Final Exam Answers
Economics 490
Fall Semester, 2011
Prof. Steven Williams

Rules for the exam:

• You can consult all course materials, including your notes, past homework assignments, and everything posted on the course webpage. Do not consult other books other than our course textbook and do not consult any other sources, such as online sites.

• Your work should be your own. Do not consult with anyone else.

• If you have questions, then submit them to me by email. "Is this correct?" is not a legitimate question!

• You can turn in your exam by placing it in my mailbox in room 214 of David Kinley Hall. Exams are due by 5 p.m. on Friday, December 16 (the last day of final exams). Turning in your exam earlier will be greatly favored.

• Answers to the exam will be posted on the course website when I have completed the grading.

1. (15 points) There are four alternatives \(W, X, Y, \) and \(Z \) and five voters \((1, 2, 3, 4, 5)\). The preferences of the voters are given by the following table:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>X</td>
<td>X</td>
<td>W</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>W</td>
<td>W</td>
<td>Y</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Z</td>
<td>Y</td>
<td>X</td>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>Z</td>
<td>Z</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

(a) (10 points) Show that the preferences of these five voters are single-peaked. Hint: You can answer the question with a suitable graph of the utility functions of the voters.
(b) (5 points) Determine the unique majority winner of the four alternatives whose existence is guaranteed by Sen’s Theorem.

X beats every other alternative in a one-on-one majority vote.

2. (15 points) Consider a marriage market with three men and four women. The strict preferences of the men and women are as follows:

<table>
<thead>
<tr>
<th>m1</th>
<th>m2</th>
<th>m3</th>
</tr>
</thead>
<tbody>
<tr>
<td>w1</td>
<td>w2</td>
<td>w1</td>
</tr>
<tr>
<td>w2</td>
<td>w1</td>
<td>w2</td>
</tr>
<tr>
<td>w3</td>
<td>w4</td>
<td>w3</td>
</tr>
<tr>
<td>w4</td>
<td>w3</td>
<td></td>
</tr>
</tbody>
</table>

or alternatively as

<table>
<thead>
<tr>
<th>w1</th>
<th>w2</th>
<th>w3</th>
<th>w4</th>
</tr>
</thead>
<tbody>
<tr>
<td>m2</td>
<td>m2</td>
<td>m3</td>
<td>m1</td>
</tr>
<tr>
<td>m3</td>
<td>m3</td>
<td>m2</td>
<td>m3</td>
</tr>
<tr>
<td>m1</td>
<td>m2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

or alternatively as

\[
\begin{align*}
P(m_1) : w_1, w_2, w_3, w_4 & \quad P(w_1) : m_2, m_3, m_1 \\
P(m_2) : w_2, w_1, w_4, w_3 & \quad P(w_2) : m_2, m_3 \\
P(m_3) : w_1, w_2, w_3 & \quad P(w_3) : m_3, m_2 \\
P(w_4) : m_1, m_3, m_2 & \quad P(w_4) : m_1, m_3, m_2
\end{align*}
\]

(a) (5 points) Apply the deferred acceptance (or Gale-Shapley) algorithm to determine the M-optimal stable matching:

Men make the proposals:

stage 1:
w_1 \ w_2 \ w_3 \ w_4 \quad P(m_1) : w_2, w_3, w_4 \\
m_3 \ m_2 \quad P(m_2) : w_1, w_4, w_3 \\
P(m_3) : w_2, w_3 \\

stage 2:

w_1 \ w_2 \ w_3 \ w_4 \quad P(m_1) : w_3, w_4 \\
m_3 \ m_2 \quad P(m_2) : w_1, w_4, w_3 \\
P(m_3) : w_2, w_3 \\

stage 3:

w_1 \ w_2 \ w_3 \ w_4 \quad P(m_1) : w_4 \\
m_3 \ m_2 \quad P(m_2) : w_1, w_4, w_3 \\
P(m_3) : w_2, w_3 \\

stage 4:

w_1 \ w_2 \ w_3 \ w_4 \quad P(m_1) : \\
m_3 \ m_2 \ m_1 \quad P(m_2) : w_1, w_4, w_3 \\
P(m_3) : w_2, w_3 \\

(b) (5 points) Apply the deferred acceptance (or Gale-Shapley) algorithm to determine the W-optimal stable matching:

Women make the proposals:

P(m_1) : w_1, w_2, w_3, w_4 \quad P(w_1) : m_2, m_3, m_1 \\
P(m_2) : w_2, w_1, w_4, w_3 \quad P(w_2) : m_2, m_3 \\
P(m_3) : w_1, w_2, w_3 \quad P(w_3) : m_3, m_2 \\
P(w_4) : m_1, m_3, m_2 \\

stage 1:

P(w_1) : m_3, m_1 \\
w_4 \ w_2 \ w_3 \quad P(w_2) : m_3 \\
m_1 \ m_2 \ m_3 \quad P(w_3) : m_2 \\
P(w_4) : m_3, m_2 \\

stage 2:

P(w_1) : m_1 \\
w_4 \ w_2 \ w_1 \quad P(w_2) : m_3 \\
m_1 \ m_2 \ m_3 \quad P(w_3) : m_2 \\
P(w_4) : m_3, m_2 \\

stage 3:

P(w_1) : m_1 \\
w_4 \ w_2 \ w_1 \quad P(w_2) : m_3 \\
m_1 \ m_2 \ m_3 \quad P(w_3) : \\
P(w_4) : m_3, m_2
(c) (5 points) Explain using your answer to a)-b) how you know that there is at least one woman who never gets married in any possible stable matching.

w_3 is not matched in the W-optimal matching, which means that being single is her favorite achievable match. If she were married to man m' in some stable matching, then she would strictly prefer being single to man m'. This contradicts stability.

