−1
α (θ))

Γs−1′
α (θ).
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Using 1−Hb
k(u) =

(

1−F b(u)

1−F b(vb
(k+1)

)

)k

for u > vb(k+1) and Ls
k(u) =

(

Gs(u)
Gs(cs

[k+1]
)

)k

for u < cs[k+1],

the result follows. Q.E.D.
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B Online Appendix

B.1 Alternative estimators

We provide results using an alternative estimation technique based on the kernel density

estimator.

An alternative nonparametric approach is to estimate cdfs using the empirical distri-

butions defined previously, F̂ (j) = n−j+1
n+1

and Ĝ(j) = j

m+1
, and the densities using the

kernel density estimator. For the kernel density estimator, we follow Guerre, Perrigne, and

Vuong (2000) in using the triweight kernel, k̄(x) ≡ 35
32
(1−x2)3, for −1 < x < 1, with band-

width h̄(x) ≡ 1.06σx|x|−
1
5 , where σx is the standard deviation of data vector x. Thus,

the unbounded kernel density estimator given data x is κx(y) ≡ 1
h̄(x)|x|

∑|x|
i=1 k̄

(

y−x(i)

h̄(x)

)

and the kernel density estimator given data x and upper bound maxi xi is calculated by

reflecting the data across the upper bound and then truncating the resulting density, i.e.,

using κub
x (y) ≡ 2κ̄(x,−x+2maxi xi))(y), for y ≤ maxi xi, and analogously for a lower bound,

κlb
x (y) ≡ 2κ̄(−x+2mini xi,x)(y), for y ≥ mini xi.

Retaining our focus on privacy preserving implementation, we use observed types

v(j) ≡ (v(j), ..., v(n)) and c[j] ≡ (c[j], ..., c[m]) to estimate the truncated density by imposing

an upper bound v(j) for values and a lower bound c[j] for costs, and reweighting by F̂ (j)

and 1− Ĝ(j), respectively. Thus, we have:

f̄(v(j)) = F̂ (n− |v(j)|+ 1)κub
v(j)

(v(j))

and

ḡ(c[j]) = (1− Ĝ(m− |c[j]|+ 1))κlb
c[j]

(c[j]).

As an illustration, for n = 20 and values drawn from U [0, 1], the estimated densities

associated with various subsets of the data are shown in Figure 5.

We define the kernel-based weighted virtual types as

Φ̄α(v(j)) ≡
{

v(j) − α
1−F̂ (n−|v(j)|+1)

f̄(v(j))
, if j < n

v(j) − αn−2
n+1

, otherwise

and

Γ̄α(c[j]) ≡
{

c[j] + α
Ĝ(m−|c[j]|+1)

ḡ(c[j])
, if j < m

c[j] + αm−2
m+1

, otherwise,

where for the case of j = n or j = m, the kernel density estimator is undefined, so we use

the same estimator as in our augmented prior-free mechanism.

The kernel-based double-clock auction is defined by comparison and target functions
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Figure 5: Kernel-based estimates of density f based on v(j) for various j with n = 20 and
values drawn from U [0, 1].

given by, for ω
B
t = (NA,xB, pB) and ω

S
t = (MA,xS, pS), with pB ≥ maxi x

B
i and pS ≤

mini x
S
i , and nA = mA,

φ(pB,ωt) = Φ̄α(p
B, xB

(2), ..., x
B
(n)) and γ(pS,ωt) = Γ̄α(p

S, xS
[2], ..., x

S
[m]),

and

τ (ωt) = θ̄nA,

where for j < min{m,n}, we define θ̄j such that

θ̄j − Φ̄α(v(j+1))
1−F̂ (n−|v(j+1)|+1)

f̄(v(j+1))

=
Γ̄α(c[j+1])− θ̄j
Ĝ(m−|c[j+1]|+1)

ḡ(c[j+1])

, (12)

if such a θ̄j ∈ [Φ̄α(v(j+1)), Γ̄α(c[j+1])] exists, and otherwise if the left side of (12) is greater

than the right for all θ ∈ [Φ̄α(v(j+1)), Γ̄α(c[j+1])], then θ̄j = Γ̄α(c[j+1]), and otherwise

θ̄j = Φ̄α(v(j+1)).

Figure 6(a) shows that the kernel-based virtual types are similar to the smoothed

virtual types, although for the example shown they have greater volatility for high indices

when the estimates are based on a small number of observations.

The fact that volatility decreases as the index decreases in Figure 6(a) suggests that

our result on uniform convergence in probability would go through with the kernel-based

virtual types, and so the asymptotic optimality results would go through as well. This is

borne out in Figure 6(b), which illustrates the performance of the kernel-based mechanism

relative to the BOPP mechanism and compared with the augmented prior-free mecha-

nism. As shown in Figure 6(b), the kernel-based mechanism delivers performance similar
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(a) Comparison of virtual types (b) Comparison of mechanisms

Figure 6: Panel (a): Theoretical virtual types Φ and Γ, smoothed virtual types, and
kernel-based virtual types with α = 1 for 1000 values and 1000 costs drawn from the
Uniform distribution on [0, 1]. Panel (b): Ratio of augmented prior-free and kernel-based
expected revenue to BOPP expected revenue for various numbers of symmetric agents
based on Monte Carlo simulation (5000 auctions) with buyers’ values and sellers’ costs
drawn from the Uniform distribution on [0, 1].

to the augmented prior-free mechanism when there are 10 or more buyer-seller pairs, but

the kernel-based mechanism does not perform as well as the augmented prior-free mech-

anism for smaller numbers of agents (except for n = 2 where the mechanisms are defined

similarly). This is consistent with the higher volatility for the kernel-based virtual types,

which result in a higher that optimal number of trades in the kernel-based mechanism.

B.2 Rate of convergence

We approach an analysis of the rate of convergence along the lines of Satterthwaite and

Williams (1989) and McAfee (1992).

For the case of α = 0, the results of McAfee (1992) imply that under conditions

that imply that spacings between order statistics are on the order of 1/min {m,n} , the
expected efficiency loss in the baseline prior-free mechanism is on the order 1/min{m,n},
and the expected efficiency loss per potential trader is on the order 1/(min{m,n})2.31

When α = 0, the number of trades in the baseline prior-free mechanism differs from

the number in the efficient mechanism by at most one trade. Focusing on revenue (α = 1),

for large numbers of traders, with high probability the number of trades in the baseline

prior-free mechanism also differs from the number in the optimal mechanism by at most

31Rustichini, Satterthwaite, and Williams (1994) show that if F = G, then the market maker’s profit
in McAfee’s mechanism is bounded, and hence has no effect in the large economy on surplus (i.e., does
not affect the rate of convergence). Because we include revenue as part of the designer’s objective, we
include the market maker’s gain when evaluating the asymptotic properties of a mechanism.
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one trade. If k is the optimal number of trades, then the revenue impact from having

one too many trades is that buyers pay v(k+2) instead of v(k+1) and sellers receive c[k+2]

instead of c[k+1]. The revenue loss is then

k
(

v(k+1) − c[k+1]

)

− (k + 1)
(

v(k+2) − c[k+2]

)

,

which for large numbers of traders is approximately k
(

v(k+1) − c[k+1]

)

, suggesting that the

revenue loss per potential trader is on the order of 1/min {m,n}. This rate of convergence
is borne out for the distributions we have considered. For example, as shown in Figure

7 for four distributional assumptions, the gap between limiting per-buyer revenue in the

optimal mechanism and expected per-buyer revenue in the baseline prior-free mechanism

for a given number of buyer-seller pairs n remains below 1/n for n up to 1000.

(a) Buyers and sellers: U(0,1) (b) Buyers and sellers: Beta(2,4)

(c) Buyers: Beta(2,4), Sellers: Beta(4,2) (d) Buyers and sellers: Exponential(1)

Figure 7: Revenue loss per buyer in the baseline prior-free mechanism relative to the
limiting optimal revenue per buyer (0.125 for panel (a), 0.065 for panel (b), 0.018 for
panel (c), and 0.278 for panel (d)) for various numbers of symmetric agents based on
Monte Carlo simulation (5000 auctions) with buyers’ values and sellers’ costs drawn from
the distributions indicated.
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B.3 Value of estimation when α = 0

We now briefly illustrate that estimation can improve outcomes because it allows the

target function to vary with observable details. As a case in point, consider the mechanism

of McAfee (1992), which does not rely on estimation and uses a target function with

(v(j) + c[j])/2, thereby taking the midpoint of the interval between the last exit prices as

the target. Although this target is a good approximation if values and costs are similarly

spaced, for example because the numbers of buyers and sellers and their distributions are

similar, it lacks the flexibility to vary with the details of the environment otherwise.

Figure 8: Illustration of the value of estimation for α = 0.

To illustrate this, assume n = m and that buyers draw their values from the Uniform

distribution on [0, 1] whereas sellers draw their costs from the Uniform distribution on

[0, 10]. In this case, for a given number of active buyer-seller pairs, buyers’ values are in

expectation spaced more closely together than sellers’ costs. The gap between the line

“Augmented Prior Free/Optimal” and the line “Augmented Prior Free without Estima-

tion/Optimal” in Figure 8 shows that estimation matters even for α = 0. For example,

for n = 3 and n = 4, the augmented prior-free mechanism with estimation achieves more

than twice the social surplus of the augmented prior-free mechanism without estimation.

For n = 10, the mechanism with estimation still outperforms the one without by 43%.

The mechanism that implements the target functions without estimation by using the

midpoint of the last observed exits performs poorly because in many cases the midpoint

will be greater than the upper support of the buyers’ distribution. This means that the

target cannot be achieved. Using estimation, the observed closer spacings between values

than between costs (for n > 2) results in a target that is relatively closer to (and perhaps

even equal to) the last observed value, and so more likely to be in a range that can be

achieved. This explains the better performance (for n > 2) of the augmented prior-free

mechanism relative to the corresponding mechanism without estimation.
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