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Abstract

The analysis of equilibrium in double auctions is complicated, with almost no closed-form ex-

amples and with formal results limited to bounds on bidding behavior. We consider the buyer’s

bid double auction in a correlated, private values model. Sellers have the incentive to submit

their costs as their asks while buyers strategically underbid. We determine (i) the asymptotic

distribution of the equilibrium market price and (ii) the asymptotic limits of terms in the first

order condition for a buyer’s selection of his bid. Part (i) reveals the properties of the strate-

gically determined market price as an estimator of the rational expectations equilibrium price.

Part (ii) provides a simple formula for a buyer’s bid that is shown numerically to closely approx-

imate his equilibrium bid even in relatively small markets. This formula reveals how equilibrium

varies with the numbers of buyers and sellers and the distribution of their values/costs.
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Keywords: double auction, asymptotic analysis, rational expectations equilibrium, correlated
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1 Introduction

We consider the buyer’s bid double auction (BBDA), which is a simple model of a call market

in which traders interact strategically to determine a market-clearing price and allocation. This

paper considers a particular correlated private values (CPV) environment, in which case the rules

of the BBDA ensure that submitting one’s true cost as his ask is a weakly dominant strategy for

each seller. The focus is therefore upon the strategic effort by each buyer to influence price in

his favor and the solution concept is Bayesian-Nash equilibrium. We carry out an asymptotic

analysis of the probabilities that are relevant to a buyer’s decision problem in choosing his bid and

obtain two results. First, we determine the asymptotic distribution of the BBDA’s equilibrium
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price about the rational expectations equilibrium (REE) price, thereby determining the properties

of the strategically determined price as an estimator of the REE price. Second, we obtain a simple

approximation for a buyer’s equilibrium bid as a function of his probabilistic beliefs and the numbers

of traders on each side of the market. Calculating equilibrium exactly is a formidable task in all but

the smallest of markets; the simple approximating formula is easily applied in all sizes of markets

and also provides insight into the dependence of equilibrium upon the fundamentals of the model.

Finally, numerical work demonstrates the accuracy of the approximation even in relatively small

markets.

The market consists of m buyers, each of whom wishes to buy at most one item, and n sellers,

each of whom has one item to sell. Each buyer i privately observes the value vi that he receives

if he acquires an item and each seller j privately observes the cost cj that he bears if he sells his

item. Utility for each trader is quasilinear in his value/cost and money. Our trade mechanism

is a follows: a bid is collected from every buyer, an ask from every seller, which are then used to

construct demand and supply curves. The BBDA selects as the market price the upper boundary

of the interval of market-clearing prices with trade occurring among buyers who bid at least this

price and sellers whose asks are less than this price.

The values/costs of the m + n traders are generated as follows. A state µ is drawn from the

uniform improper prior on R, which can be thought of intuitively as “the uniform distribution on

the entire real line”. The use of the uniform improper prior is discussed in Satterthwaite, Williams,

and Zachariadis (2014, Introduction);1 its main value in our analysis is that it implies an invariance

property for a trader’s decision problem that greatly simplifies the analysis of equilibrium. For

each trader i, a value εi is then independently drawn from the cumulative distribution F on R,

which is absolutely continuous with finite first moment. The density f is strictly positive on R and

symmetric about zero. Trader i privately observes his value/cost µ+ εi. Through its dependence

on the state µ, a trader’s value/cost is correlated with the values/costs of others. We consider

equilibria in which all buyers employ the same increasing, differentiable, non-dominated strategy

B and all sellers ask honestly. A strategy B is assumed to have these three properties throughout

the paper.

We use here several results from SWZ. The first order condition (FOC) for a buyer’s decision

problem is derived in its section 3.1. An offset strategy for buyers is one in which the amount

v − B(v) by which a buyer underbids is constant for all v. Existence of an offset solution to a

buyer’s FOC is proven in its Theorem 1; numerical work then establishes that this offset solution

defines an equilibrium and in fact appears to be the unique equilibrium strategy. For fixed m,

n and for a sequence of markets with ηm buyers and ηn sellers with market size η ∈ N, SWZ

(Thm. 3) establishes that the amount by which a buyer underbids in a symmetric equilibrium

offset strategy is O(1/η).2 Finally, the paper uses standard methodology to determine the REE

price as a function of the state µ, m, n and the distribution F .

1Hereafter we refer to Satterthwaite, Williams, and Zachariadis (2014) as SWZ.
2For functions u1(η), u2(η) : N → R+, u1(η) = O (u2(η)) means that there exist constants k ∈ R+ and η0 ∈ N

such that u1(η) < ku2(η) for all η > η0.
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We have two main results. First, we determine the asymptotic distribution of the BBDA’s

equilibrium price. It is shown to be a consistent, asymptotically unbiased and normal estimator

of the REE price in each state µ. We thus show in our elementary trading environment that a

simple procedure can approximate the REE price despite the strategic behavior of traders. In

this way, we advance the research agenda initiated by Reny and Perry (2006) that aims to build

a strategic foundation for rational expectations equilibrium based upon the double auction as the

market mechanism.

The FOC for the buyer’s decision problem is difficult to use because of the complexity of the

probabilities of the relevant order statistics among bids/asks. Our second result addresses this

by identifying the asymptotic values of these probabilities. This asymptotic analysis models how

a sophisticated but boundedly rational buyer might approach his decision problem in the BBDA

as opposed to solving exactly for equilibrium. Identifying the asymptotic probabilities in the first

order condition produces the asymptotic first order condition (AFOC), which we are able to solve

for a rich family of distributions (i.e., mixtures of normals). Its solution for this family is a unique

constant offset that we call the asymptotic offset. This formula is notable because there are so

few closed-form examples of equilibria in the double auctions literature.3 Numerical calculations

suggest that the asymptotic offset approximates the equilibrium offset quite well even in small

markets (e.g., with m = n as small as 8 or 16). More importantly, the asymptotic offset identifies

the parameters of the model that are of first order in determining a buyer’s equilibrium bid. As an

explicit formula in m, n and the distribution F , it permits a comparative statics analysis in these

variables. This is significant for both empirical application and experimental testing of the model.4

The paper is organized as follows. Section 2 presents the model. Section 3 discusses the

buyer’s FOC, the asymptotics of its probabilities, and the asymptotic distribution of the BBDA’s

equilibrium price in relation to the REE price. Using these results in Section 4 we obtain the AFOC

and the asymptotic offset. Section 5 concludes. All proofs are in the Appendices.

2 The Model

Trade in the BBDA is organized as follows. Buyers and sellers simultaneously submit bids/asks,

which are ordered in a list5

s(1) ≤ s(2) ≤ ... ≤ s(m+n).

Assume for the moment that s(m) 6= s(m+1) and let d denote the number of buyers’ bids among the

top m bids/asks s(m+1), ..., s(m+n). There are m − d buyers’ bids among the m lowest bids/asks

s(1), ..., s(m) and so there are d sellers’ asks among the m lowest. Selecting a price p ∈ [s(m), s(m+1)]

3The two examples that we are aware of are limited to the case of independent, uniformly distributed private
values/costs: the linear equilibrium of the k = 1/2 bilateral double auction of Chatterjee and Samuelson (1983); the
linear equilibrium of the multilateral BBDA of Satterthwaite and Williams (1989) and Williams (1991).

4Experimental tests of the multilateral double auction include Kagel and Vogt (1993) and Cason and Friedman
(1997).

5We use s(t) throughout the paper to denote the tth smallest in a specified sample of bids/asks. We use st:r for
the tth smallest element when we need to specify the number r of bids/asks in the sample.
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therefore equates supply and demand, i.e., the number d of buyers’ bids at or above p equals the

number d of asks below p.6 In the case of s(m) = s(m+1), allocate trades on the long side of the

market by assigning priority first to the larger bids/smaller asks and then using a fair lottery in

the case of ties.

The BBDA selects s(m+1) as the market price. Because a seller only sells if his ask is below

this price, his ask cannot influence the price at which he trades. It is straightforward to show that

setting his ask equal to his true cost is a weakly dominant strategy for each seller. Tying down the

strategic behavior of one side of the market is an attractive feature of the BBDA as a theoretical

model. We assume the use of this strategy by each seller in the BBDA for the rest of the paper.

A buyer, however, sets the price at which he trades if his bid equals s(m+1). He therefore has an

incentive to bid less than his value.

3 First Order Condition

We discuss in this section a buyer’s FOC for the optimal selection of his bid, as derived in SWZ

(Sec. 3.1). A goal is to highlight the complexity of dealing with the probabilities involved in a

buyer’s decision problem and thus to motivate the asymptotic analysis.

Pick a focal buyer. Assuming that the n sellers submit their costs as their asks and the m− 1

nonfocal buyers use strategy B, order their bids/asks into a vector: s(1) ≤ s(2) ≤ · · · ≤ s(m) ≤
s(m+1) ≤ · · · ≤ s(m+n−1). This is the random vector against which the focal buyer, as a function of

his value v, chooses his bid b to maximize his expected utility let π(v, b). Let x denote s(m) and let

y denote s(m+1) in the bid/ask vector. Also, let fx|v(·|v) denote the density of x conditional on v.

The focal buyer’s marginal expected utility is

∂π

∂b
(v, b) = (v − b)fx|v(b|v)− Pr[x ≤ b ≤ y|v]. (1)

The first term on the right times ∆b is the focal buyer’s expected gain from increasing his bid by

∆b: he passes x with probability fx|v(b|v)∆b, goes from not trading to trading and earns v−b−∆b,

which in the limit as ∆b → 0 gives him a marginal expected gain of (v − b)fx|v(b|v). The second

term is the expected cost of increasing his bid by ∆b: with probability Pr[x ≤ b ≤ y|v] his bid b

sets the price and increasing b by ∆b forces the market clearing price he pays up by ∆b. Setting

the marginal expected utility equal to zero yields the FOC for b given v:

(v − b)fx|v(b|v)− Pr[x ≤ b ≤ y|v] = 0. (2)

Taking advantage of the conditional independence in the state µ of values/costs, this can be written

6A minor change in the allocation rule is required in order to clear the market when the price p is selected as s(m):
sellers whose asks are at or below p trade with buyers whose bids are strictly more than p.
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as

(v − b)
∫ ∞
−∞

fx|µ(b|µ)f (v − µ) dµ︸ ︷︷ ︸
fx|v(b|v)

−
∫ ∞
−∞

Pr[x ≤ b ≤ y|µ]f (v − µ) dµ︸ ︷︷ ︸
Pr[x≤b≤y|v]

= 0. (3)

Here, f (v − µ) = fµ|v (µ|v), the density of state µ conditional on the buyer’s value v, which follows

from the method of generating values/costs; fx|µ(·|µ) denotes the density of x and Pr[x ≤ b ≤ y|µ]

denotes the probability that the focal buyer sets the price, both conditional on µ.

The complexity of the first order condition becomes apparent when fx|µ(b|µ) and Pr[x ≤ b ≤
y|µ] are expressed directly in terms of m, n and F . We illustrate this point by expanding

Pr[x ≤ b ≤ y|µ]. Let v(b) denote the inverse strategy B−1(b) for b ∈ R. Given the state µ, the

probability that m of the nonfocal traders bid/ask below b and n− 1 of them bid/ask above b is

Pr[x ≤ b ≤ y|µ] =
∑

i+j=m
0≤i≤m−1

0≤j≤n

(
m− 1

i

)(
n

j

)
F (v(b)− µ)i F (b− µ)j F (v(b)− µ)m−1−i F (b− µ)n−j .

Here, i indexes the buyers and j the sellers who bid/ask below b as we sum over the different

ways in which a total of exactly i + j = m nonfocal traders bid/ask below b. Conditional on the

state µ, a nonfocal buyer bids below b with probability F (v(b)− µ) and a seller asks below b with

probability F (b− µ). Using the notation F ≡ 1 − F , the formula is then completed by insuring

that the other n− 1 traders bid/ask above b. The formula for the density fx|µ(b|µ) of x also sums

over the multiple events that result in b equaling the order statistic x, with the added complexity

that it involves the derivative v̇(b) of the inverse strategy in representing the probability density of

a bid b. Finally, to obtain Pr[x ≤ b ≤ y|v] and fx|v(b|v), we have to integrate over µ as shown in

(3), which adds another layer of difficulty.

3.1 Asymptotic Results

For fixed numbers m of buyers and n of sellers, we consider in the remainder of the paper a sequence

of markets with ηm buyers and ηn sellers for η ∈ N. Let B(·; η) denote a strategy for buyers in

the market of size η. The main result of this section identifies the asymptotic distributions of (i)

the two order statistics that are relevant in a buyer’s decision problem and (ii) the equilibrium

price in the BBDA. All three statistics are shown to be consistent, asymptotically unbiased and

normal estimators of the REE price for the limit market in each state µ. We begin by restating

SWZ (Thms. 4 and 5) for the purposes of this paper.

Theorem 1 (Buyers’ Misrepresentation) If the distribution F satisfies limv→−∞ supF (v)/f(v) <

∞, then the buyers’ equilibrium offset v −B(v; η) is O (1/η).

Let q ≡ m/(m + n), the relative size of demand in the market, and ξq ≡ F−1(q), the qth

quantile of distribution F . The limit market in state µ consists of probability masses of measure q
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of buyers and measure 1−q of sellers with values/costs z, which conditional on µ are i.i.d. according

to F (z − µ). The following theorem establishes the REE price, the BBDA price, and equilibrium

behavior in the limit market.

Theorem 2 (Limit Market)

(i) The unique REE price in the limit market in state µ is pREE ≡ µ+ ξq.

(ii) All traders report honestly their values/costs in the BBDA in the limit market. This results

in the equilibrium price in state µ equaling µ+ ξq, i.e., the equilibrium price is the REE price.

We next turn to the three order statistics that are of interest in this section. The first is

x(η) ≡ sηm:η(m+n)−1, (4)

the (ηm)th order statistic in the sample of ηm − 1 buyers playing B (·; η) and ηn sellers asking

truthfully. This is the bid/ask that a focal buyer must outbid in order to trade. The second is

y(η) ≡ sηm+1:η(m+n)−1, (5)

the (ηm+ 1)st order statistic in the sample of ηm− 1 buyers playing B (·; η) and ηn sellers asking

truthfully. The focal buyer sets the price at which he trades when his bid falls between x(η) and

y(η). The third is

pBBDA(η) ≡ sηm+1:η(m+n), (6)

the (ηm + 1)st order statistic in the sample of all buyers playing B (·; η) and all sellers asking

truthfully. When all buyers use the strategy B (·; η), pBBDA(η) is the price in the BBDA in the

market of size η.

Theorem 3 states the asymptotic distributions of x(η), y(η), and pBBDA(η). It is notable that

the result is derived using only the assumption that buyers use a strategy B (·; η) in the market

of size η for which v − B(v; η) is O(1/η). As stated in Theorem 1, this is in fact true of an

equilibrium offset strategy; the point here is that the same asymptotic distributions apply for all

strategies B (·; η) for which v − B(v; η) is O(1/η) including those that do not define equilibrium.

As we turn to the focal buyer’s decision problem in section 4, this implies a robustness to a buyer’s

choice of his optimal bid, namely, robustness to his knowledge of or hypothesis concerning the

strategy of other buyers.7 It also implies a robustness to nonequilibrium bidding by buyers in

the convergence of the market price pBBDA(η) to pREE in each state µ. As explained after the

statement of the theorem, this is true because the magnitude of underbidding by the other buyers

vanishes sufficiently fast that it is inconsequential in the focal buyer’s decision problem for large η:

the asymptotic distributions of x(η), y(η), and pBBDA(η) are the same regardless of whether the

sample is equilibrium or nonequilibrium bids/asks.

7Theorem 3 in fact does not even require that buyers use the same strategy B (·; η). We limit the result to the
symmetric case to avoid the notational complexity of dealing with multiple strategies.
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Theorem 3 (Asymptotic Distributions) Assume the use of a strategy B by buyers for which

v − B(v; η) is O(1/η) for all v ∈ R. In each state µ ∈ R and for its corresponding REE price

pREE = µ+ ξq we have

(i) x(η), y(η) ∼ AN
(
pREE,

mn/(m+ n)2

[η(m+ n)− 1] f2(ξq)

)
,

(ii) pBBDA(η) ∼ AN
(
pREE,

mn/(m+ n)2

η(m+ n) f2(ξq)

)
,

i.e., x(η), y(η) and pBBDA(η) are consistent, asymptotically unbiased and normal estimators of the

REE price in state µ.

The proof is in Appendix A. To better appreciate this result it is useful to look also at the

asymptotic distributions of zηm:η(m+n)−1, zηm+1:η(m+n)−1, and zηm+1:η(m+n), which are the analogs

of the order statistics in Theorem 3 computed in the hypothetical case in which buyers bid their

values and sellers ask their costs. From Serfling (1980, Thm. 2.3.3 A and Thm.-Cor. 2.5.2) we

have

(i) zηm:η(m+n)−1,zηm+1:η(m+n)−1 ∼ AN
(
pREE,

mn/(m+ n)2

[η(m+ n)− 1] f2(ξq)

)
,

(ii) zηm+1:η(m+n) ∼ AN
(
pREE,

mn/(m+ n)2

η(m+ n) f2(ξq)

)
.

The asymptotic distributions of the strategically determined x(η), y(η) and pBBDA(η) are thus ex-

actly the same as their counterparts in which all traders act as price takers. The intuition is as fol-

lows. From SWZ (Thm. 6) we know that the expected absolute error E
[∣∣zηm:η(m+n)−1 − pREE

∣∣ |µ]
is Θ(1/

√
η), driven by sampling error.8 Because the offset v − B(v) is O(1/η), strategic error is

relatively inconsequential compared to sampling error for large markets. Its impact thus disap-

pears completely in the asymptotic analysis.9 The challenge and the contribution of the proof of

Theorem 3 lies in its extension of known results concerning the asymptotic distribution of order

statistics of i.i.d. random variables to the case in which the variables (i.e., bids/asks given µ) are

independent but not identically distributed.

The REE price in state µ is µ + ξq, and so any trader or market observer who knows the

distribution F can estimate the state µ from the BBDA’s realized price as pBBDA(η)−ξq. This is a

particularly salient issue for traders in a case that is excluded here by our private values assumption:

if traders instead observe noisy signals concerning their values/costs, and if their values/costs may

vary with the state µ, then estimating µ allows a trader to estimate the gains that he receives by

trading. This is an interdependent values model, and it has proven difficult to formally analyze.

Numerical work in SWZ (Sec. 5.3.3), however, shows that the above theorem concerning the market

8For functions u1(η), u2(η) : N→ R+, u1(η) = Θ (u2(η)) means that there exist constants k1, k2 ∈ R+ and η0 ∈ N
such that k1u2(η) < u1(η) < k2u2(η) for all η > η0.

9The accuracy of the BBDA’s price as an estimate of pREE is illustrated numerically for markets with 2, 4, 8 and
16 traders on each side in Panel B of Table 4 of SWZ.
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price pBBDA(η) as an estimator of the pREE extends to the interdependent values case.

4 An Asymptotic Analysis of a Buyer’s Decision Problem

The first order condition (3) is difficult to use because of the complexity of the density fx(η)|µ(b|µ)

and the probability Pr[x (η) ≤ b ≤ y (η) |µ]. Applying Theorem 3, we now simplify this equation

by identifying the asymptotic values of fx(η)|µ(b|µ) and Pr[x (η) ≤ b ≤ y (η) |µ]. This produces

the AFOC, which we then solve for the asymptotic offset in the case of a particular family of

distributions.

The formal asymptotic analysis appears in the proof of the theorem below, which is deferred to

Appendix B. For notational simplicity in this section, we omit the dependence of x(η) and y(η)

on the market size η. Let w ≡ y − x. Rewrite the focal buyer’s first order condition (3) as

(v − b)
∫ ∞
−∞

fx|µ(b|µ)f(v − µ)dµ−
∫ ∞
−∞

Pr[0 < b− x < w|µ]f(v − µ)dµ = 0, (7)

where we express the event of the focal buyer setting the price in terms of the difference w instead

of y. The asymptotic distributions of x and w are now substituted into this formula: (i) Siddiqui

(1960) shows that a suitable rescaling of w is asymptotically exponential; (ii) Theorem 3 (i) states

that x conditional on µ is asymptotically normal. The AFOC is then

(v − b)
∫ ∞
−∞

f̃x|µ(b|µ)f(v − µ)dµ− 2∆

η

∫ ∞
−∞

1

1− 2∆
Λ α

f̃x|µ(α+ ξq + µ|µ) f(v − b+ ξq + α)dα

−O
(

1

η2

)∫ ∞
−∞

f̃x|µ(b|µ)f(v − µ)dµ = 0, (8)

where f̃x|µ denotes the asymptotic density of the (ηm)th order statistic x conditional on µ. Here,

∆, Λ are constants that depend on m, n, η and ξq whose formulas are given by (32) and (29) in

Appendix B. Comparing the left sides of (8) and (7), the first term in (8) corresponds to the first

term in (7), while the second and third terms in (8) correspond to the second term in (7).

As discussed in section 3.1, the AFOC (8) is derived under the assumption that nonfocal buyers

all use a strategy B(·; η) in the market of size η for which v − B(v; η) is O(1/η) for all v ∈
R. We next derive a formula for the asymptotic offset that solves (8) by making two additional

assumptions. First, to compute the integral in closed form we restrict attention to densities f

that are mixtures of normals, i.e., f(t) =
∑K

k=1wkφ
(
t;mk, σ

2
k

)
, t ∈ R, with wk > 0,

∑K
k=1wk =

1 and φk(t) ≡ φ
(
t;mk, σ

2
k

)
, the density of a N

(
mk, σ

2
k

)
random variable. We denote this as

ε ∼MN
(
{wk,mk, σ

2
k}Kk=1

)
.10 Mixtures of normals approximate arbitrarily closely any continuous

density in a variety of different norms (McLachlan and Peel (2000)). They also capture the idea of

model uncertainty, i.e., a trader may assign probabilities to different specifications of f .

10While our derivation of the asymptotic offset does not require symmetry of f , it is used elsewhere in our paper
and in SWZ. A necessary condition for a mixture of normals to be symmetric is that

∑K
k=1 wkmk = 0. Two sufficient

conditions that we use in section 4.1 are (i) mk = 0 for all k and (ii) for K even, wk+1 = wK−k, mk+1 = −mK−k,
and σk+1 = σK−k for k ∈ {0, . . . ,K/2− 1}.
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Second, in the focal buyer’s search for his approximately optimal bid, we assume that he restricts

attention to strategies B̃(·; η) in each size of market η such that v − B̃(v; η) is O(1/ηε) for some

choice of ε > 0. Formally, this assumption allows us to reduce the integral in (8) using a Taylor

series approximation; we need some restriction on the strategies to start the proof. It is in fact true

in equilibrium; the point in considering ε < 1 is to restrict as little as possible ex ante the range

of strategies that the focal buyer considers in deriving his approximately optimal bid. In other

words, we will deduce that his approximately optimal response is to underbid by an amount that

is O(1/η) and not assume it. Note also that the strategy B̃(·; η) need not equal B(·; η); all that

the focal buyer needs to know about the nonfocal buyers’ strategy is that v − B(v; η) is O(1/η).

This implies a robustness of the approximate optimality of his asymptotic offset.

These additional assumptions allow the reduction of the AFOC to

(v − b)f̃x|v(b|v)−
[

1

(m+ n)η − 1

1

f(ξq)
+O

(
1

η2

)]
f̃x|v(b|v) = 0, (9)

where f̃x|v is the asymptotic density of the order statistic x conditional on the value v,

f̃x|v(b|v) =

∫ ∞
−∞

f̃x|µ(b|µ)f(v − µ)dµ.

Since f̃x|v(b|v) > 0, the unique solution of (9) is the asymptotic offset

λ̃(η) ≡ v − b =
1

(m+ n)η − 1

1

f(ξq)
+O

(
1

η2

)
. (10)

This is a constant that is independent of v. An offset strategy thus uniquely solves the buyer’s

asymptotic first order condition, which mirrors the existence and uniqueness of the offset equilibrium

in finite markets that is established numerically in SWZ (Sec. 4).

Theorem 4 (Approximate Solution) A focal buyer faces ηn sellers asking honestly and ηm−1

buyers employing a strategy B(·; η) such that v − B(v; η) is O (1/η) for all v ∈ R. Suppose that

F is the cumulative distribution for MN
(
{wk,mk, σ

2
k}Kk=1

)
, a mixture of normals, and that the

focal buyer considers strategies B̃(·; η) in which his underbidding is O (1/ηε) for some ε > 0. Then

the unique strategy that solves the focal buyer’s asymptotic first order condition (9) is the offset

λ̃ (η) given in (10). Dispensing with the higher order terms, the asymptotic offset λ̃ (η) is further

approximated by

λapprox (η) =
1

(m+ n)η − 1

1

f(ξq)
, (11)

which approximates λ̃ (η) in the sense that limη→∞ λ̃ (η) /λapprox (η) = 1.

Notably, the approximation (11) depends on the density f only at a single point and does not

require exact knowledge of the bidding strategy of the other buyers for its derivation. Nearly

optimal bidding by a buyer thus requires considerably less than common knowledge of strategies
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and beliefs, as required by Bayesian-Nash equilibrium. Equilibrium bidding in the BBDA has been

shown to produce a relatively high level of efficiency in the BBDA’s allocation.11 Our observation

here thus implies that the strong performance of the BBDA may be more robust in trader bidding

behavior than the equilibrium analysis suggests.

Formula (11) facilitates the comparative statics exercise of exploring the dependence of equilib-

rium upon the distribution F , which is new to the double auctions literature. The offset λapprox (η)

depends upon f only through its value at the quantile ξq. As stated in Theorem 3, this reflects

the fact that in each state µ the statistics of interest in a buyer’s decision problem are concentrated

in a large market at µ + ξq, the REE price in this state. Moreover, λapprox (η) increases as f(ξq)

decreases, which suggests that equilibrium buyer underbidding should also vary with f(ξq) in this

way: if bids/asks are less concentrated at µ + ξq, then the focal buyer is more able to influence

price in his favor and consequently underbids by more. This prediction is not at all apparent from

inspection of the buyer’s FOC (3).

It is also notable that λapprox (η) depends upon the relative sizes of m and n only through their

determination of q and ξq; otherwise, the dependence on m and n is limited to the sum m + n.

Equilibrium bidding depends separately on each variable m and n because the distribution of a

buyer’s bid is different from the distribution of a seller’s ask. This asymmetry, however, becomes

inconsequential asymptotically as buyers’ bids converge to their true values and all nonfocal traders

behave increasingly the same. The asymmetry of behavior thus matters less and less as η → ∞
and all that does matter is the sum m+n in its role in determining the total number (m+ n) η− 1

of nonfocal traders. The value of q continues to matter to a buyer as the market increases in

size because it determines where the price is selected within the distribution of bids/asks. These

observations suggests a second comparative statics exercise. Consider for fixed k1, k2 ∈ N markets

with (i) ηk1 buyers, ηk2 sellers and (ii) ηk2 buyers, ηk1 sellers. Because of the assumption that

f is symmetric about 0, it follows that f (ξq) = f (ξ1−q) where q = k1/(k1 + k2) and ξq, ξ1−q are

respectively the quantiles of interest in markets (i) and (ii). Consequently, the value of λapprox (η)

is exactly the same across the two markets, and so equilibrium bidding behavior by buyers should

be approximately the same across them.

4.1 Numerical Example

Numerical calculations presented below suggest that λapprox (η) as given by (11) approximates the

equilibrium offset quite well even in small markets and for a rich set of distributions, namely, mix-

tures of normals. The two comparative statics predictions that are made above are also illustrated

by the calculations that follow below.

We begin by considering the four mixtures of normals depicted in Figure 1. In (a) we have the

standard normal N (0, 1), in (b) an equal mixture of two normalsMN ({0.5, 0, 1} , {0.5, 0, 4}) cen-

tered at zero but with different variances, in (c) an equal mixture of two normalsMN ({0.5,−1, 1} ,
{0.5, 1, 1}) centered at −1 and 1 with equal variances, and in (d) an equal mixture of two normals

11See, for instance, Rustichini, Satterthwaite, and Williams (1994, Thm. 3.2), Satterthwaite and Williams (2002,
Thm. 2) and SWZ (Thm. 4 and Result 2).
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MN ({0.5,−1.5, 1} , {0.5, 1.5, 1}) centered at −1.5 and 1.5 with equal variances, which produces

a bimodal distribution.
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Figure 1: The densities f of the mixture of normals that we use for our numerical illustration.

Table 1 concerns the case of m = n = 1 and η = 2, 4, 8, 16. Its four panels A–D correspond to

the four distributions (a)–(d) in Figure 1. Column 1 in each panel lists the market size η, column

2 lists the numerically calculated equilibrium offset λ, column 3 lists the approximate solution

λapprox, column 4 lists the absolute error in the approximation of equilibrium, and column 5 lists

the absolute error as a fraction of the equilibrium offset. The equilibrium offset is computed by

solving the FOC (2), with sufficiency then verified by graphing marginal expected utility; see SWZ

(Secs. 4.2.1 and 4.3) for further information on the calculation of equilibrium.

Beginning with Panel A in Table 1 we see that the relative error in the approximation diminishes

quickly so that the approximate solution performs well even for modest market sizes. This is true

also in Panels B and C. The most challenging case is the bimodal distribution in Panel D. The

worse performance of the approximate formula is to be expected because for bimodal distributions

a larger sample size is required to achieve the same accuracy in convergence (in the sense of the
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central limit theorem) in comparison to unimodal distributions. Nonetheless, the approximate

formula is already quite accurate for 16 traders on each side of the market even in this case. We

have also computed these values for the four distributions in the asymmetric case of m = 1, n = 2

and obtained qualitatively similar results.

Because m = n = 1 in Table 1, we have q = 1/2 for each of the four distributions and ξq = 0.

It is clear from the captions to the four panels that the density f(ξq) decreases as one moves from

distribution (a) to (b) to (c) to (d). As noted above, the approximate solution λapprox therefore

increases for each size of market as the distributions change in this way; moreover, the equilibrium

offset also increases as the distribution changes, even in the case of η = 2. The comparative statics

prediction that is suggested by the asymptotically derived, approximate formula (11) thus holds in

equilibrium for even the smallest of markets.

Table 2 addresses our second comparative statics prediction in the case of the standard normal

distribution. We consider both the cases of m = 1, n = 2 and m = 2, n = 1, with η again equaling

η = 2, 4, 8, and 16. It is observed above that buyer underbidding should be approximately the

same in these two sequences once η is sufficiently large. Column 1 of the table again lists η, column

2 lists the equilibrium offset λ1,2 for the sequence of markets with m = 1 and n = 2, and column 3

lists the equilibrium offset λ2,1 for the sequence of markets with m = 2 and n = 1. Notice that the

two lists of offsets are very close to one another even in the smallest of markets; they are in fact

identical to our level of computational accuracy for η = 16. Column 4 lists the absolute difference

|λ1,2 − λ2,1| of these equilibrium offsets. Column 5 lists this absolute difference as a fraction of the

offset λ1,2, which is done to provide some sense of the scale of the absolute error. Even in the case

of η = 2, this relative error is barely larger than 1%.

5 Conclusion

We analyze the equilibrium price and a buyer’s decision problem in the buyer’s bid double auction

from an asymptotic perspective. The asymptotic distribution of the equilibrium price is deter-

mined. It reveals that this price is a consistent, asymptotically unbiased and normal estimator of

the REE price. The REE price is thus approximately implemented in a finite market by a strate-

gically determined, market-clearing price. The asymptotic first order condition is determined by

identifying the asymptotic probabilities in a buyer’s first order condition. For a rich family of dis-

tributions, the solution to this equation is a simple formula in the fundamentals of our model that

determines a unique offset strategy. Numerical investigation suggests that this strategy closely

approximates the equilibrium bidding strategy even in small markets. This simple formula identi-

fies the first order considerations in a buyer’s selection of his bid and thereby allows a comparative

statics analysis of equilibrium.
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Panel A: N (0, 1), ξq = 0, f(ξq) = 0.3989.

η λ λapprox |λapprox − λ| |λapprox−λ|
λ

2 0.6896 0.8355 0.1459 0.2116

4 0.3398 0.3581 0.0183 0.0539

8 0.1639 0.1671 0.0031 0.0195

16 0.0805 0.0809 0.0004 0.0050

Panel B:MN ({0.5, 0, 1}, {0.5, 0, 4}), ξq = 0, f(ξq) = 0.2992.

η λ λapprox |λapprox − λ| |λapprox−λ|
λ

2 0.9304 1.1141 0.1837 0.1974

4 0.4617 0.4775 0.0158 0.0342

8 0.2215 0.2228 0.0065 0.0293

16 0.1077 0.1078 0.0001 0.0009

Panel C:MN ({0.5,−1, 1}, {0.5, 1, 1}), ξq = 0, f(ξq) = 0.2420.

η λ λapprox |λapprox − λ| |λapprox−λ|
λ

2 1.0468 1.3776 0.3308 0.3160

4 0.5305 0.5904 0.0599 0.1129

8 0.2610 0.2755 0.0145 0.0556

16 0.1296 0.1333 0.0037 0.0285

Panel D:MN ({0.5,−1.5, 1}, {0.5, 1.5, 1}), ξq = 0, f(ξq) = 0.1295.

η λ λapprox |λapprox − λ| |λapprox−λ|
λ

2 1.4650 2.5737 1.1087 0.7568

4 0.7626 1.1030 0.3404 0.4464

8 0.3948 0.5147 0.1199 0.3037

16 0.2084 0.2491 0.0407 0.1953

Table 1: For different market sizes η, the equilibrium offset λ is compared to its approximation
λapprox in the case of m = 1 buyer and n = 1 seller and the four distributions depicted in Figure 1.

η λ1,2 λ2,1 |λ1,2 − λ2,1| |λ1,2−λ2,1|
λ1,2

2 0.5027 0.5085 0.0058 0.0115

4 0.2433 0.2441 0.0008 0.0033

8 0.1184 0.1185 0.0001 0.0008

16 0.0583 0.0583 0 0

Table 2: For different market sizes η and F standard normal, the equilibrium offset λ1,2 for the
case of m = 1 buyer, n = 2 sellers is compared to the equilibrium offset λ2,1 for the case of m = 2
buyers, n = 1 seller.
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A Asymptotic Distributions of Order Statistics

As in Serfling (1980, Secs. 2.3–2.5) we first prove in Lemmas 1 and 2 the asymptotic normality of

the qth quantile in the corresponding sample and then state the results in terms of order statistics

in Theorem 3. Before we state the lemmas let us introduce some notation. Let F̃η(m+n)−1 denote

the empirical distribution of the sample of bids/asks of the η(m+ n)− 1 nonfocal traders,

F̃η(m+n)−1(t) ≡ 1

η(m+ n)− 1

ηm−1∑
i=1

I{bi ≤ t}+
1

η(m+ n)− 1

ηn∑
j=1

I{cj ≤ t}. (12)

We also define the qth quantile from this population,

ξ̃q[η(m+n)−1] ≡ inf{t : F̃η(m+n)−1(t) ≤ q}.