Alternatively, some of you noticed that the M-optimal and W-optimal stable matchings are the same. These are the best and the worst stable matchings for each side of the market. Consequently, this is the only stable matching in this problem, and woman w_3 is unmarried.

3. (10 points) (Problem 3, p. 495 of Campbell). There are six students, A, B, C, D, E and F, and three colleges, X, Y, and Z, each with room for two students. The test scores and the student preferences are given in the tables below. Work out the matching determined by the CODA if college X uses only the quantitative score and colleges Y and Z each use only the verbal score.

<table>
<thead>
<tr>
<th>student</th>
<th>quant. score</th>
<th>verbal score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90</td>
<td>80</td>
</tr>
<tr>
<td>B</td>
<td>85</td>
<td>90</td>
</tr>
<tr>
<td>C</td>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>D</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td>E</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>F</td>
<td>65</td>
<td>85</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>Z</td>
<td>Z</td>
<td>Y</td>
<td>X</td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>X</td>
<td>Z</td>
</tr>
<tr>
<td>Z</td>
<td>Z</td>
<td>X</td>
<td>X</td>
<td>Z</td>
<td>Y</td>
</tr>
</tbody>
</table>

stage 1: X offers admission to A and B. Y and Z offer admission to B and F. We end up with

$X : A, B$

$Y :$

$Z : F$

stage 2: Z offers admission to A, Y offers admission to A and E. We end up with

$X : A, B$

$Y : E$

$Z : F$

stage 3: Z offers admission to E, Y offers admission to C. We end up with

$X : A, B$

$Y : E, C$

$Z : F$

stage 4: Z offers admission to C. We end up with
stage 5: Y offers admission to D.

stage 6:

stage 7:

stage 8:

stage 9:

stage 10:

stage 11:

stage 12:

stage 13:

stage 14:

stage 15:

stage 16:

stage 17:

stage 18:

stage 19:

stage 20:

stage 21:

stage 22:

stage 23:

stage 24:

stage 25:

stage 26:

stage 27:

stage 28:

stage 29:

stage 30:

stage 31:

stage 32:

stage 33:

stage 34:

stage 35:

stage 36:

stage 37:

stage 38:

stage 39:

stage 40:

stage 41:

stage 42:

stage 43:

stage 44:

stage 45:

stage 46:

stage 47:

stage 48:

stage 49:

stage 50:

stage 51:

stage 52:

stage 53:

stage 54:

stage 55:

stage 56:

stage 57:

stage 58:

stage 59:

stage 60:

stage 61:

stage 62:

stage 63:

stage 64:

stage 65:

stage 66:

stage 67:

stage 68:

stage 69:

stage 70:

stage 71:

stage 72:

stage 73:

stage 74:

stage 75:

stage 76:

stage 77:

stage 78:

stage 79:

stage 80:

stage 81:

stage 82:

stage 83:

stage 84:

stage 85:

stage 86:

stage 87:

stage 88:

stage 89:

stage 90:

stage 91:

stage 92:

stage 93:

stage 94:

stage 95:

stage 96:

stage 97:

stage 98:

stage 99:

stage 100:

stage 101:

stage 102:

stage 103:

stage 104:

stage 105:

stage 106:

stage 107:

stage 108:

stage 109:

stage 110:

stage 111:

stage 112:

stage 113:

stage 114:

stage 115:

stage 116:

stage 117:

stage 118:

stage 119:

stage 120:

stage 121:

stage 122:

stage 123:

stage 124:

stage 125:

stage 126:

stage 127:

stage 128:

stage 129:

stage 130:

stage 131:

stage 132:

stage 133:

stage 134:

stage 135:

stage 136:

stage 137:

stage 138:

stage 139:

stage 140:

stage 141:

stage 142:

stage 143:

stage 144:

stage 145:

stage 146:

stage 147:

stage 148:

stage 149:

stage 150:

stage 151:

stage 152:

stage 153:

stage 154:

stage 155:

stage 156:

stage 157:

stage 158:

stage 159:

stage 160:

stage 161:

stage 162:

stage 163:

stage 164:

stage 165:

stage 166:

stage 167:

stage 168:

stage 169:

stage 170:

stage 171:

stage 172:

stage 173:

stage 174:

stage 175:

stage 176:

stage 177:

stage 178:

stage 179:

stage 180:

stage 181:

stage 182:

stage 183:

stage 184:

stage 185:

stage 186:

stage 187:

stage 188:

stage 189:

stage 190:

stage 191:

stage 192:

stage 193:

stage 194:

stage 195:

stage 196:

stage 197:

stage 198:

stage 199:

stage 200: