4. Yes, they the single-peak property. One must order the three alternatives in a particular way to demonstrate this (z must be in the middle).

7. The Gibbard-Satterthwaite Theorem implies that it can not be a dominant strategy for each voter to report his preferences truthfully. I suggest checking first a Condorcet triple whenever one wants to demonstrate any sort of flaw in a voting procedure:

1: $x > y > z$
2: $y > z > x$
3: $z > x > y$

If the voters report their preferences truthfully, then there is no majority winner. The alternative x then goes against y, resulting in x being selected. Who might want to change this outcome? Voter 2 ranks x as last. Suppose that he instead reports $z > y > x$. The alternative z is then the unique majority winner, and voter 2 changes the outcome from his least favorite to his middle alternative. Voter 2 thus has an incentive to misreport.

8. Comparing the two tables, one can see that they differ only in Person 3’s preferences. Let’s compute the outcome for both tables and then show that Person 3 may want to manipulate the outcome.

In table 7.11, x ties y, z, and w, while y beats z, z beats w, and w beats y. The outcome selected for table 7.11 is therefore x.

In table 7.12, y ties w and x and y beats z, while z beats x and w. The outcome is therefore y.

Suppose person 3’s ranking is as in table 7.11. By reporting honestly, the outcome is x; by reporting the ranking in table 7.12, however, the outcome is y, which he prefers. It therefore is in his interest to misreport his preferences.