Finally, recall that ξq = F−1(q). The following result establishes the asymptotic relationship

between ξ̃q[η(m+n)−1] and ξq conditional on µ.

Lemma 1 Assume that nonfocal buyers use a strategy B(·; η) such that v − B(v; η) is O(1/η) for

all v ∈ R. Then for all t ∈ R and 0 < q < 1,

lim
η→∞

Pr

√η(m+ n)− 1
(
ξ̃q[η(m+n)−1] − µ− ξq

)
√
q(1− q)/f (ξq)

≤ t

 = Φ(t),

where Φ(·) is the standard normal distribution function. Therefore,

ξ̃q[η(m+n)−1] ∼ AN
(
µ+ ξq,

q(1− q)
[η(m+ n)− 1] f2(ξq)

)
.

The proof follows below after the proof of Theorem 3. Similarly, let F̃η(m+n) denote the empirical

distribution of the entire sample of η(m+ n) bids/asks,

F̃η(m+n)(t) ≡
1

η(m+ n)

ηm∑
i=1

I{bi ≤ t}+
1

η(m+ n)

ηn∑
j=1

I{cj ≤ t},

and let ξ̃q[η(m+n)] denote its qth quantile,

ξ̃q[η(m+n)] ≡ inf{t : F̃η(m+n)(t) ≤ q}.

The following result establishes the asymptotic relationship between ξ̃q[η(m+n)] and ξq conditional

on µ.

Lemma 2 Assume that all buyers use a strategy B(·; η) such that v − B(v; η) is O(1/η) for all
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v ∈ R. Then for all t ∈ R, and 0 < q < 1,

lim
η→∞

Pr

√η(m+ n)
(
ξ̃q[η(m+n)] − µ− ξq

)
√
q(1− q)/f (ξq)

≤ t

 = Φ(t).

Therefore,

ξ̃q[η(m+n)] ∼ AN
(
µ+ ξq,

q(1− q)
η(m+ n) f2(ξq)

)
.

The proof is identical with that of Lemma 1, with the terms ηm− 1, and η(m+n)− 1 replaced by

ηm and η(m+ n), respectively. We are now ready to prove Theorem 3.

Proof of Theorem 3. Recall the definitions of the order statistics x(η), y(η), and pBBDA(η) in

(4)–(6) along with the samples in which they appear. The ratio between the order of each statistic

and the cardinality of its sample size satisfies as η →∞ respectively,

ηm

η(m+ n)− 1
=

m

m+ n
+

m

(m+ n)(η(m+ n)− 1)
=

m

m+ n
+ o

(
1

η1−ε

)
, (13)

ηm+ 1

η(m+ n)− 1
=

m

m+ n
+

2m+ n

(m+ n)(η(m+ n)− 1)
=

m

m+ n
+ o

(
1

η1−ε

)
, (14)

ηm+ 1

η(m+ n)
=

m

m+ n
+

1

η(m+ n)
=

m

m+ n
+ o

(
1

η1−ε

)
, (15)

for any small ε > 0.12 Lemmas 1 and 2 establish the asymptotic distribution of the qth quantile in

particular samples. Equations (13)–(15) link the order statistics x(η), y(η), and pBBDA(η) with the

qth quantile. An application of Serfling (1980, Thm. and Cor. 2.5.2) then implies the asymptotic

relationships between x(η), y(η), and pBBDA(η) with ξq conditional on µ as stated in the theorem.

�

Proof of Lemma 1. The difference v(b; η)− b is O(1/η), where v(b; η) ≡ B−1(b; η) for b ∈ R and

η ∈ N. This rate implies that limη→∞ supb∈R |v(b; η)− b| = 0 but also that

lim
η→∞

sup
b∈R
{√η |v(b; η)− b|} = 0. (16)

The fact that the buyers’ strategy satisfies (16) is the crux of our proof of asymptotic normality.

Let λ(b; η) ≡ v(b; η)− b, where λ(b; η) ≥ 0 for all b ∈ R and η ∈ N. Since we do not need to restrict

attention to an offset strategy, λ(b; η) need not be a constant for all b.

Starting from (12), the empirical distribution of the bids/asks of the η(m + n) − 1 nonfocal

12For functions u1(η), u2(η) : N→ R+, u1(η) = o (u2(η)) means that limη→∞ u1(η)/u2(η) = 0.
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traders is for b ∈ R

F̃η(m+n)−1(b) =
1

η(m+ n)− 1

ηm−1∑
i=1

I{vi ≤ b+ λ(b; η)}+
1

η(m+ n)− 1

ηn∑
j=1

I{cj ≤ b}.

This follows from (12) by applying v(·; η) to both sides of the inequality inside the first indicator

function and then using the definition of λ(b; η). The qth quantile from this population is denoted

as ξ̃q[η(m+n)−1].

In this proof we depart from the notation used in the main text and denote the distribution

and density of values/costs conditional on µ as Fµ and fµ, respectively. Of course, conditional on

µ values/costs are i.i.d. with Fµ(b) = F (b− µ) and fµ(b) = f(b− µ) for all (b, µ) ∈ R2. As before,

Fµ = 1− Fµ. Also by definition

Fµ(b) = lim
η→∞

1

ηm

ηm∑
i=1

I{vi ≤ b}.

The qth quantile of distribution F is ξq so that µ+ ξq = F−1
µ (q). The proof extends Serfling (1980,

Thm. 2.3.3 A) to our model in which bids/asks conditional on µ are independent but not identically

distributed.

Let A > 0 be a normalizing constant to be specified later. Define

Gη(m+n)−1(t) ≡ Pr

√η(m+ n)− 1
(
ξ̃q[η(m+n)−1] − ξq − µ

)
A

≤ t


= Pr

(
ξ̃q[η(m+n)−1] ≤ µ+ ξq + t A

√
η(m+ n)− 1

−1
)

= Pr
(
F̃η(m+n)−1

(
µ+ ξq + t A

√
η(m+ n)− 1

−1
)
≥ q
)
,

where the last line follows from Serfling (1980, Lem. 1.1.4 (iii)). Setting

∆ ≡ µ+ ξq + t A
√
η(m+ n)− 1

−1
, (17)

F̃η(m+n)−1(∆) is a random variable with mean and variance13

E[F̃η(m+n)−1(∆)] =
ηm− 1

η(m+ n)− 1
Fµ(∆ + λ(∆; η)) +

ηn

η(m+ n)− 1
Fµ(∆), (18)

VAR[F̃η(m+n)−1(∆)] =
ηm− 1

(η(m+ n)− 1)2
Fµ(∆ + λ(∆; η))Fµ(∆ + λ(∆; η))

+
ηn

(η(m+ n)− 1)2
Fµ(∆)Fµ(∆). (19)

13The dependence of ∆ on µ, η, and t is suppressed for notational brevity.
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Therefore,

Gη(m+n)−1(t) = Pr
(
F̃η(m+n)−1

(
µ+ ξq + tA

√
η(m+ n)− 1

−1
)
≥ q
)

= Pr

 F̃η(m+n)−1(∆)− E[F̃η(m+n)−1(∆)]√
VAR[F̃η(m+n)−1(∆)]

≥
q − E[F̃η(m+n)−1(∆)]√

VAR[F̃η(m+n)−1(∆)]


= Pr

(
F̃ ∗η(m+n)−1(∆) ≥ c(∆)

)
,

where

F̃ ∗η(m+n)−1(∆) ≡
F̃η(m+n)−1(∆)− E[F̃η(m+n)−1(∆)]√

VAR[F̃η(m+n)−1(∆)]
, and

c(∆) ≡
q − E[F̃η(m+n)−1(∆)]√

VAR[F̃η(m+n)−1(∆)]
. (20)

By invoking the Lindeberg-Feller Central Limit Theorem (Serfling (1980, Thm. 1.9.2 A)) for t = 0

we obtain,

lim
η→∞

Pr[
√
η(m+ n)− 1(ξ̃q[η(m+n)−1] − ξq) ≥ 0] = Φ(0) =

1

2
.

Using the Berry-Esseen Theorem,14 we have15

sup
x∈R

∣∣∣Pr
(
F̃ ∗η(m+n)−1(∆) ≤ x

)
− Φ(x)

∣∣∣ ≤ K β(∆)[
(η(m+ n)− 1)2 VAR[F̃η(m+n)−1(∆)]

]3 ,

where K is a universal constant, and

β(x) ≡
ηm−1∑
i=1

E
[
|I{vi ≤ x+ λ(x; η)} − Fµ (x+ λ(x; η))|3

]
+

ηn∑
j=1

E
[
|I{cj ≤ x} − Fµ(x)|3

]
. (21)

After some algebra we arrive at

E
[
|I{vi ≤ x+ λ(x; η)} − Fµ (x+ λ(x; η))|3

]
= R(x; η)R(x; η)

[
R

2
(x; η) +R2(x; η)

]
,

E
[
|I{cj ≤ x} − Fµ(x)|3

]
= Fµ(x)Fµ(x)

[
F

2
µ(x) + F 2

µ(x)
]

14See Serfling (1980, Thm. 1.9.5) for the case of i.i.d. random variables and Batirov, Mavenich, and Nagaev (1977)
for the case of independent but not identically distributed random variables, which is relevant here.

15For the purposes of this proof, we use x to denote a generic real variable and not a particular order statistic, as
it is used elsewhere in the paper. This is done for the sake of aligning our notation with Serfling (1980, Thm. 2.3.3
A) to facilitate the use of this reference.
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where

R(x; η) ≡ Fµ (x+ λ(x; η)) ,

R(x; η) ≡ Fµ (x+ λ(x; η)) = 1− Fµ (x+ λ(x; η)) .

Therefore∣∣∣Pr
(
F̃ ∗η(m+n)−1(∆) ≥ c(∆)

)
− Φ(t)

∣∣∣ ≤ K
β(∆)[

(η(m+ n)− 1)2 VAR[F̃η(m+n)−1(∆)]
]3

+ |Φ(t)− Φ (−c(∆))| . (22)

We need to show that

lim
η→∞

β(∆)[
(η(m+ n)− 1)2 VAR[F̃η(m+n)−1(∆)]

]3 = 0. (23)

We have

β(∆)[
(η(m+ n)− 1)2 VAR[F̃η(m+n)−1(∆)]

]3

=
(ηm− 1)R(∆; η)R(∆; η)

[
R

2
(∆; η) +R2(∆; η)

]
+ ηnFµ(∆)Fµ(∆)

[
F

2
µ(∆) + F 2

µ(∆)
]

[
(ηm− 1)R(∆; η)R(∆; η) + ηnFµ(∆)Fµ(∆)

]3
=

(m− 1/η)R(∆; η)R(∆; η)
[
R

2
(∆; η) +R2(∆; η)

]
+ nFµ(∆)Fµ(∆)

[
F

2
µ(∆) + F 2

µ(∆)
]

[
(η2/3m− η−1/3)R(∆; η)R(∆; η) + η2/3 nFµ(∆)Fµ(∆)

]3 ,

(24)

where in the second line we substituted for β(∆) from (21) and VAR[F̃η(m+n)−1(∆)] from (19).

Bearing in mind that

lim
η→∞

λ(∆; η) = 0,

lim
η→∞

∆ = µ+ ξq,

lim
η→∞

Fµ(∆) = lim
η→∞

R(∆; η) = q,

lim
η→∞

Fµ(∆) = lim
η→∞

R(∆; η) = 1− q,

the limit of (24) as η →∞ equals 0, which proves (23). To complete the proof we have to find an

appropriate constant A such that

lim
η→∞

c(∆) = −t, (25)
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where the dependence of ∆ on A can be seen in (17) and c(∆) is defined in (20). Substituting for

q = m/(m+ n) and E[F̃η(m+n)−1(∆)], VAR[F̃η(m+n)−1(∆)] from (18)–(19), we rewrite c(∆) as

c(∆) =
q − E[F̃η(m+n)−1(∆)]√

VAR[F̃η(m+n)−1(∆)]

= −
E[F̃η(m+n)−1(∆)]− Fµ(µ+ ξq)√

VAR[F̃η(m+n)−1(∆)]

= −
ηm−1

η(m+n)−1Fµ(∆ + λ(∆; η)) + ηn
η(m+n)−1Fµ(∆)− Fµ(µ+ ξq)√

ηm−1
(η(m+n)−1)2Fµ(∆ + λ(∆; η))Fµ(∆ + λ(∆; η)) + ηn

(η(m+n)−1)2Fµ(∆)Fµ(∆)

= − ∆ + λ(∆; η)− ξq − µ√
ηm−1

(η(m+n)−1)2Fµ(∆ + λ(∆; η))Fµ(∆ + λ(∆; η)) + ηn
(η(m+n)−1)2Fµ(∆)Fµ(∆)

×
ηm−1

η(m+n)−1Fµ(∆ + λ(∆; η)) + ηn
η(m+n)−1Fµ(∆)− Fµ(µ+ ξq)

∆ + λ(∆; η)− ξq − µ
,

where in the last equality we multiplied and divided by ∆ + λ(∆; η) − ξq − µ. Multiplying and

dividing by (η(m+ n)− 1)/
√
η produces

c(∆) = −
η(m+n)−1√

η (∆ + λ(∆; η)− ξq − µ)√
ηm−1
η Fµ(∆ + λ(∆; η))Fµ(∆ + λ(∆; η)) + nFµ(∆)Fµ(∆)

×
ηm−1

η(m+n)−1Fµ(∆ + λ(∆; η)) + ηn
η(m+n)−1Fµ(∆)− Fµ(µ+ ξq)

∆ + λ(∆; η)− ξq − µ

= −
η(m+n)−1√

η (∆ + λ(∆; η)− ξq − µ)√
ηm−1
η Fµ(∆ + λ(∆; η))Fµ(∆ + λ(∆; η)) + nFµ(∆)Fµ(∆)

×
{

ηm− 1

η(m+ n)− 1

Fµ(∆ + λ(∆; η)− ξq − µ+ µ+ ξq)− Fµ(µ+ ξq)

∆ + λ(∆; η)− ξq − µ

+
ηn

η(m+ n)− 1

Fµ(∆− ξq − µ+ ξq + µ)− Fµ(µ+ ξq)

∆− ξq − µ
× ∆− ξq − µ

∆ + λ(∆; η)− ξq − µ

}
,

(26)

where the last equality follows from separating the second term in the first equality into two terms.

In the second term we add and subtract µ+ ξq from the argument of Fµ(∆) and then multiply and
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divide the whole term by ∆− ξq − µ. Note that

lim
η→∞

∆ + λ(∆; η)− ξq − µ = lim
η→∞

t A
√
η(m+ n)− 1

−1
+ λ(∆; η) = 0,

lim
η→∞

∆− ξq − µ = lim
η→∞

t A
√
η(m+ n)− 1

−1
= 0,

so that

lim
η→∞

ηm− 1

η(m+ n)− 1

Fµ(∆ + λ(∆; η)− ξq − µ+ µ+ ξq)− Fµ(µ+ ξq)

∆ + λ(∆; η)− ξq − µ
=

m

m+ n
F ′(ξq) =

m

m+ n
f(ξq),

lim
η→∞

ηn

η(m+ n)− 1

Fµ(∆− ξq − µ+ µ+ ξq)− Fµ(µ+ ξq)

∆− ξq − µ
=

n

m+ n
F ′(ξq) =

n

m+ n
f(ξq).

Also,

lim
η→∞

√
ηm− 1

η
Fµ(∆ + λ(∆; η))Fµ(∆ + λ(∆; η)) + nFµ(∆)Fµ(∆) =

√
(m+ n)q(1− q).

Recall that λ(∆; η) is O(1/η) and thus satisfies (16). Therefore,

lim
η→∞

η(m+ n)− 1√
η

(∆ + λ(∆; η)− ξq − µ) = lim
η→∞

η(m+ n)− 1√
η

(
t A
√
η(m+ n)− 1

−1
+O(1/η)

)
= lim

η→∞

(√
η(m+ n)− 1

η
tA+O

(
1√
η

))
=
√
m+ n tA,

and

lim
η→∞

∆− ξq − µ
∆ + λ(∆; η)− ξq − µ

= lim
η→∞

t A
√
η(m+ n)− 1

−1

t A
√
η(m+ n)− 1

−1
+ λ(∆; η)

= lim
η→∞

t A

tA+O
(

1√
η

)
= 1.

We now take the limit of c(∆), as given by (26), as η →∞ using the above limits to obtain

lim
η→∞

c(∆) = − t A√
q(1− q)

f(ξq).

To produce (25) we choose

A =

√
q(1− q)
f(ξq)

.
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Using (23) and (25) we obtain from (22) that

lim
η→∞

∣∣∣Pr
(
F̃ ∗η(m+n)−1(∆) ≥ c(∆)

)
− Φ(t)

∣∣∣ = 0,

which establishes the result. �

B Approximate Formula

Proof of Theorem 4. We want to express the probability of the focal buyer setting the price

conditional on his value v for a market of size η in terms of the distribution of w and the density

of x. Our notational convention for density functions is that, e.g., fxw|v(x,w|v; η) denotes the joint

density of x and w computed at (x,w) conditional on v for a market size η. Given this we have

Pr[x < b < y|v; η] = Pr[0 < b− x < y − x|v; η]

= Pr[0 < b− x < w|v; η]

=

∫ b

x=−∞

∫ ∞
w=b−x

fxw|v (x,w|v; η) dwdx

=

∫ ∞
µ=−∞

∫ b

x=−∞

∫ ∞
w=b−x

fxwµ|v (x,w, µ|v; η) dwdxdµ

=

∫ ∞
µ=−∞

∫ b

x=−∞

∫ ∞
w=b−x

fxw|µ,v (x,w|µ, v; η) fµ|v (µ|v) dwdxdµ,

where in the second equality we used the definition of w, and in the fourth equality we introduced µ

into the marginal by integrating over all µ ∈ R. Conditional on µ all values/costs are independent,

and hence also the order statistics of others’ bids/asks are independent from the value v of the focal

buyer. We can therefore write fxw|µ,v (x,w|µ, v; η) = fxw|µ (x,w|µ; η) and

Pr[x < b < y|v; η] =

∫ ∞
µ=−∞

∫ b

x=−∞

∫ ∞
w=b−x

fxw|µ (x,w|µ; η) dwdxfµ|v (µ|v) dµ

=

∫ ∞
µ=−∞

∫ b

x=−∞

∫ ∞
w=b−x

fw|x,µ (w|x, µ; η) fx|µ (x|µ; η) dwdxfµ|v (µ|v) dµ

=

∫ ∞
µ=−∞

∫ b

x=−∞
Fw|x,µ (b− x|x, µ; η) fx|µ (x|µ; η) dx︸ ︷︷ ︸

Pr[x<b<y|µ;η]

fµ|v (µ|v) dµ, (27)

where the last line follows using the right-hand distribution function of w, Fw|x,µ(·|x, µ; η) ≡ 1 −
Fw|x,µ (·|x, µ; η). Also, as annotated above, the inner integral in (27) is equal to the probability

that the focal buyer sets the price conditional on the state µ for market size η.

Recall that we are interested in the qth quantile where q = m/(m + n) and ξq = F−1(q). We
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write

Fw|x,µ (b− x|x, µ; η) = Pr [w > b− x|x, µ; η]

= Pr [2 [η (m+ n)− 1] f (ξq)w > 2 [η (m+ n)− 1] f (ξq) (b− x) |x, µ; η]

= Pr [ŵ > 2 [η(m+ n)− 1] f (ξq) (b− x) |x, µ; η] ,

where in the second equality we multiplied both sides in the probability event by 2 [η (m+ n)− 1] f (ξq)

and then in the third equality introduced ŵ ≡ 2 [η (m+ n)− 1] f (ξq)w.

The variable ŵ is the difference w = y−x scaled by the number of nonfocal traders η(m+n)−1

and two times the density at the quantile of interest f (ξq). This scaling allows us to use the

asymptotic result of Siddiqui (1960) that ŵ is χ2 with two degrees of freedom and independent of

x.16 Letting asymptotic distributions/densities be denoted by tildes, we have

F̃ ŵ|x,µ (t|x, µ; η) = exp

(
− t

2

)
, t ∈ R+.

From Theorem 3, we know that x conditional on µ is asymptotically normal with mean µ+ ξq and

variance Λ/η, i.e.,

f̃x|µ (t|µ; η) =
1√
2πΛ

η

exp

(
−(t− ξq − µ)2

2Λ
η

)
, t ∈ R, (28)

where Λ ≡ mn/(m+ n)2

(m+ n)− 1/η

1

f2 (ξq)
. (29)

Of course, as in the main text, using the asymptotic density of x given µ we write the asymptotic

density of x given the value v of the focal buyer as

f̃x|v(t|v; η) =

∫ ∞
µ=−∞

f̃x|µ (t|µ; η) fµ|v(µ|v)dµ. (30)

Using the asymptotic distribution of ŵ and the asymptotic density of x, we can write the

asymptotic probability that the focal buyer sets the price conditional on µ—as given by the inner

16This result applies even in the presence of two populations because our Theorem 3 on the asymptotic normality
of x with two populations can be applied within the proof in Siddiqui (1960).
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integral in (27)—also denoted by a tilde,

P̃r[x < b < y|µ; η]

=

∫ b

x=−∞
F̃ ŵ|x,µ (2 [η(m+ n)− 1] f (ξq) (b− x) |x, µ; η) f̃x|µ (x|µ; η) dx

=
1

2 [(m+ n)− 1/η] f (ξq)

∫ ∞
t=0

F̃ ŵ|x,µ (η t|x, µ; η) f̃x|µ

(
b− t

2 [(m+ n)− 1/η] f (ξq)

∣∣∣∣µ; η

)
dt

= ∆

∫ ∞
t=0

F̃ ŵ|x,µ (η t|x, µ; η) f̃x|µ (b−∆ · t|µ; η) dt

= ∆

√
η

2πΛ

∫ ∞
t=0

[
exp

(
− t

2

)
exp

(
−(b−∆ · t− ξq − µ)2

2Λ

)]η
dt, (31)

where in the second equality we changed the variable of integration to t = (b− x) /∆ with

∆ ≡ 1

2 [(m+ n)− 1/η] f (ξq)
. (32)

The integral in (31) is equal to

exp

(
−η

8

4∆(b− ξq − µ)− Λ

∆2

)
Φ

(√
η

2

2∆(b− ξq − µ)− Λ√
Λ∆

)
.

To get a simpler expression, however, we apply Fibich and Gavious (2010, Lem. 2) to approximate

the integral in (31) and write17

P̃r[x < b < y|µ; η]

= ∆

√
η

2πΛ

{∫ ∞
t=0

[
exp

(
− t

2

)
exp

(
−(b−∆ · t− ξq − µ)2

2Λ

)]η
dt

}

= ∆

√
η

2πΛ


1

η
2

exp

[
− (b−ξq−µ)2

2 Λ
η

]
1− 2∆

Λ (b− ξq − µ)

[
1 +O

(
1

η

)]
=

2∆

η

1

1− 2∆
Λ (b− ξq − µ)

f̃x|µ (b|µ; η)

[
1 +O

(
1

η

)]
=

[
2∆

η

1

1− 2∆
Λ (b− ξq − µ)

+O

(
1

η2

)]
f̃x|µ (b|µ; η) , (33)

where the third equality follows by using the definition of the asymptotic density of x conditional

on µ given by (28).

17For R(t) equal to the term in square brackets in (31), this lemma implies∫ ∞
t=0

Rη(t)dt = −1

η

Rη+1(0)

R′(0)

[
1 +O

(
1

η

)]
.
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Substituting the expression for P̃r[x < b < y|µ; η] given by (33) in (27) produces the asymptotic

probability that the focal buyer sets the price conditional on v:

P̃r[x < b < y|v; η] =

∫ ∞
µ=−∞

P̃r[x < b < y|µ; η]fµ|v(µ|v)dµ

=

∫ ∞
µ=−∞

2∆

η

1

1− 2∆
Λ (b− ξq − µ)

f̃x|µ (b|µ; η) fµ|v(µ|v)dµ

+O

(
1

η2

)∫ ∞
µ=−∞

f̃x|µ (b|µ; η) fµ|v(µ|v)dµ

=
2∆

η

∫ ∞
µ=−∞

1

1− 2∆
Λ (b− ξq − µ)

f̃x|µ (b|µ; η) fµ|v(µ|v)dµ (34)

+O

(
1

η2

)
f̃x|v(b|v; η).

We used (30) in the last line. Recall that due to the uniform improper prior assumption on µ,

fµ|v(µ|v) = f(v − µ). By also substituting for f̃x (b|µ; η) from (28), the integral in (34) becomes

∫ ∞
µ=−∞

1

1− 2∆
Λ (b− ξq − µ)

1√
2πΛ

η

exp

(
−(b− ξq − µ)2

2Λ
η

)
f(v − µ)dµ

=

∫ ∞
α=−∞

1

1− 2∆
Λ α

1√
2πΛ

η

exp

(
− α

2

2Λ
η

)
f(λ+ ξq + α)dα, (35)

where in the last line we change the variable of integration to α = b− ξq−µ = b− (µ+ ξq). We also

use λ to denote the amount by which the focal buyer underbids (i.e., λ ≡ v − b) without assuming

that it is constant for all v.

Even for a particular choice of the density f , the integral in (35) is still not computable in

closed form due to the term
[
1− 2∆

Λ α
]−1

. In order to proceed we take a Taylor’s series expansion

of
[
1− 2∆

Λ α
]−1

around zero

1

1− 2∆
Λ α

= 1 +
∞∑
i=1

(
2∆

Λ
α

)i
.

Then by substituting in (35) we have

∫ ∞
α=−∞

1

1− 2∆
Λ α

1√
2πΛ

η

exp

(
− α

2

2Λ
η

)
f(λ+ ξq + α)dα =

∫ ∞
α=−∞

1√
2πΛ

η

exp

(
− α

2

2Λ
η

)
f(λ+ ξq + α)dα +

∫ ∞
α=−∞

∞∑
i=1

(
2∆

Λ
α

)i 1√
2πΛ

η

exp

(
− α

2

2Λ
η

)
f(λ+ ξq + α)dα.

Again using (30), the first term in the above sum is f̃x|v(b|v; η). Substituting back in (34) we get the
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following expression for the asymptotic probability that the focal buyer sets the price conditional

on v:

P̃r[x < b < y|v; η] =

[
2∆

η
+O

(
1

η2

)]
f̃x|v(b|v; η)

+
2∆

η

∫ ∞
α=−∞

∞∑
i=1

(
2∆

Λ
α

)i 1√
2πΛ

η

exp

(
− α

2

2Λ
η

)
︸ ︷︷ ︸

f̃x|µ(b|µ;η)

f(λ+ ξq + α)dα. (36)

Our goal in what follows is to show that the integral in (36) is O(1/η)f̃x|v(b|v; η). This will lead

to a simple expression for the asymptotic probability and subsequently an approximate formula for

the equilibrium strategy of the focal buyer. To see this note that if

∫ ∞
α=−∞

∞∑
i=1

(
2∆

Λ
α

)i 1√
2πΛ

η

exp

(
− α

2

2Λ
η

)
f(λ+ ξq + α)dα = O

(
1

η

)
f̃x|v(b|v; η), (37)

then the asymptotic probability (36) that the focal buyer sets the price becomes

P̃r[x < b < y|v; η] =

[
2∆

η
+O

(
1

η2

)]
f̃x|v(b|v; η) +

2∆

η
O

(
1

η

)
f̃x|v(b|v; η)

=

[
2∆

η
+O

(
1

η2

)]
f̃x|v(b|v; η).

Substituting the above probability into the focal buyer’s FOC (2), we obtain the AFOC (9). This

yields a unique solution for the difference λ = v − b that does not depend on v; it is the offset

solution (10), where we substitute for ∆ from (32). Therefore, in the case where (37) holds we get

the approximate formula (11) for the focal buyer’s optimal offset strategy.

In what follows we first prove that (37) holds for F normal and then extend it to the case of

mixture of normals. The normal and mixtures of normals allow us to compute the integral in (36)

in closed form and thus makes it possible to establish (37). Recall that we also assume that the

focal buyer considers strategies B̃(·; η) in which his underbidding λ is O (1/ηε) for some ε > 0.

Normal distribution case. Start by assuming that f = φk(x). Substituting in the integral in

(36) yields

∫ ∞
α=−∞

∞∑
i=1

(
2∆

Λ
α

)i 1√
2πΛ

η

exp

(
− α

2

2Λ
η

)
1√

2πσ2
k

exp

(
−(λ+ ξq + α−mk)

2

2σ2
k

)
dα. (38)
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Focusing on the first three terms of the infinite sum, we get

∫ ∞
α=−∞

2∆

Λ
α

1√
2πΛ

η

exp

(
− α

2

2Λ
η

)
1√

2πσ2
k

exp

(
−(λ+ ξq + α−mk)

2

2σ2
k

)
dα

︸ ︷︷ ︸
I1

(39)

+

∫ ∞
α=−∞

[
2∆

Λ
α

]2 1√
2πΛ

η

exp

(
− α

2

2Λ
η

)
1√

2πσ2
k

exp

(
−(λ+ ξq + α−mk)

2

2σ2
k

)
dα

︸ ︷︷ ︸
I2

(40)

+

∫ ∞
α=−∞

[
2∆

Λ
α

]3 1√
2πΛ

η

exp

(
− α

2

2Λ
η

)
1√

2πσ2
k

exp

(
−(λ+ ξq + α−mk)

2

2σ2
k

)
dα

︸ ︷︷ ︸
I3

. (41)

Also, observe that when f = φk equation (30) implies

f̃x|v(b|v; η) =

∫ ∞
µ=−∞

1√
2πΛ

η

exp

(
−(b− ξq − µ)2

2Λ
η

)
1√

2πσ2
k

exp

(
−(µ− v −mk)

2

2σ2
k

)
dµ

=
1√

2π
(
σ2
k + Λ

η

) exp

−(v − b+ ξq −mk)
2

2
(
σ2
k + Λ

η

)


=
1√

2π
(
σ2
k + Λ

η

) exp

−(λ+ ξq −mk)
2

2
(
σ2
k + Λ

η

)
 , (42)

i.e., the asymptotic density of x given the value v is also normal with mean mk−v−ξq and variance

σ2
k + Λ/η. In the last equality above we simply substituted for λ = v − b.

The integrals I1, I2, I3 as annotated in (39)–(41) are easily computed in closed form. Using

formula (42) for f̃x|v(b|v; η) in the normal case we have that

I1 = −f̃x|v(b|v; η)
2∆

Λ

Λ
η

σ2
k + Λ

η

(λ+ ξq −mk), (43)

I2 = f̃x|v(b|v; η)

(
2∆

Λ

)2 Λ
η(

σ2
k + Λ

η

)2

(
1 +

Λ

η

(
1 + (λ+ ξq −mk)

2
))

, (44)

I3 = −f̃x|v(b|v; η)

(
2∆

Λ

)3

(
Λ
η

)2

(
σ2
k + Λ

η

)3

(
3 +

Λ

η

(
3 + (λ+ ξq −mk)

2
))

(λ+ ξq −mk). (45)

Notice that f̃x(b|v; η) is a common factor in I1, I2, I3. Those terms differ in their exponents on the

factors 2∆/Λ, Λ/η and λ+ ξq −mk. To derive a simple formula for the focal buyer’s strategy, we
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focus on the dependence of these terms on η. Using (29) and (32) we have that

2∆

Λ
=

f(ξq)(m+ n)2

mn
,

i.e., it is a constant that does not depend on η. Furthermore, again from (29),

Λ

η
=

mn

(m+ n)2f2(ξq)

1

(m+ n)η − 1
,

and so it is O(1/η). We also have that Λ
η /
(

1 + Λ
η

)2
is O(1/η) and

(
Λ
η

)2
/
(

1 + Λ
η

)3
is O(1/η2).

We have assumed that the focal buyer restricts attention to λ that is O(1/ηε) for some ε > 0.

It is then easy to see from (43)–(45) for I1, I2, I3, that18

I1 = −f̃x|v(b|v; η)O

(
1

η

)
,

I2 = f̃x|v(b|v; η)O

(
1

η

)
,

I3 = −f̃x|v(b|v; η)O

(
1

η2

)
.

Similarly, if we compute the integrals corresponding to higher terms (i.e., In for n > 3) from

the series expansion of
[
1− 2∆

Λ α
]−1

we get expressions of the form f̃x|v(b|v; η)O (1/ηκ) for κ ≥ 2.

Hence, summing the In’s the integral in (38) is19

I1 + I2 + I3 + . . . = O

(
1

η

)
f̃x|v(b|v; η).

This means that (37) is satisfied in the normal distribution case, and the asymptotic offset (10) as

well as the approximate formula (11) hold simply by substituting φk for f .

Mixture of normals. Now consider a nondegenerate mixture, i.e., f =
∑K

k=1wkφk. We substi-

tute in the integral in (36)

f(λ+ ξq + α) =

K∑
k=1

wkφk(λ+ ξq + α).

18Strictly speaking, we should treat the case ξq = mk separately because then the order term in I1 is O(1/η1+ε)
and the order term in I3 is O(1/η2+ε). However, since the order term in I2 remains O(1/η), this does not affect the
end result.

19Note that O(1/η)−O(1/η) = O(1/η).
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Above we proved that (37) holds for each φk, i.e.,

∫ ∞
α=−∞

∞∑
i=1

(
2∆

Λ
α

)i 1√
2πΛ

η

exp

(
− α

2

2Λ
η

)
1√

2πσ2
k

exp

(
−(λ+ ξq + α−mk)

2

2σ2
k

)
dα

= O

(
1

η

)
1√

2π
(
σ2
k + Λ

η

) exp

−(λ+ ξq −mk)
2

2
(
σ2
k + Λ

η

)
 . (46)

Furthermore, for the mixture of normals case from (30),

f̃x|v(b|v; η) =

∫ ∞
µ=−∞

1√
2πΛ

η

exp

(
−(b− ξq − µ)2

2Λ
η

)
K∑
k=1

wk
1√

2πσ2
k

exp

(
−(µ− v −mk)

2

2σ2
k

)
dµ

=

K∑
k=1

wk

∫ ∞
µ=−∞

1√
2πΛ

η

exp

(
−(b− ξq − µ)2

2Λ
η

)
1√

2πσ2
k

exp

(
−(µ− v −mk)

2

2σ2
k

)
dµ

=
K∑
k=1

wk
1√

2π
(
σ2
k + Λ

η

) exp

−(λ+ ξq −mk)
2

2
(
σ2
k + Λ

η

)
 . (47)

Multiplying both sides of (46) by wk and summing across k = {1, . . . ,K} using (47) shows that

(37) is satisfied for mixture of normals. The asymptotic offset (10) and the approximate formula

(11) thus hold. �
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